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The metastable metallic high-pressure phase of the alloy Cd,,Sb,, is gradually transformed at 
room temperature and atmospheric pressure into an amorphous dielectric state. It was possible to 
observe at various stages of this transformation three different power-law variations of the 
conductivity with temperature. Interelectron interaction predominates at T < 40 K. It ensures 
that a a T'13 in the immediate vicinity of the metal-insulator transition and a a T'12 away from 
this transition. Above 40 K the a( T) dependence becomes linear. It is determined by inelastic 
electron scattering by the structural disorder. 

1. INTRODUCTION 

Metal-insulator transitions have remained for many 
years among the most interesting problems in solid-state 
physics. There are still many questions for which there are 
no clear answers. One of them concerns the temperature de- 
pendence of the conductivity a( T) near the transitions. 
These questions are the subject of the present paper. 

Two of the causes of a metal-insulator transition the 
most important: the increase of the disorder in the static 
potential, possibly, at a constant density of the electronic 
states on the Fermi level (the Anderson transition), and the 
decrease of the electron density of states possibly, even in the 
complete absence of disorder (Mott transition). Although 
real transitions are usually caused by simultaneous action of 
various factors, in the analysis of experimental data it is con- 
venient to start with a definite model. Since transition 
evolves in experiment against the background of amorphiza- 
tion of an alloy, it is natural to start out with the terminology 
of the Anderson model. 

The Anderson transition is defined only at T = 0 K. It 
amounts to vanishing of the conductivity a. Application of a 
scaling description to this transition leads in the three-di- 
mensional case to a conductivity a ( 0 )  = (e2/fi) ( l/g), 
which contains beside the natural conductance unit 
e2/fi = (4.1 k 0 )  - ' only the correlation length 6 which be- 
comes infinite at the transition point. The value of g depends 
on some structure parameter (e.g., the degree of disorder). 
Such transitions are therefore investigated experimentally 
by comparing the characteristics of a number of samples pre- 
pared with gradual variation of one of the parameters 
(chemical composition, film-sputtering conditions, etc.) It 
is also possible to induce the transition in the sample by vary- 
ing a magnetic field or subjecting the sample to an elastic 
stress. 

Inelastic interactions come into play at T #O K. They 
are characterized by a parameter L (  T) with dimension of 
length, which can be regarded as the length at which these 
interactions destroy the phase coherence of the wave func- 
t i ~ n . ~  If the temperature is high enough so that L <g, it is 
precisely the inelastic interaction, and not the geometric 
conductivity of the equipotential surface of the static poten- 
tial, which determines the value of the conductivity. This 
means that at L <g the expression for acontainsL in place of 
{. A simple interpolation equation 

has been proposed3 for the region L ~ 6 ,  with the first term 
indicative of the proximity to the transition and the second 
describing the temperature dependence. It appears that the 
constants c, and c2 depend little on the actual material. 

We must emphasize the fundamental difference be- 
tween equations such as ( 1 ), in which the length L is in the 
denominator, from the equation for the Boltzmann conduc- 
tivity of an electron gas of density n with a Fermi momentum 
k,: 

in which the path length I is the numerator. In particular, 
the changes of the conductivity with temperature are oppo- 
site in these equations. It  is known that a decrease of a with 
decrease of T is possible in metals on account of quantum 
corrections to the conductivity: weak localization4 and in- 
terelectron intera~tion.~ In these equations L has the mean- 
ing of diffusion length. The quantum corrections, however, 
should be small compared with the total conductivity. The 
term (e2/fi)L in ( 1 ) is the principal one. It  is therefore natu- 
ral to call a conductivity of type (1)  quantum or scaling 
conductivity, to distinguish it from classical or Boltzmann 
conductivity. 

The quantum conductivity ( 1 ) is small in absolute val- 
ue. It can be arbitrarily assumed that the quantum and 
Boltzmann conductivities are separated by the Mott value of 
the minimum metallic cond~ctivity:~ 

(a  is the parameter with dimension of length and is connect- 
ed with the density n of the electrons that can participate in 
the conductivity: a = n - The limiting value of ( 3 )  is 
obtained, apart from a coefficient, from (2) at the minimum 
possible value Iz k , ' Z n  - 'I3. The latter is obtained as the 
highest possible value of the second term in ( 1 ) if it is as- 
sumed that L = I. That I is the smallest possible value of L is 
natural if it is assumed that L is the diffusion length and I is 
the pace of the diffusion. 

An attempt to describe the experimental values of a( T )  
by starting from Eq. ( 1) requires identification of the phys- 
ical nature of the processes that control L. It appears that in 
the critical region, i.e., close to the transition and at not too 
high temperatures), the principal role in the formation of L 
is played by interelectron intera~tion,,.~ for which the char- 
acteristic time is5 
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and the characteristic length is 

where D is the diffusion coefficient. Assume that with re- 
spect to the degree of disorder we are so close to the transi- 
tion that the first term of ( 1) can be neglected. We can then 
calculate D self-consistently in terms of the Einstein rela- 
tion. From the set of equations 

(g, is the density of states on the Fermi level) we obtain with 
the aid of ( 1 ) and (4) 

According to Ref. 9, c, = (2 /3)6 ,  so that the coefficient 
c:I3 in (5) is equal to 0.077. This coefficient is important for 
an estimate of the density of states near the transition. 

The o a T dependence was observed in experiment a 
number of times,'&l6 but in most cases only at T <  1 K and 
using a magnetic field to approach the transition. This de- 
pendence remained in force up to 10 K in Ge, - , Au, (Ref. 
10) and In, 0, - , (Ref. 1 1 ) up to higher temperatures. 

Moving away from the transition by varying the degree 
of disorder, the first term of ( 1) becomes larger than the 
second. The diffusion coefficient is then controlled by this 
term, i.e., D in Eq. (4)  ceases to depend on T. The second 
term of ( 1 ) becomes then proportional to T 'I2. This cross- 
over was observed earlier only in a magnetic field. l3  

It is also possible to move away from the transition by 
increasing T. This decreases Lint according to (4) ,  but only if 
it remains of the order of the elastic mean free path I ,  con- 
trolled by the static disorder. Different variants of the behav- 
ior of o(T)  are probably possible" with further increase of 
T. One of the variant is a transition from T 'I3 to a linear 
dependence on T. Such an evolution of the function o ( T )  
was observed experimentally only in Gel - , Au, (Ref. 10) 
In20,-, (Ref. 18). 

We present here the results of an investigation of the 
resistivity of the alloy Cd4,Sb5, which decays from a meta- 
stable metallic high-pressure phase into an amorphous insu- 
lating Since the decay is slow close to room tem- 
perature, it can be interrupted in intermediate stages by 
rapidly lowering the temperature ("quenching"). This 
makes it possible to plot a set of resistivity curves for various 
intermediate states of the sample in the temperature range 5- 
300 K, and with them a set of curves of superconducting 
transition in these states at T =  5 4  K. The resistivity 
changed by almost six orders of magnitude when the tem- 
perature was lowered. 

The plan of the paper is the following. 
In the next section we describe the experimental proce- 

dure. The fact that all the experiments are performed on one 
sample at a fixed location of the contacts improves substan- 
tially the possibility of comparing the results for different 
states. By stepwise heating it is possible to vary a state very 
insignificantly. It is therefore possible to come quite close to 
the transition. The possibilities here are comparable with 
those afforded by using a magnetic field to approach the 
transition. 12-14916 

In the third section we describe the experimental re- 
sults. We were able to distinguish the intermediate state be- 
tween the metallic and insulating regions, and to observe a 
dependence of the type 

in the interval T = 4-40 K for a set of states close to the limit, 
and a crossover from (6) to the relation 

on penetrating deeper into the metallic as well as the insulat- 
ing region [u(O) > 0 in the metallic region and o (0 )  < 0 in 
the insulating one13]. A transition from relations (6) and 
(7)  to a linear dependence 

was observed above 40 K. 
In the fourth and final section we analyze the character 

of the conductivity and the nature of the elastic processes 
that lead to relations (6)-( 8) : the electron-electron interac- 
tion at Tcf40 K and the inelastic scattering by structural 
disorder at higher temperatures. 

2. EXPERIMENT 

Cd4,Sb5, is a binary alloy at which amorphization is 
produced in the solid state in the course of decay of a high- 
pressure metastable p h a ~ e . ~ ~ . ~ '  At 55 kbar pressure and high 
temperature there is produced in this alloy the so-called y 
phase which has a simple hexagonal structure. After 
quenching under pressure to liquid-nitrogen temperature 
and removing the pressure the alloy stays in the y phase. This 
is a metallic phase that becomes superconducting at T, ~ 4 . 9  
K. Heating to room temperature transforms it into the 
amorphous state.19 The amorphization is accompanied by 
release of heat and by a 12.6% increase of the specific vol- 
ume. 

Further heating or prolonged (on the order of a month) 
storage at room temperature crystallizes the alloy. Only one 
stoichiometric compound exists in the crystalline state, 
CdSb, and is a superconductor with an approximate gap 0.5 
eV. A spectrum gap exists also in the amorphous state. The 
excess of antimony can play then the role of an impurity in 
the semiconductor. 

By successively stopping the amorphization by lower- 
ing the temperature at various stages and observing thereby 
the intermediate states of the sample, we measured the tem- 
perature dependences of the resistance R ( T) of the sample 
in these states. Each cycle consisted of the following. The 
sample was first cooled to helium temperature, after which 
R ( T) was measured as the temperature was raised. Mea- 
surement of R ( T) made it possible to determine the instant 
at which the amorphization resumed: the resistance began to 
depend on time-"float." The sample was kept at this tem- 
perature until the resistance increased by 3 W % ,  and then 
cooled rapidly to helium temperature. The number of such 
cycles was 23. 

The sample was approximately rectangular measuring 
1.2 X 1.5 X 6 mm3. The resistance was measured by the stan- 
dard four-point method using pressure contacts of shar- 
pened gold wires 0.5 mm in diameter. The measurement cur- 
rent ranged, depending on the resistance, from fractions of a 
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FIG. 1.  Temperature dependences of the resistance of a 
Cd,,Sb,, sample in various states i normalized to the resis- 
tance at T z  5 K. The curves are marked by the state numbers 
i (see the text), and the coefficients on the right are normal- 
ized relative to the first curve. A, B, and C-three tempera- 
ture ranges discussed in the article. 

p A  to several mA; the independence of the resistance of the 
measurement current was checked each time. The instru- 
mental error of R ( T )  did not exceed 0.1 %. A carbon ther- 
mometer calibrated accurate to not more than 0.01 K was 
used at helium temperatures. Higher temperatures were 
measured with a thermocouple accurate to about 0.1 K. 

3. RESULTS 

A general survey of the available experimental material 
is shown in Fig. 1, where the resistance plots of individual 
measurement cycles are normalized to the value of the resis- 
tance at T z 5  K, i.e., in units of R, (T)/R, (5 K).  The cy- 
cle number i is marked on each curve. The measurements of 
the sample in the initial state are labeled i = 1 .  To prevent 
cluttering, only 11 of the available 23 curves were plotted. 
The number i = 16 is special because, as we shall see below, 
this curve pertains to the boundary state between the metal- 
lic and insulating regions. For an arbitrary quantitative de- 

scription of the curves, the ratios Ri ( 5  K)/R, (5  K )  are 
marked on their right. They show factor by which the resis- 
tance at Tz5 K was increased by the transition from the 
initial to the given state. The resistance increased in the 
course of amorphization by almost size orders. 

To facilitate the comparison with experiment, we shall 
use hereafter mainly not resistances but conductances 
ai ( 7') = R ; '. We shall analyze only the curves with i> 1 1, 
for only with respect to these curves do we have arguments 
to show that the sample can be regarded as homogeneous at 
the lengths that determine the conductivity in these states. 
We have da/dT>O all the way from critical T, to room 
temperature. 

In Fig. 1 are demarcated three temperature regions: a 
superconducting transition is observed in region A, at 
T< 5K; dependences such as (6) and (7) are observed in 
region B for 4<T<40 K; they go over in region C at 
40< T< 120 K into linear relations of type (8). 

3 

2 
FIG. 2. Variation of the conductivity in the temperature in- 
terval B for the states i = 13-19. The u ( T )  dependence is 
described by Eq. (6) .  

I 

0 I 2 
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Let us examine these regions in greater detail. We begin 
with region B. 

3.1. Intermediate temperatures 4( T ~ 4 0  K 

The sections of the curves with i from 13 to 19 are in the 
interval 4 < T< 50 K are shown in Fig. 2 with T 'I3 and a as 
the coordinates. It can be seen that in this interval the func- 
tion a( T) is well described by Eq. (6).  A tendency to a sys- 
tematic deviations of the instrumental points from the 
straight line (6) is observable only on the lower curves 
(i = 18 and 19) for the very lowest temperatures. This is the 
first manifestation of a transition from (6) to (7). 

The point of intersection of the straight line with the 
ordinate axis is a (0) .  It turns out that al,(0) = 0 for the 
state i = 16. This means that this is a boundary state, in met- 
al-insulator transition. For the curves with i> 16 we have 
a ( 0 )  = (e2/h) ( I/{) < 0 (Ref. 13). The cause of the reversal 
of the sign of { at the transition is that the physical meaning 
of c i s  different on the two sides of the transition. This is seen 
most clearly with the percolation transition as the example: a 
medium size on one side of the transition and a medium size 
of the holes in an infinite cluster on the other. Were there no 
superconducting transition at T < 4 K,  the curves with i > 16 
would show dependences typical of hopping conductivity. 
In view of the superconducting transition, to determine o(0)  
it is necessary to extrapolate from the T> 4 regions, thus 
lowering the accuracy of a(O), especially for the curves with 
i >  16. 

It is noteworthy that the slopes of the straight line in 
Fig. 2, i.e., the coefficient a of T 'I3, decreases monotonically 
towards the insulator state. In contrast to Refs. 11-16, a 
monotonic dependence of a on o (0 )  is observed. 

Figure 3 shows, in coordinates T 'I2 and a ,  the tempera- 
ture dependences of ui ( ( in region B for states farther from 
transition region, namely i = 12 (right-hand scale) and 
i = 19-23 in the region of lower ones. This figure demon- 
strates the crossover from (6) to (7) ,  i.e., from a tempera- 
ture dependent diffusion coefficient D to an independent 
one. The curve i = 19 which deviates from the T 'I2 depend- 
ence at low temperatures is intermediate (cf. Fig. 2). 

FIG. 3. The same as Fig. 2, for states i = 12 (right-hand 
scale) and i = 19-23 (left-hand scale). The u(T) depend- 
ence for these states is described by Eq. ( 7 ) .  

3.2. High-temperature region, 40( T( 120 K 

We proceed now to region C, to higher temperatures. 
As seen from Fig. 4, the linear relation (8)  is satisfied here 
with high accuracy. In contrast to In, O, -, , where a linear 
dependence of a on T was also observed,16 the slopes of the 
straight lines vary from state to state and a correlation exists 
between a, and p. Figure 5 shows that for the states i = 13- 
19 we have with high accuracy 

It is curious that deviations from relation (9) set in for states 
12 and 30, i.e., where a transition takes place from T'13 to 
T 'I2 (cf. Figs. 5 and 3). 

3.3. Superconducting transition 

Finally, let us describe briefly the results for region A, 
i.e., for the superconducting transition. Figure 6 is in essence 

FIG. 4. Variation of conductivity in the temperature interval C for the 
states i = 13-20. 
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FIG. 5. Correlation of the coefficients /3 and u,, of the linear function 
~ ( 7 ' ) .  The numbers i of the state are marked near the points. The number 
on the axes correspond to the values of u,, in units (n.cm) - ' and in units 
of (n . cm.K)- ' .  

an extension of Fig. 1 along the T axis in the interval 
1.3 < T <  5 K. In view of the enlarged scale, it is necessary to 
define more precisely the meaning of the normalization fac- 
tor for each curve. In contrast to Fig. 1, the resistance R 
is a maximum ahead of the superconducting transition, but 
the numerical differences between Ri (5 K )  and R Fa are 
very small. 

Let us formulate the observations that follow from the 
analysis of the superconducting-transition curves. 

a )  Notwithstanding the difference, by almost five 
times, of the orders of magnitude of the sample resistance 
R 7" in the states 1 and 19, the shift of the superconducting 
temperature Tc is only 25% [by T, we mean here the start of 
a manifest decrease of the resistance: Ri ( Tc ) z R ] . 

b) The curves i = 1-1 1 have a distinct structure attest- 
ing to the presence of local inhomogeneities. Starting with 
curve i = 12, however, the structure vanishes and the curves 
become smooth. This means that if any inhomogeneities are 
preserved at all, their sizes become smaller than the charac- 
teristic scale that determines the behavior of the sample. 

C )  The curve i = 16, which marks a boundary in Fig. 2, 
plays the role of a boundary here, too, at T <  T, on it at 
dR /dT> 0. A section on which dR /dT< 0 appears already 
on the next curve i = 17. 

FIG. 6. Superconducting transitions in various states i of the sample, 
normalized to the resistance R - (see the text). 

4. DISCUSSION 

Metal-insulator transitions are known to occur under a 
great variety of conditions. We must therefore start with an 
attempt to determine these conditions from the experimen- 
tal results. 

4.1. Homogeneity 

Amorphization of an alloy is accompanied by an in- 
crease of its specific volume. During the first stage of the 
amorphization this should lead to formation of a homoge- 
neous structure-a mixture of two phases. Such a structure, 
of the fractal type, was observed on the metallic side of the 
transition in amorphization of a Zn-Sb alloy.22 In addition, 
the amorphization stems from density fluctuations of the 
individual components of the alloy. Therefore, generally 
speaking, it might seem that we are dealing all the time with 
a macroscopically inhomogeneous sample. 

The shapes of the superconducting-transition curves in 
states iG10 do indeed point clearly to the presence of an 
inhomogeneity. Starting with states i = 12, however, all the 
experimental data attest to a homogeneous structure: rela- 
tions (6)  or (7), the theoretical description of which5 does 
not contain the inhomogeneity scale d at all, are observed in 
region B, and the superconducting-transition curves become 
smooth. This means that both scales, and L, which accord- 
ing to ( 1) determine the conductivity, are larger than the 
inhomogeneity scale d. We recall in this connection that in 
Zn-Sb the scale d decreases as the transition is ap- 
p r ~ a c h e d . ~ ~  

4.2. Character of conductivity 

It should be noted that the conductivity uI6(T) in the 
boundary state is very small in absolute value (see Figs. 2 
and 4). This smallness, and also the fact that the derivative 
d d d T  is positive in the entire interval up to room tempera- 
ture, shows that we are dealing with quantum (scaling) con- 
ductivity. Let us denote the conductivity on the boundary of 
the regions B and C for the state i = 16 by a,, and let us 
regard it as the characteristic value of the conductivity. Sub- 
stituting a,, = 1 ( a - c m -  ' ) in Eq. (3) for the Mott conduc- 
tivity, we obtain for the average distance a =:n - between 
the carriers the estimate a z 6 0 0  A, i.e., about 200 interato- 
mic states. This value should be compared with the density 
of state discussed in the preceding subsection (see also Sec. 
4.5). 

4.3. Density of states 

Equation ( 5 ) ,  which describes the a cc T '13 dependence 
on the i = 16 curve, contains beside the constant 0.077 only 
one parameter, the density of states g,, equal to 

gF.=). loz8 Cm-3 erg-'. (10) 
I 

The same density of states was measured near a metal-insu- 
lator transition in n-InSb (Ref. 12), whereas the density of 
states obtained in n-GaAs is larger by two  order^.'^,'^.'^ 

So low a density of states means that the amorphization 
is accompanied by a restructuring of the electron spectrum 
and by formation of a gap that is smeared out by the disor- 
der. Under these conditions the carriers are concentrated in 
a small region of reciprocal space. Their nature is not clear, 
and may be connected with the nonstoichiometry of the al- 

909 Sov. Phys. JETP 74 (5). May 1992 



loy. The smallness of k,, which follows from the smallness of 
g,, agrees with the estimate for a -- k , '. 

Changes of the density of states mean that there is no 
genuine Anderson transition, but its combination with a 
Mott transition. It is also possible that near the transition the 
increase of the disorder is already by itself of little signifi- 
cance, and the main factor is the decrease of the density of 
states: the negligible displacements of the atoms relative to 
their nearest neighbors influence strongly the character of 
the electronic bonds. 

That the electron spectrum is restructured in the vicini- 
ty of the transition is indicated also by the change of the slope 
Oofthe straight lines a ( T  'I3) in Fig. 2. Sinceg, a it 
is easily seen that the transition from i = 13 to i = 16 corre- 
sponds to a decrease by almost 8 times. Using the estimate 
obtained above for a z n  - we get from the Mott crite- 
rion6 

the estimate a, z 150 A for the Bohr radius. 
Now, having described the transition as a whole, let us 

analyze the observed temperature dependences in greater 
detail. 

4.4. The 7'" - T"' crossover 

The degree of T 'I3 in the a( T )  dependence is the result 
of a self-consistent expression for the coefficient D of diffu- 
sion through the conductivity-see Eqs. (4)  and (5).  The 
diffusion is by the same electromagnetic-field fluctuations 
that cause the interaction. However, as soon as o(0)  be- 
comes large enough, it begins to control D. It  follows directly 
from (4) that the length Lint for a diffusion coefficient that is 
independent of Tis proportional to T - '/'. Note that a tran- 
sition to T 'I2 takes place also from the dielectric side of the 
transition, where formally a (0 )  < 0. In this region the length 
5 controls the diffusion just as effectively. 

The absolute values of u(0)  at which crossover is ob- 
served are greatly different on the two sides of the transition. 
The difference, however, correlates with the changes of the 
slope angle 8 referred to above: the temperature-dependent 
part of the a( T) curve is much larger on the metallic side of 
the transition. 

4.5.Transition to higher temperatures 

Equations (6)  and (7) can be used only until the quan- 
tity L = Lint in them becomes of the order of the mean free 
path lo due to scattering by the structural disorder. The T 'I3 

dependence remains in force on the i = 16 curve up to 40 K. 
Here u1,(40 K)  z 1 (nacm) -' and Lint z10z500 A. Natu- 
rally, lo and k ,  ' are of the same order, since they are ob- 
tained in fact from the same equation. 

In the equations describing the diffusion process, the 
diffusion length L can under no circumstances become 
smaller than the pace I. The second term of ( 1 ) can therefore 
not become larger than (e2/fi) . ( l/lo), and cannot ensure 
further increase of the conductivity observed in experiment. 
On the other hand, there is every reason for assuming that 
the conductivity measured by us remains of the quantum 
type up to high T, i.e., it remains not explicitly dependent on 
the number of carriers. These statements can be joined by 
postulating additivity of the localization effects with the 

electron-interaction effect, just as in the case when these ef- 
fects lead only to small  correction^.^^,^^ Equation ( 1 ) is then 
replaced by 

e' c, e2 c, 
t3(T)*t3(0)+--+-- 

f i  Li,,, fi. Li" 

The term with Lint due to interelectron interaction ensures a 
temperature dependence of a ( T )  in region B. L,,, reaches 
the limit Lint =lo on the boundary of regions B and C and, 
neglecting the first term, we get 

This term reaches saturation in region C, a,,, = a,,, and the 
temperature dependence of a ( T )  is governed by the inelas- 
tic-scattering diffusion length 

where lin is the distance traversed by the electron during the 
time between the elastic collisions. 

Let us consider, to be definite, the states for which the 
law is valid. The first term of the sum (12) can be 

neglected for them, and the second term in region Cis equal 
to a constant 

while the third term is 

The experimentally observed relation 

poo% (17) 

(see Fig. 5) is a very convincing justification of such an in- 
terpretation. Moreover, it follows from Fig. 5 that relation 
(17) ceases to be valid as soon as we go outside the region 
where u(0)  can be disregarded [curves (12) and (19) 1. 

It follows from the foregoing that Ii, = 7 T  - and that 
the proportionality coefficient 71 is independent of the state 
of the sample. These two statements call for a discussion. 

4.6. Nature of inelastic interaction in the linear region 

The T 2  law in the dependence of the collision frequency 
on temperature is usually associated with electron-electron 
collisions. However, as was established above, the interelec- 
tron interaction determines the second term in the sum ( 12). 
It would be very strange if it were also to determine the sec- 
ond term, and furthermore in an entirely different manner. 

There is in essence also objection to such a possibility. 
The coefficient 7 of T 2  in the probability of the interelectron 
collisions is proportional to the density of states g ,  which, as 
follows from Fig. 2 and Eq. (5),  varies greatly from one state 
i of the sample to another (see Sec. 4.3). Yet the explanation, 
inherent in Eqs. ( 13)-( 16), of the experimental fact ( 17) 
requires that the coefficient 7 be one and the same for differ- 
ent states of the sample. 

The possibility that the T 2  law in the probability ofscat- 
tering in metals may be due also to inelastic interaction with 
impurities and other structural inhomogeneities has already 
been discussed long ago. We have in mind incoherent inelas- 
tic scattering of electrons by random distributed regions of 
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perturbation of a phonon field. This inelastic-scattering 
mechanism is theoretically justified in Ref. 25, and experi- 
mental evidence in its favor is contained in Refs. 26-28 (Ref. 
28 has a detailed bibliography). 

If such a scattering mechanism exists in the Boltzmann- 
conductivity region, it should be manifested also in the quan- 
tum conductivity. One of the method of distinguishing elec- 
tronic and inelastic scatterings in metals was the 
establishment that the coefficient 7 is proportional to the 
number of impurities, i.e., to the residual resistivity a; '. 
There can be no such correlation in quantum conductivity. 

The constancy of 7 and 1, shows that the randomness 
of the dynamic-perturbation fields near the transition point 
changes little. This agrees with the statement made above, 
that in our case the principal role is played near the transi- 
tion not by an increase of the structural disorder but by an 
electron wave function restructuring that leads to a decrease 
of the density of states. 

5. CONCLUSION 

The results of the measurements of a( T) in the metasta- 
ble alloy Cd,,Sb,, decaying to an amorphous state can be 
summarized as follows. 

The quantum (scaling) conductivity of material in 
states close to a metal-insulator transition can be described 
by a sum of three terms: 

the first of which describes the conductivity at absolute zero, 
and the two other determine its temperature dependence. 
The lengths {, L,,, , and L,, in the denominators of ( 12') can 
vary in the interval from co to lo. It was possible to observe 
three different power-law variations of the scaling conduc- 
tivity with temperature. The relation aa was observed 
at T(40 K for the immediate vicinity of the transition and 
was transformed into ua T 'IZ for transitions in either the 
metallic or the insulating region. Both relations are gov- 
erned by interelectron interaction in the critical region. The 
law realized depends on the relation between the lengths 5 
and L,,, . 

Above 40 K the second term of (12') saturates, and 
further increase of the conductivity with temperature is due 

to the third term, which is controlled by the elastic scattering 
of the carriers by structural inhomogeneities. 
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