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An expression, valid for arbitrary orientations of the magnetic field and relatively accurate in a 
wide range of the Ginzburg-Landau free energy parameters is obtained for the upper critical field 
near Tc in a hexagonal exotic superconductor. It is shown that in the majority of cases the angular 
dependence of the upper critical field does not have extra nonmonotonicities in comparison with 
the usual anisotropic superconductors. For a weak breaking of the particle-hole symmetry near 
the Fermi surface and rather rigid constraints on the Ginzburg-Landau theory parameters, an 
extra minimum may arise in the angular dependence ofHc2. An extra maximum can arise only for 
sufficiently strong symmetry breaking. 

1. The angular dependence of the upper critical field in 
usual anisotropic superconductors near Tc is, as is well 
known, an ellipsoid. The axes of this ellipsoid are given by 
the components of the anisotropic mass tensor, which enters 
into the expression for the Ginzburg-Landau free energy. 
The order parameter of such superconductors is a complex 
quantity q. Symmetry breaking accompanying the super- 
conducting phase transition occurs according to some one- 
dimensional representation of the initial symmetry group of 
the system. A more complicated form of the angular depen- 
dence of the upper critical field may arise in symmetry-de- 
generate superconductors, when the symmetry breaking 
corresponds to a multidimensional representation of the ini- 
tial group. Such exotic superconductors are characterized 
by a multicomponent complex order parameter with the 
number of complex components equal to the representation 
dimensionality (see Ref. 4 and also Refs. 5 and 6 and cita- 
tions therein). 

The simplest example of a specific anisotropy of Hc2 is a 
tetragonal exotic superconductor in a magnetic field in the 
basal plane of the crystal (perpendicular to the high-symme- 

, , try axis). Whereas for usual tetragonal superconductors 
the field Hc2 is isotropic in the basal plane, in the case of 
exotic tetragonal superconductors H,, can have an anisotro- 
py of a rosette type. To first approximation, we mean here an 
envelope for two intersecting ellipses whose major axes are 
perpendicular to each other. Near the intersection points the 
curve is, of course, smoothed out. For ellipses with small 
eccentricity this smoothing takes place for a wide range of 
 angle^.^ 

Theoretical description of the special anisotropy of the 
upper critical field in superconductors with different crystal 
symmetry is an important problem, since experimental ob- 
servation of such anisotropy could indicate an exotic charac- 
ter of superconductivity. In this respect, it is interesting to 
consider hexagonal superconductors, in particular, the 
heavy-fermion compound UPt,. The possibility of exotic su- 

axis our result agrees with the exact solutions found for these 
particular cases.2s798 The expression found below for the an- 
gular dependence of Hc2 is an important generalization of 
the corresponding result of Ref. 9 to a wider range of allowed 
values of the parameters and agrees with the former in its 
applicability range. 

The angular dependence of the upper critical field is 
related to the ratios of the coefficients in the gradient terms 
of the Ginzburg-Landau free energy. These ratios depend, 
in particular, on the degree of the particle-hole symmetry 
breaking near the Fermi surface. If such a symmetry holds to 
sufficient accuracy, the angular dependence of Hc2 in the 
plane containing the hexagonal axis has the form of a distort- 
ed ellipse. The distortion of the ellipse appears to be relative- 
ly small. For most allowed values of the Ginzburg-Landau 
free energy parameters, the angular dependence of Hc2 does 
not have extra nonmonotonicities in comparison with the 
usual dependence. There is, however, a relatively narrow 
range of parameters in which weakly manifested anisotropy 
of the upper critical field, of rosette type, with relatively low- 
magnitude extra nonmonotonicities is realized. These non- 
monotonicities could become more noticeable under strong- 
er breaking of the particle-hole symmetry near the Fermi 
surface. Then the angular dependence of Hc, , as a whole, can 
differ more noticeably from an ellipse in a wide range of 
angles. This is the qualitative difference of the anisotropy of 
the upper critical field in a hexagonal exotic superconductor 
from that in a usual hexagonal superconductor. 

2. In a hexagonal exotic superconductor with strong 
spin-orbit coupling the order parameter has two compo- 
nents (v,, v2). The corresponding Ginzburg-Landau func- 
tional, accurate to second-order invariants, can be written in 
the form (see Refs. 4 and 5 ) 

perconductivity in  UP^, is now widely discussed (see, e.g., Here = a ( Tc - , p  = - jV - ( 2e,c)A, and thei axis is 
Ref. 5). parallel to the hexagonal axis of the crystal. The indices iand 

In this paper we obtain an approximate j take on the values 1 and 2, which, for the operator p, corre- 
expression for the upper critical field in a hexagonal exotic spond to the x- andy-components~ 
superconductor with strong spin-orbit coupling. This If the sum of the gradient terms in ( 1 ) is positive-defi- 
expression is valid for arbitrary orientations of magnetic nite we get the following restrictions on the coeficients 
field and is sufficiently accurate in a rather wide range of 

Kn (n = allowed values of the Ginzburg-Landau free-energy param- 
eters. For fields perpendicular or parallel to the hexagonal K,+K,+K,> IK21, K ,>IK, ) ,  K,>O. (2) 
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FIG. 1 .  The range of allowed values of the parameters E and p. 

Consider the two dimensionless parameters 

From (2) we find that 1 + E >  Jp f E I .  The obtained range 
of allowed values of E and p is shown in Fig. 1. It  is essential 
that the inequalities I E I  < 1 and lpl < 1 always hold, i.e., the 
parameters E and p can, in fact, always be considered as 
rather small. Solving the problem of the upper critical field 
anisotropy, we will use perturbation theory in the param- 
eters E and p up to second order inclusive. 

The expression ( 1 ) for the free energy can be rewritten 
in the form 

h h A 

Here the matrix differential operator Hii = H p' + Vii is 
split k t o  two parts in such a way that the perturbation theo- 
ry in Vii is just t$ pertueation theory in E andp. The zeroth 
order operator H r '  = H"'SU has the same form as in the 
case of a usual hexagonal superconductor: 

1 
H'"= - - (2Kl+K2+K,)  (p,2+p:) -K,pzz. 

2 ( 5 )  

Owing to the cylindrical symmetry of the upper critical field, 
the magnetic field B can be considered lying in the xz plane 
of Cartesian coordinates in Eq. (1).  For the field 
B = B(sin 8,0, cos 8) we choose the vector potential in the 
form 

A,=B (x cos 0-2 sin 0) .  

If we change integration variables in Eq. (4), 

2 1  = 
1 

[ ~ x  sin O+Z cos 01, 
K,'"D (0) 

"' 1 
y = ( ) = (  ) -(-z cos O+Z sin 0).  (6) 

K' D ( 0 )  

where 

The zeroth order operator fi"' takes the form of the usual 
Hamiltonian of a nonrelativistic charged particle with iso- 
tropic mass in magnetic field along the x' axis. In compari- 
son with the multiplicity of the Landau-level degeneracy, 

the eigenvalues E !,O' of the operator HP' have additional 
double degeneracy. To each level E r' there correspond two 
independent combinations of solutions of the form 
ql," = (q:),O) and q2,n = (o,~:'), where 7:' is the wave 
function of a charged particle in $e nth Landau level. Gen- 
erally speaking, the perturbation V, lifts the mentioned dou- 
ble degeneracy. 

The effect of the parameters E andp on the lifting of the 
given level degeneracy is, however, different. To first order 
in E and p of perturbation theory for degenerate levels, the 
degeneracy is lifted completely, i.e., for all field orientations. 
At the same time, for Ip 1 4 ~ '  in first-order perturbation the- 
ory in E the degeneracy lifting is not complete, since the lev- 
els still cross each other, if the field is along the hexagonal 
axis (i.e., 8 = 0). The remaining level crossing for 8 = 0 is 
lifted only in second-order perturbation theory in the pa- 
rameter E. Thus, the ratio of the parameters E and p plays 
here an important role. 

If I E I  - Ip 1, the main features of the angular dependence 
of the upper critical field can be described already in the 
framework of first-order perturbation theory for degenerate 
levels. If (pl5 E~ then, to describe the behavior of H,, in the 
vicinity of the angle 8 = 0, it is necessary to allow for the 
lifting of the level crossing for 8 = 0 in second-order pertur- 
bation theory. 

The fact that the parameter p is nonzero is due, as is 
well-known, to the breaking of the particle-hole symmetry 
near the Fermi ~ur face .~  Since this asymmetry is usually 
rather small, the realization of the relation (p I 5 E' seems not 
only possible, but also highly probable. However, the rela- 
tion E-p, incidentally, is likewise not excluded, at least for 
small values of E. Because of this, we allow below for the 
lifting of the level degeneracy for any ratio of E and p ,  i.e., 
both in first- and second-order perturbation theory (in the 
parameters E and p )  for degenerate levels. 

In the general case, joint treatment, on equal basis, of 
terms of first and second order of smallness in the framework 
of perturbation theory for degenerate levels results in highly ,. 

complicated formulas. But the problem can be considerably 
simplified because unperturbed wave functions are the wave 
functions of an oscillator and the structure of the perturba- 
tion-matrix elements is simple. Furthermore, to find the up- 
per critical field it is necessary to consider only the ground 
Landau level for zero momentum of motion along the mag- 
netic field. As a result, we arrive at the following expression 
for the upper critical field: 

As the angular dependence (8) ofH,, (0) is symmetri- 
cal with respect to the changes 0- - 0, n + 8, it is sufficient 
to consider the variation of the angle 8 in the interval (0, n-/ 
2).  It is easy to make sure that for the angles 8 = n-/2,O Eq. 
(8) has the values, which agree, to an accuracy of E' and p2 
inclusive, with the exact solutions found in Refs. 2, 7, and 8 
for the given field orientations. For example, it follows from 
(8) that for 8 = 0 the upper critical field depends on the sign 
of the difference (E' - p ) .  For orientations 8 = 0, n-/2 the 
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angular dependence (8)  of Hc, (8) always has extrema. The 
analysis of Eq. (8) shows that for most allowed values of the 
parameters Kl and K4 there are no extra extrema (and, con- 
sequently, nonmonotonicities) in the angular dependence of 
the upper critical field. However for fairly rigid constraints 
on the ratio of the parameters K, and K4 the function Hc2 (8) 
has one extra extremum in the interval (0, ~ / 2 ) .  This extre- 
mum is a minimum if 

and a maximum if both inequalities in (9) are reversed. In 
other cases the extra extremum is absent. 

Parametric regions of existence of an extra extremum 
are conveniently shown in the plane with coordinates p/I E (  - . .  
and (6 - 1 )/I&(, leaving only the first-order terms in E andp 
in inequalities such as Eq. (9)  (see Fig. 2). In region I the 
upper critical field has an extra minimum and in regions I1 
and I11 an extra maximum. 

The relative magnitude and position of the extra extre- 
mum of the function Hc2 (8)  depends considerably on the 
ratio of the parameters p and E. If the particle-hole asymme- 
try near the Fermi surface is not very large and Ip 1 -e2 or 
smaller, the inverse inequalities (9)  cannot hold. Therefore 
for l,u 1 6. E' the function Hc2 (8) can have only an extra mini- 
mum if inequalities (9) hold in the range sin2 8,, - Je2 - pI/Iel. The relative depth of this minimum 

has the second order of smallness in E and is also character- 
ized by a numerical factor smaller than or of order unity. 
Thus, the effect is not large in magnitude and special in char- 
acter. Its origin is easy to understand, if we take it into ac- 
count that to zeroth order in E andp the angular dependence 
of H $' is an ellipse with the ratio (K4/K, ) ' I2 of the z and x 
axes. If Ip) (E', the angular dependence (8) in the intervals 
8 > Omin and 8 < Omin also has the form of ellipses whose axes 

FIG. 2. The range of existence of extra extrema in the angular dependence 
of the upper critical field. 

FIG. 3. The angular dependence of the upper critical field H,, (8) in the 
units ofH,, = ac{/(ZleJK,) for E = 0 . 3 3 , ~  = 0 and K,/K, = 0.85; 1.37; 
and 1.85 (curves 1,2 ,  and 3, respectively). 

have a different ratio, and differing also from (K4/Kl )'I2 to 
the terms of order E, p and e2 (for 8 > 8,,, a fragment of one 
ellipse is realized, and for 8 < Om,, a fragment of the other). 
If the initial ellipse had a small eccentricity (i.e., the param- 
eter (K4/K,) - 1 is sufficiently small), the axis changes due 
to the allowance for the terms of order E, ,u and e2 could 
result in the smaller axis changing into the larger one (e.g., 
in the range 8 < Om,, ). The extra minimum in the Hc2 (8)  
dependence arises just in this case, when the difference be- 
tween the large and small axes of the initial ellipse is relative- 
ly small [see Eq. (9) ]  and when the large axes of two el- 
lipses, which are realized in the ranges 8> 8,,, and 8 < Om,, , 
are perpendicular to each other. Since sin 8,,, 5; we 
have for small values of I E ~  'I2, irrespective of the presence or 
absence of the extra minimum, a small deformation, in a 
relatively narrow interval 8 < 8,,, , of the ellipse realized in a 
wide interval of angles 8 > 8,,, .9 In Fig. 3 we have plotted 
the function Hc2 (8) for lp 1 4e2, E = 0.33 and three values of 
the parameter K4/Kl = 0.85; 1.37; and 1.85. The second val- 
ue satisfies the inequalities (9)  and, correspondingly, the 
second curve in Fig. 3 has a small extra minimum. In Fig. 4 
similar curves are plotted for E = 0.33, p = - 0.1 
( 1p 1 z e 2 ) ,  and K4/Kl = 0.75; 1.05; and 1.58. 

In the case Ipl -E, when the particle-hole symmetry 
near the Fermi surface is sufficiently broken, the extra extre- 
mum position is, generally speaking, no longer related to the 

FIG. 4. The angular dependence of the upper critical field H,, for 
~ = 0 . 3 3 , , u =  -O.landK,/K, =0.75;1.05;and1.58(cu~es1,2,and3, 
respectively). 
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FIG. 5. The angular dependence of H ,  for E = 0.1, p = 0.15 and K,/ 
K, = 0.72; 0.89; and 0.94 (curves 1 , 2 ,  and 3, respectively). 

small parameter and can be anywhere in the interval (0, a/ 
2) ,  depending on the specific values of E, p and K,/K,. For 
lpJ < J E J  the function Hc2 (8) has an extra minimum in re- 
gion I of Fig. 2, and for 1p 1 > let a maximum in regions I1 and 
111. The relative magnitude of the extra extremum is of order 
JeJ  for )pl-I~l-J< - 11. In the limit I <  - 11% (pi % IeI its 
relative magnitude is p2/1c - 1 I .  In Fig. 5 we have plotted 
the angular dependence of the upper critical field for E = 0.1, 
p = 0.15 ( Ip I > I E I  ), and three different values of the param- 
eter K,/K, = 0.72; 0.89; and 0.94. The second value is in the 
region I1 of Fig. 2 and the relevant curve has an additional 
maximum in the interval (O,a/2). 

3. The method used above to calculate the angular de- 
pendence of the upper critical field is in many respects simi- 
lar to the one previously used in Ref. 9 for the calculation of 
the anisotropy of the upper critical field and fluctuation dia- 
magnetism in a rhombohedral exotic superconductor. In the 
particular case when the rhombohedral distortion of a crys- 
tal is absent, we have also obtained in Ref. 9 the expression 
for the anisotropy ofHc2 in a hexagonal exotic superconduc- 
tor. From the very beginning we have used the inequality 
1p1 ge2  that restricts the applicability range of the result, and 
used perturbation theory in K2/K,. Expression (8), which is 
valid in fact for any ratio of the parameters E and p ,  is an 
important generalization of the result of Ref. 9. Our choice 
of the parameters e and p for the construction of perturba- 
tion theory seems to be adequate in the case of hexagonal 
exotic superconductors. In the particular case lpl&e2 
expression (8) agrees with the corresponding result (22) of 
Ref. 9 to the needed accuracy, if the relation between the 
parameters E, 5 and K2/K, for K2 = K, is allowed for (in 
Ref. 9 we have introduced the notation P, = K,, P2 = K,, 
P, = K2 = K, and a = 6) .  Discussing the anisotropy of the 
upper critical field in a hexagonal exotic superconductor, we 
have noted in Ref. 9 the absence of extra nonmonotonicities 
in the behavior of H,, (6) .  Such nonmonotonicities are real- 
ly absent for most allowed values of the parameters K, and 
K,. At the same time, as shown above, in a relatively narrow 
range of parameters (9) for (p1 &e2, there is an extra mini- 
mum missed in Ref. 9, the magnitude of which has the sec- 
ond order of smallness. This remark does not alter the results 
of Ref. 9, only refines them. 

The range of the parameters E and p in which the per- 
turbation theory suggested above is applicable depends on 
the angle 0. This is seen already from simplest estimates 

based on the smallness (in comparison with unity) of the 
total contribution of the terms in E andp in the braces in Eq. 
(8).  Thus, for 0 = 0 and e2 < p  we arrive at the inequality 
J p I g l , a n d f o r ~ ~ > , u w e g e t  )2e2 -p)41.Atthesametime, 
in the case 8 = n-/2 we have IeI g 1. On the other hand, since 
always la\ < 1 and Ipl 1 (see Fig. l ) ,  expression (8) can be 
regarded as approximately describing the anisotropy of the 
upper critical field almost in the whole range of allowed val- 
ues ofe and p. The real quantitative criterion of applicability 
of expression (8)  for Hc2 (6)  is its deviation from the exact 
solution. The use of the above exact solutions obtained for 
6 = 0 and a/2 (see Refs. 2,7 and 8) allows to find out that at 
least for these orientations the relative error of Eq. (8) is 
almost always very small. In fact, the exact expression for 
H,, (8 = 0) for e2 < p  completely coincides with (8)  for 
0 = 0. If p < e2, the relative error AHc2 /H,, of Eq. ( 8) for 
0 = 0 is small in the whole range of the allowed values of e 
and p and reaches a maximum value of 10.1 % forp = 0 and 
J E J  = 0.5. Note that the exact solution Hc2 (8 = 0) for E~ > p  
can be presented in the form of a power series in the param- 
eters E and p ,  if 1 2 ~ ~  - p + p2/4( < 1, when the function 
( 1 + 2e2 - p + p2/4) ' I2 can be expanded in such a series. 
For example, for lpl &e2 we find that I E I  <0.7. Outside the 
given interval of E and p the perturbation theory used above 
is inapplicable for 8 = 0 and e2 > p .  Equation (8)  can be 
used under these conditions as an approximation. 

For 0 = a/2 the exact solution H,, ( 0  = a/2) and Eq. 
(8) do not depend onp. The relative error of (8) grows with 
( E J  and equals 0.25, 1.6, 7, 14, and 29.5% for I E I  = 0.3, 0.5, 
0.7,0.8, and 0.9, respectively. Thus, only in a narrow vicinity 
of two upper angles of the triangle in Fig. 1 is the relative 
error of Eq. (8)  for 8 = a/2 large. Since this happens only 
near the boundary of the range of allowed parameter values 
and for 0 . 8 ~ ~  < 1, which corresponds to a very strong parti- 
cle-hole symmetry breaking, the above vicinities are of no 
interest. For the angles within the interval (0, a/2) the rela- 
tive error of Eq. (8) in the whole range of the allowed values 
of E andp is unknown. An exception is the values I & (  & 1 and 
JpI < 1, when the usual perturbation theory estimates in E 

andp are applicable. Nevertheless, the good accuracy of Eq. 
(8)  for 6 = 0 and a/2 allows us to hope that it is quite satis- 
factory for all values of the angle 0 and most allowed values 
of E and p. 

In connection with the substantial effect of antiferro- 
magnetism on the properties of the superconducting state in 
UPt, (see, e.g., Refs. 5 and 10-12), the question arises of the 
applicability range of Eq. (8)  in the presence of antiferro- 
magnetic ordering. As is well-known, antiferromagnetic or- 
dering gives rise to splitting of the superconducting transi- 
tion and to a change in the slope (a  kink) of the temperature 
dependence of the upper critical field. According to Ref. 12, 
in the temperature range below the kink temperature, 
T <  T, , the antiferromagnetism, in effect, affects only the 
temperature Tc . Furthermore, experimental data indicate 
that in UPt, 

and the temperature dependence Hc2 ( T) near T, and some- 
what below can be approximately considered linear.', 
Therefore for T< T,, in a certain temperature range, the 
Ginzburg-Landau theory is still applicable. This leads to 
applicability of Eq. (8)  for the angular dependence of the 
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upper critical field in this temperature range. 
The authors are grateful to M. E. Zhitomirskii who has 

drawn their attention to the necessity of a thorough analysis 
of a nonmonotonic behavior of H,, ( 8 ) .  
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