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The structure of a distorted charge-density wave (CDW) near a lateral metallic surface is 
considered. It is shown that charge penetration and electric-field screening are realized through a 
nonuniform distribution of solitons or dislocations. Self-consistent equations of elasticity theory 
for CDW with topological defects are solved with allowance for accompanying Coulomb fields. 
For relatively high temperatures distributions of soliton-gas density and field over the sample 
depth are found and the contact capacitance is calculated. For low temperatures and densities, the 
fields and induced charges of a solitary dislocation under the metallic surface are studied at 
length. A periodic dislocation structure arises for certain critical difference of the CDW and 
metal potentials. For small charges near the threshold the dislocations are far apart and, 
unexpectedly, at a large depth. Thus, the contact region is a natural generator and accumulator of 
CDW topological defects which can serve as nuclei of phase-slippage centers when longitudinal 
current flows through the sample. 

1. INTRODUCTION 

Solitons and dislocations determine stable excited or 
distorted states of a CDW crystal and/or the dynamics of 
normal current conversion into CDW current (see citations 
in Refs. 1-4). We will show that these topological deforma- 
tions inevitably arise in an electric field near the characteris- 
tic lateral contact of a CDW crystal with a metal. Thus, the 
region under the contact is a natural accumulator of topo- 
logical defects which become activated by CDW slippage in 
fields higher than the critical one. The results could account 
for some experimental data on  dislocation^^*^ and new ex- 
periments on potential distributions assymetry." 

Let a CDW crystal occupy the half-space y > 0, and let 
the contact with a metallic electrode be in the xz plane (the x 
axis coincides with the chain direction). Let the value of 
electric potential in the crystal depth be zero (here and in 
what follows @ is the potential energy of a particle with a 
one-electron charge e > 0): 

The metal potential with respect to the CDW, @,, is 
determined, for example, by the difference in the work func- 
tions but it can also be controlled in the field effect regime (a  
dielectric interlayer). In what follows we consider low tem- 
peratures T(A, where 2A is the gap width in the electron 
spectrum, when the electron density is low. 

The reason why topological defects are needed to screen 
an electric field, i.e., to satisfy both conditions ( 1 ), is the 
following. To create a CDW charge density 

(S is the area per chain, and a,, and a, are the distances be- 
tween the chains) that is inhomogeneous in y, the CDW 
wave vector should change by Sq = (d  'p /dxdy)a, between 
the neighboring, with respect to they axis, chain layers. This 
could lead to a loss in the total energy of three-dimensional 
ordering, of order Tf/v per chain unit length ( f i  = k, = 1, 
T, is the temperature of 3d-ordering, and v is the Fermi ve- 
locity) for infinitesimal charge redistribution. This situation 
resembles the distributed commensurability effect. It is evi- 

dent that the energy loss per charge 2e is finite, if incommen- 
surability of neighboring chains is concentrated in the form 
of 2~-solitons (see Refs. 1 and 2) with charge 2e, length 
I- v/T,, and energy Es - T, . At low temperatures, soliton 
aggregation into filaments along the z axis and their correla- 
tion along they axis is advantageous. These cases are natu- 
rally classified in terms of  dislocation^.^.^ 

One soliton or a limited soliton complex corresponds to 
a dislocation loop enclosing one or several chains. A soliton 
line corresponds to a dislocation loop extended along the z 
axis. Total aggregation from the surface to some depth Y 
corresponds to a single dislocation line passing parallel to 
thez axis through the pointy = Y, for some x.  According to 
the results of Refs. 1-4, the threshold value of @, for the 
beginning of charge penetration, and consequently screen- 
ing, is equal, for the cases listed above, to E,, and p, re- 
spectively, where the energies E, - (a/s)'/' and 
zs - v ( f i / ~ ) ' / ~  are determined by the largest ( a )  and the 
smallest (6 ) structural-anisotropy parameters. The value 
p0 -a:/2wp, where w, is the plasma frequency, can be both 
larger and smaller than E, .3*4 

2. CONDITIONSOF CDW EQUILIBRIUM NEAR A LATERAL 
CONTACT 

The continuous distribution of dislocations (see Refs. 7 
and 8) or solitons in the CDW is given by the vectors p or P, 
which are connected by the relation p = [VP] . For one dis- 
location we have 

pdv=-2n6 (g) dl. PdV=-2ds. 

dl=tdl .  I T [  = I. g ~ = 0 ,  

where d 1 is the dislocation line length element, and ds is the 
element of the phase-discontinuity surface p. For a + 27r- 
soliton at the point r = 0 

P= (P .  0. 0 ) ,  P=T?zsnG(r), (3)  

where n is the x-axis direction. Hereafter we define the phase 
as a single-valued and, generally speaking, discontinuous 
function of the CDW, which corresponds to the field p in 
Refs. 3 and 4. It is connected with the locally defined contin- 
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uous phase gradient w by the relation 

The fields w n / ~  and - & /n- determine the CDW charge 
density and total current. General equilibrium 
in terms of cp and P, take the form 

where 

x, w, and v are the inverse Debye radius, plasma frequency 
and Fermi velocity of the metal respectively, and a, and a, 
are parameters of the CDW elastic anisotropy. Note that for 
solitons we always have P and nP, and for the transverse 
plane dislocations we can always choose the vector P in the 
same way. Recall also'.' that the field 

where a is the CDW stress vector, is the potential energy of a 
2~-soliton and also the transverse force acting upon a unit 
length element in the direction perpendicular to the disloca- 
tion line. 

3. HIGH TEMPERATURE: SOLITON GAS 

Consider now the case of high soliton or dislocation 
density, when P can be considered a continuous function 
depending only on y. Equations (5) and (6) take the form 

a - - Acp=O. q=cp (x, y ) .  
ax (8) 

where 

To close this system it is necessary to add the equation of 
equilibrium with respect to the P-distribution. We will con- 
sider the range of fairly high temperatures T and/or strong 
Coulomb interaction (see Refs. 3 and 4), when po > E,. In 
these cases the number of dislocations or multielectron dis- 
location loops is small, and the value of P is given by the 
soliton Boltzmann distribution 

Herep * and f p are the density and chemical potentials of 
f 2n--solitons respectively, and P = 1/T. The length d de- 

pends on the character of configurational averaging. For 
quantum solitons d- (MT) - I f 2 ,  where M- Tc/uZ is the so- 
liton mass and u the CDW phase velocity. For pinned soli- 
tons d is the distance between defects along a chain. A finite 
displacement p #O in the absence of conduction electrons is 
caused by microscopic charge asymmetry. The latter stems 
from dispersion of 2k,- phonon~ .~  As a result, 

where Ipl < E, , c is the sound velocity, o is the 2k,-phonon 

frequency, and g is the electron-phonon interaction con- 
stant. 

The inequality in ( 1 1 ) ensures ground-state stability. 
In the bulk we have from ( 1 ) and (7 )-( 9 

y+m:  @ - L O ,  P--P,, ~ ( P I ~ x - c P ~ ,  o.-+O. (12) 

The last condition means electroneutrality. Equation ( 10) 
yields 

P_=-A sh $p .  A= (4nld)exp ( -BE. ) .  ( 1 3 )  

The only nonsingular solution of Eq. (8),  which satisfies 
( 1 1 ) , has the form 

It means that absolute CDW displacements are independent 
of the depth y despite the presence of solitons or dislo- 
cations. Equations (9), ( 10) and (14) yield a system of 
equations in a ( y )  and P(y) : 

2@=C1-vP,+vP+T arcs11 (PIA). (16) 

Equations (7) and ( 15) have, in the general case, a first 
integral corresponding to conservation of the total energy 
density: 

Equation ( 17), where R is the thermodynamic potential of 
the soliton system, is exact in the adopted local-equilibrium 
scheme. The expression ( 18), where fl, is the partial poten- 
tial of solitons having the same sign, corresponds to the gas 
approximation. The formula ( 19), which is equivalent to 
Eq. ( 16), corresponds to Boltzmann statistics. Next we con- 
sider, for definiteness, the case of + 2~-solitons, therefore 
P<O. 

Equations (16)-(19) are solved by quadratures. As a 
result, we find the following dependences. 

Near the contact we have for I P ( % T/v, A 

Thus, the initial potential @,-A induces a high density of 
the order of the limit P-x, which rapidly decreases over 
microscopic distances to the limiting thermal density 
P, - T/v. In the intermediate range A <  (P I < T/v we have 

For still smaller (P (<A  the power law is replaced by a 
weak exponential dependence 

At last, for equilibrium density we have the regime of linear 
Debye screening in a weakly perturbed soliton gas: 

P-P,a e-Q, h=x ( P I T )  "'. (23) 

Here A coincides with the parameter of screening by residual 
carriers in Refs. 1 4 .  
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The obtained dependences allow to find, for example, 
the capacitance Cor incremental capacitance eper  unit con- 
tact area S: 

Depending on the values Po = P(0) or @, = @(O), we have: 
(a)  for high density (Po(--,21Qo(/v% T 

C=,=X-~, 

i.e., the capacitance is given by a microscopic layer of order 
x-I, where the main charge is concentrated, and 

(b) for low density I Pa I ( I P I 4 T 

( I Po 1 v l T )  '" 
Ca %-I 

1 P 1 'I- 
t-.-.(+) , 

In (P,I?P,) ' 
(25) 

where Po- P, exp( - Q0/T). 
Consider now the regime of stationary transverse cur- 

rent j flowing in the sample. It is natural to assume that the 
coefficient of transverse soliton diffusion D = bT.and the 
soliton mobility b are small so that CDW deformations can 
be regarded as static. As before, Eq. ( 15) holds, but instead 
of ( 16) we must use the generalizing diffusion equation 

Conditions ( 1 ) are replaced by 

To generalize the equilibrium conditions (5)  and (6) 
for an infinite CDW crystal, we write the Hamiltonian in the 
form:* 

where P is the density of soliton or dislocation dipole mo- 
ment, A -' is the residual carrier screening length, and 
p(x)S(y) is the surface charge density arising at the bound- 
ary with a metal. 

Consider, first, one dislocation loop lying in the plane 
x = 0 and stretched along the z axis (L ,  + ocr ). In this case 
the dislocation loop degenerates into two dislocation lines 
given by the equations x = 0, y = Y, and x = 0, y = Y,, and 
the solutions for the fields q, and @ are z independent of z. 
The case Y, = 0 corresponds to one dislocation split from 
the surface y = 0. In this case 

Varying the functional (3 1 ) with respect to the fields q, 
and @, we get the equilibrium conditions 

For the sake of simplicity, we assume again that only one 
type of carrier dominates. As a result, we find an equation 
for E: 

For small E, a j we find the regimes (20) and (2 1). 
However for large y, instead of (23 ), we get 

The effect of E, is important for 

i.e., when the potential variation in the bulk over the screen- 
ing length A is large in comparison with temperature. In this 
case the field diffusion penetration length k -' is large com- 
pared with the thermodynamic quantity A. 

4. LOW DENSITY AND TEMPERATURE: SINGLE 
DISLOCATIONS 

As shown in Refs. 3 and 4, under the condition of sum- 
ciently weak Coulomb interaction or under screening by re- 
sidual carriers solitons begin to aggregate into macroscopic 
dislocations. In this section we study the properties of single 
dislocations near the lateral surface y = 0. The lateral sur- 
face leads to a substantial change in the CDW deformation 
and electric potential around a dislocation, as well as to a 
change in dislocation energy. The results are different for the 
boundary with a dielectric and for the boundary with a 
metal. 

from which the equations for the fields q, and Q are easily 
obtained: 

where 

For one dislocation line, without allowance for bound- 
ary effects, Eqs. (34) and (35) yield an exact (for a = 1, 
A = 0) solutions (see Refs. 3 and 4) 

a " 
z) KO ((P + .z2)'?) dz, (36) 

where 2 = xx/2, j = xy/2, and KO is a modified Bessel func- 
tion, and the approximate solutions 

are valid for A = 0, y %  a1I2x [erf( ... ) is the probability inte- 
gral], and also solutions for il #O: 
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in theregionx)x/(a112A '), y)A - I ,  wherea* = a A  '/x2 is 
the effective anisotropy constant. 

Now we take into account the boundary effect. Varying 
the functional (4),  we obtain the boundary conditions 

for the vacuum interface and the conditions 

for the metal interface. 
Consider, first, the case of vacuum interface 

(p(x) = 0). Dislocation lines at points y = Yl and y = Y2 
have opposite directions of the tangent vector T = f z (z  is 
the unit vector along the z axis), therefore it is convenient to 
attribute to them topological charges f 1. The fields q, and 
@ around these lines differ in sign. Equations (36)-(41) 
show that the boundary conditions (42) are identically satis- 
fied if imaginary dislocation lines with opposite topological 
charges 1 are placed above the CDW crystal at symmetric 
points x = 0, y = - Y, and x = 0, y = - Y2. Then the solu- 
tion for @ has the form and the function q, is given by a 
similar expression 

Let us now find the solution of Eqs. (34) and (35) for 
the boundary with a metal. It is easy to see that the boundary 
condition <P = 0 is not satisfied for the solutions (44), if 
y = 0, therefore it is necessary to allow for external electric 
charge localized at the interface. 

Without screening (A = 0) Eqs. (34) and (35) yield 

where 

1 
8, = - Ko(f2+fj2)'b)ch f 

2n 

is the solution of the equation 

Similarly, for q, we have 

where 

is the solution of the equation 

The Eqs. (45) and (46) are valid for one dislocation, Y, = 0 
Y2 = Yand are generalized to the case Yl # 0 by the substitu- 
tionf(Y)-f(Y,) -f(Y2). 

It  follows from (46) that an arbitrary external surface 
chargep(x) does not alter the value of aq, /ay for y = 0, i.e., 
the first of the boundary conditions (43) is identically satis- 
fied for any smooth functionp(x) . Therefore the charge dis- 
tribution density is unambiguously given by the second 
boundary condition (43) @I, = , = 0. Substituting the ap- 
proximate solutions (38) into (45) and using the boundary 
condition (43), we find 

* 

The asymptotes of Eq. (47) for small and large x have the 
form 

(x) a { -8/x Y ,  2xaih/Y2u a 1. 
-(nx)'"Y211xl"a, 2xa" /YZx~l .  

The total electric charge Q induced on the metallic surface 
cancels exactly the total electric charge of the solitons in the 
dislocation, and is distributed in the region x,--xY2/a'I2: 

where N is the number of chains between the dislocation line 
and the surface, which corresponds to the number of 29~- 
solitons forming the dislocation. 

In the same approximation Eq. (45) yields for the func- 
tion @: 

Q=mo(x, y-Y) -Qo(x, y+Y)+6@, (49) 

where S@ is the field of the chargep(x): 

6(1)=-2xva'" I ;  - exp [ - ( 1 + - t 1 sin ( r  - t (cos t  - sin t )  

For x = 0, Eqs. (49) and (50) yield an exact expression for 
@ (y>O): 

nxuaYZ (D = ---- t)(Y-y)-xua"' arctg 
2 

from which it follows that @(y) -0 as y + O  and @ a 
- x ~ Y ~ / ~ ~  as y +  + M .  The asymptotes (49) in different 

regions have the form 

for 

xy" xY' - - 9 1  
4a"Jxl ' 4a'"JxJ 

(51) 

and 
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FIG. 1 .  Potential as a function of y in the plane x = 0 for a dislocation 
located at the point (0,Y). At x#O the extrema are smoothed out and 
decrease. 

for 

The function @(O,y) has for y 5 Y a positive maximum ap- 
proximately equal to al/'xv and and for y 2 Y a negative 
maximum approximately equal to - 0.5 a1'2xv. Thus, there 
is a region of attraction of electrons and solitons, which 
makes possible dislocation of growth into the interior. The 
function (0,y) is plotted in Fig. 1. 

In a similar way, we find for the function p: 

where 

For x = 0 the integral in ( 53) is calculated exactly: 

In the limit of large x [xa1/'/xy2 9 max( 1, Y/y ) ] we have 

In the case of screening, A #O (A ' gx2) ,  we find from 
Eqs. (34), (35), (40) and (41) 

where 

is the solution of the equation 2'9 = 6(x,y) in the region 
x)x/A ', y%A -I, where 

Using the boundary condition (42), @(x,y = 0) 10, 
we find for AY) 1: 

4 Y (a')'" 
o(x)=- h(y+a.x2) . 

The total charge 

does not depend on the length Y, i.e., contrary to the case 
without screening, only a partial compensation of the dislo- 
cation charge 2N occurs. 

As in the case when screening is absent, the boundary 
condition d p  (x,y = 0) /dy r 0 is satisfied irrespective of the 
induced charge distributionp (x) ,  which can be verified with 
the help of (54), if we allow for higher derivatives in the 
operator K. Using ( 35 ) , we find, in terms of Fourier-compo- 
nents, for y -+ 0: 

m 

~ C P  sin (kz)sin (h-,y)k.k,p(k,) 6 - a J dl<. dh!, 
a!f ,, ak,'+h2k,'+x'kr' 

Neglecting the term a k  ,4 in the denominator, which is valid 
for y)A -I, we would find 

as y-0. Thus, to satisfy the boundary condition for p(x,y), 
it is necessary to use the solutions (46) which are exact in the 
region y )A -I. 

The solutions for the fields and p have the form (49) 
and (53), where the functions a, and p, are given by Eqs. 
(40) and (41 ). In the distant region A Y>) 1, y)A -I and 
x %  (a*)-'I2A we get from (54) and (55): 

xua" [ (Y+ y)'-a's'] 
8(U = 

h2[  (Y+y)2+a'x2]2 ' 

At large longitudinal distances we find for x(a*)  'I2> Y,y: 

At large transverse distances for y % Y, ( a*  ) 'l2x we have 

The similar expressions are found for the function p. Thus, 
in the case of screening we can disregard the contribution of 
the induced chargep(x) to the fields p and a in the higher 
orders, i.e., 

@z(D,,(x, y+Y)-(B,,(x, y-1'). 

5. DISLOCATION ENERGY 

Let us now calculate the dislocation energy near the 
surface. It is easy to show that the general expression for the 
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dislocation does not change in the presence of a 
charged equipotential, @, = 0, metallic surface. For a pair of 
dislocations it has the form 

L? 

Substituting the expressions (36), (37), (44), (40), 
and (41 ) for the fields @ and p into ( 5 9 ) ,  we find the follow- 
ing results valid for the boundary with vacuum (screening is 
not taken into account). 

In the unscreened region AL ,, 4 1 we have 

nxuaB w = ------ Lz ( Y - Y -  L,,  LZab-',  
2 S 

i.e., the same result as for infinite medium. 
In the screened region AL ,,, 9 1, A JL ,  - L,I % 1 

We have obtained a result of the usual theory of elasti- 
city, corresponding to pair attraction to the surface by image 
forces. 

Let us calculate now the energy of a single dislocation 
near a lateral metallic surface. Substituting the solutions 
(49), (SO), and (53) into (60), we find in the unscreened 
region 

i.e., we have the law of area conservation with a smaller fac- 
tor. Thus, the energy of a dislocation with a given charge is 
numerically smaller under the contact. 

In the screened region for A Y )  1 we find from (40), 
(41), (57) and (58) only corrections of type Eq. (61) to the 
energy: 

6. HIGH DENSITIES AND LOW TEMPERATURES: PERIODIC 
DISLOCATION LATTICE 

We have shown that the energy of dislocations located 
near the surface is lower than their energy in the bulk, i.e., 
dislocations are attracted to the surface. For a sufficiently 
high dislocation density near the surface, a periodic struc- 
ture emerges. Assume, for simplicity, that dislocations are 
the same distance xo apart and have the same depth yo, i.e., 
the dislocation lines are at the distance yo from a surface 
which can naturally be regarded as metallic. The energy of a 
system of N dislocations is 

where Nx, = L, is the contact length, 

is the field created by all dislocations on the line (x = O,y), 
and @ is the field of one dislocation with allowance for the 
induced surface-charge contribution. 

Consider, first, an arrangement for which the disloca- 
tion fields strongly overlap, i.e., xyi/lxol -4 1. Using the for- 
mulas (51) and (64), we find 

where Wo is the energy of an isolated dislocation: 

The second term of the expansion in yo in the expression for 
Wo is the self-energy of a dislocation 

The functional (65) is minimized for a given electric 
charge Q = 2yaL,  /s or a given charge density proportional 
to q = yo/xo. As a result, we have 

with xy;/xo a q2I5, i.e., the condition xyi/xo4 1 is satisfied 
for small q. Thus, dislocations with small charges q are 
sparse and at a large depth, but their interaction is strong. 

When we neglect screening, we assume that two condi- 
tions hold: ily, 4 1 and A *x/x 4 1. The second condition be- 
comes invalid first, i.e., the dislocation interaction is 
screened. We find the following constraint: 9 4  (A / x ) ~ ' ~ .  

Consider the opposite case, when xyg/x,>) 1. Summa- 
tion in (64) is performed with the help of the Poisson formu- 
la. Using the solutions (38) and (52), we get for y,>)x,: 

m 

where 6 = (P~/x,)  ' I 2 .  

Summing the series (67), apart from exponentially 
small terms cc exp( - xyi/4x), we find from (64) 

m 

Minimizing (68) for a given q, we would find the values 

outside the allowed range x,, yo < x-  '. 
The results (66) and (69) show that for low charge 

densities ( 9 4  1 ) dislocations are sparse, x, a q-'I5, but have 
a large penetration depth yo a q-315. For high charge densi- 
ties (9% 1 ) dislocations are dense and have a small penetra- 
tion depth: x,, yo 5 x- '. 
7. CONCLUSION 

We have considered the structure of a distorted CDW 
near a lateral metallic surface. We have shown that charge 
penetration and electric field screening are realized through 
the inhomogeneous distribution of solitons and dislocations. 
We have derived and solved self-consistent equations of elas- 
ticity theory for a CDW with topological defects, with ac- 
companying Coulomb fields taken into account. For rela- 
tively high temperatures we have found the distributions of 
the soliton gas density p, a T/y2 and the field over the sam- 
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ple depth y. We have also calculated the contact capacitance 
C a  Q, where Q is the surface charge. 

An interesting feature of equilibrium soliton distribu- 
tions is the invariance dp/dy = 0 of the CDW geometric 
pahse p, which determines the observed structural deforma- 
tions a cos(2kFx + p ) .  In other words, elastic deforrna- 
tions related to charge polarization at equilibrium and phase 
discontinuity on solitons are cancelled. 

For low temperatures and densities we have thoroughly 
examined the fields and induced charges created by a single 
dislocation under a metallic surface. The solution of this 
problem, in contrast to the contact with vacuum, does not 
reduce, as usual, to image technique, but requires explicit 
allowance for the induced electric charge density p(x) .  A 
dislocation located not deeper than the residual screening 
length /Z -' affects large longitudinal distance x: x</Z - I ,  

x<xY2; I @ (  ~ p , , p ( x )  a l/sxY2. Within thescreeningradi- 
us, /ZY< 1, we have, as in the case of loops in the bulk,',2 
confinement. A dislocation is attracted with a constant force 
P = pi/s  (per unit length L, ), wherep, > p o  for the vacuum 
boundary or in the bulk, andp, = p, for the metallic bound- 
ary. An important result is thatp] <po  numerically, i.e., the 
region under the contact is, in comparison with the rest of 
the surface, a dislocation potential well. 

Another important difference of the region under the 
contact is that the quasiparticle potential V--,@ has a nega- 
tive minimum near the dislocation for y) Y. Thus, in con- 
trast to the bulk dislocations, a dislocation can grow owing 
to injected carriers or solitons accumulated in its vicinity. 

When a critical difference @ > p ,  ~ a ' ' ~ o ,  in CDW and 
metal potentials is reached, a periodic dislocation structure 
arises. For small charges near the threshold the dislocations 
are a large distance no apart and, unexpectedly, at a large 
depth yo [see (69)l.  

The boundary between the soliton and the dislocation 
regimes of charge-density and screening of contact potential 
difference is, probably, of the type of liquid-gas phase transi- 

tion. Consider the unscreened regime Y < A  -' for sufficient- 
ly weak Coulomb interaction (p,<p, < E, ) and interplanar 
coupling (see the Introduction). Owing to the area law for 
their energy ( W a  N ) ,  the dislocations fix the soliton chemi- 
cal potential similar to saturated vapor. Therefore the dislo- 
cation emergence, like the dew point, is determined by the 
line p(p,) =p,-E, <O,  p, ad-'e@'. In the weak- 
screening regime, Y> A -I, the perimeter law W a  N ''' In N 
fixes the value po = 0 for distant dislocations, which, one 
would think, allows the existence of dislocations for a very 
low soliton density. However, the screening condition im- 
poses restrictions on the regime of screened dislocations: 

This inequality limits the charge from above and the density 
or temperature from below. 

The general conclusion is that the contact region is a 
natural generator and accumulator of CDW topological de- 
fects, which may serve as nuclei of phase-slippage centers 
when longitudinal current flows in the sample. 
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