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The advantages and shortcomings of the parabolic approximation for the description of the 
properties of quasi-one-domain electron channels that conduct in the ballistic regime are 
discussed. It is noted that this approximation agrees qualitatively with the known experiments 
both in the absence and in the presence of a magnetic field perpendicular to the plane of the 
channel. 

The existing theory of quasi-one-dimensional electron 
channels in semiconductors is being developed at present 
mainly for two limiting cases, each with its own advantages 
and shortcomings. The point is that the retaining potential 
that governs the parameters of the channel and whose form 
is as a rule unknown is approximated by two very simple 
asymptotes, rectangular or parabolic. 

The rectangular approximation is used systematically 
in connection with experimental studies (see Ref. 1 and the 
citations in Ref. 2).  It is also very suitable for a description of 
the behavior of the electron as a whole when it passes ballisti- 
cally through a constriction of the potential relief, since it 
makes it possible to determine (~ev inson ,~  Glazman et ~ 1 . ~  ) 
the degree if "smearing" of the e2/h steps produced in the 
ballistic conductivity in the one-dimensional variant of the 
theory at T = 0 (Landauer5 ). The rectangular approxima- 
tion raises difficulties in view of the uncertainty of the con- 
nection between the channel characteristics-its width w  in 
the saddle-point region of the retaining potential, and the 
number I, of the filled subbands, as well as on the saddle 
itself with the governing potential V, and the magnetic field 
H normal to the plane of the channel. The suggestions made 
by Van Wees et aIs6 jointly with the results of Kosevich and 
Lifshitz7 yield empirical functions w (  V, ) and I, ( V, ) 

which are difficult to interpret (details follow). Nor is it 
clear how to introduce in this approximation the Coulomb 
effects, which play a rather significant role. 

A simple adiabatic approximation, first formulated for 
the channel problem by Berggren et al.,' fits much better in a 
self-consistent scheme that takes Coulomb effects into ac- 
count. Assuming that the potential Ve (x),  which quantizes 
the single-electron motion (the x direction is perpendicular 
to the channel axis y )  is parabolic 

it is easy to find the connection between I, and we or a, ,  
where w: = k,/m, is the transverse frequency indicative of 
the degree of influence of the quantizing potential V, ( 1) on 
the electron spectrum, w, is the cyclotron frequency, 

(2)  

Here N, is the total number of electrons per unit length of 
the channel and m, is the electron effective mass. 

Knowing I, (H) from experiment (the Shubnikov-de 
Haas effect data) we can, fitting this dependence to Eq. (2 ) ,  

determine the parameters we ( V,) and N, ( V,) under the 
condition that these parameters are independent of H. Such 
a program was implemented in Ref. 8 as well as in Refs. 9 and 
10. 

Relation (2) is useful also for the interpretation of the 
I, ( V, ) dependence at different values of H.  experiment^^^" 
with these data were reduced in the rectangular approxima- 
tions. In the parabolic limit it is natural to use Eq. (2)  rewrit- 
ten in the form 

where I O, is the I, ( V, ) dependence with H = 0. This possi- 
bility will be discussed in greater detail below. We note here 
only that even Eq. ( 3 )  accounts qualitatively for the behav- 
ior of I, (H)/I: observed in Ref. 6. In fact, the frequency we 
decreases with increase of V, - V,*. At a finite value of w, 
the ratio I, (H)/I; should therefore decrease with increase 
of ( V, - V:). The effect should become stronger with in- 
crease of w,, as is indeed observed in e~per iment .~  The po- 
tential V,* is the critical value of V, at which the channel 
becomes empty. 

Just as in the rectangular approximation, the parabolic 
approximation fails to answer some rather important ques- 
tions. First, the Coulomb-interaction energy V, ze2Ne/x, 
where x is the dielectric constant and N ,  is taken from ex- 
perimental data,6'8-'0 turns out to be substantially higher 
(by 3-5 times) than the Fermi energy ~,zl,h, deter- 
mined in the same experiments. In other words, the potential 
Ve (x) [Eq. ( 1 ) 1, which quantizes the electron motion along 
x, is incapable of retaining the electrons within the widtb w 
of the electron channel, since the Coulomb interaction 
should cause this channel to disintegrate. Nor is this approx- 
imation sufficient to explain the steps in the plot of the chan- 
nel conductivity u against the control voltage V,. The effect 
of the magnetic field on the channel width and on Ne is like- 
wise unclear. If the theory contains only the frequency and 
the magnetic field can take on values with w, $we, such an 
influence may turn out to be quite noticeable. In this case the 
reduction of the experimental data of Refs. 8-10 with the aid 
of Eqs. (2) and (3 ) becomes meaningless. 

To answer the above questions we must introduce into 
the theory Coulomb effects. An implementation of such a 
program in the absence of a magnetic field was described by 
the author in Refs. 12 and 13. It is shown here that under the 
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conditions a,/w ( 1 (a, is the Bohr radius) the channel pa- 
rameters, namely its width w and the number N, of the ions, 
are determined mainly by the retaining potential V(x) 
which is of electrostatic origin. As for the quantizing poten- 
tial Ve (x) ( 1 ), it is much smaller than V(x) and exists only 
because the proper field of the electrons in the channel are 
not screened completely by the quantum effects of the exter- 
nal potential V(x). We assume in the present paper a gener- 
alization of the results of Refs. 12 and 13 to H # 0. In the first 
two parts of the paper we describe qualitatively the behavior 
of the main characteristics Ne, I,, and we of the channel as 
functions of V, and H. The third section verifies a number of 
equations used in the first two sections. 

1. BEHAVIOR OF I, (H) IN THE PARABOLIC APPROXIMATION 

It is natural to begin the discussion of the capabilities of 
the parabolic approximation with an analysis of rather gen- 
eral consequences that should follow for the behavior of a 
"parabolic" channel. One of them is the statement that, giv- 
en the potential V,, the value of we remains constant in a 
wide range of H. The corresponding data for we (H) are 
shown in Fig. 1. Obviously, the requirement we = const at a 
fixed value of V, is not very exactly satisfied, especially at 
low values of V,. This, incidentally, was to be expected, since 
the parabolic approximation, as will be shown below, is a 
rather arbitrary concept. It should be taken as the simplest 
approximation that permits a reasonable reconciliation of as 
many experimental facts as possible for electron channels of 
width w noticeably smaller than the dimension 2d of the 
"window" in the controlling electrode. 

Speaking of data on the order of the results of Eqs. (2)  
and (3),  the parabolic approximation is not much better 
than the rectangular one of Refs. 1 and 2, which also leads to 
a definite connection between w and V,. The difference is 
that the frequency we in (2) ,  as well as other characteristics 
of the channel, such as its width w, the number I, of the filled 
subbands, and the total number Ne of electrons per unit 
length lead here to natural definitions in terms of V, and the 
nominal width 2d of the cut in the control electrode. 

For the model of the quasi-one-dimensional electron 
channel shown in Fig. 2 and investigated in detail for a zero 
magnetic field in Ref. 14, the necessary definitions supple- 
menting (3 )  are 

Here x is the dielectric constant of the medium in which the 
quasi-one-dimensional channel is immersed, no is the effec- 
tive two-dimensional density of the domains and neutralizes 
the electron charge at V, = O(it is assumed that the plane 
filled with donors and the electron plane are not spatially 
separated), K(x)  and E(x )  are the corresponding elliptic 
integrals, the definitions (4)  and (5 )  express w and Ne in 
terms of no, d, and V, in the electrostatic approximation. As 
for the definition ( 6 ) ,  it relates the curvature k, from (1)  

FIG. 1. Plot of o, ( H ) ,  according to the data of Ref. 6, for different values 
of V,: V, = 1 V (O),  1.2 V (a), 1.4 V ( A ) ,  1.6 V ( A ) .  The lines join 
points with equal values of V,. A tendency of o, to be independent of H 
with increase of V, can be seen. The frequencies o, and o, are referred to 
the cyclotron frequency o, at H  = 1 T. This frequency is designated o, . 

with the nominal parameters V, and d of the problem in the 
Thomas-Fermi approximation. More detailed comments on 
this relation will follow Eqs. (9)  and (38). 

The use of Eqs. (4), ( 5 ) ,  and (6) jointly with (3) pre- 
supposes that the parameters Ne and w are not very sensitive 
to the magnetic field. A proof of this statement is quite com- 
plicated, and there is still no rigorous one (see Sec. 3 below 
for details). Experimental considerations, however, favor 
this assumption. First, it follows from the data of Ref. 6 that 
the critical value V,* at which the channel becomes empty 
depends little on the magnetic field. Second, the different 
possible modifications of the quasi-one-dimensional chan- 
n e l ~ * * ~  also demonstrate the independence of the electron- 
channel geometry on the magnetic field H. These facts are 
the basis for the assumption that w and Ne are insensitive to 
H. 

In Refs. 12 and 13 we have introduced the concept of a 
retaining potential V(x) that shapes for the most part the 
electron channel. This concept can also be easily used in a 
specific case (Fig. 2). Using the condition that an electro- 
static equilibrium obtain in the electron-channel region, we 
have 

FIG. 2. Diagram of quasi-one-dimensional electron channel used in the 
text. 
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Here n (x)  is the electron-density distribution in the channel, 
corresponding to the solution (4)-(6), and G(x) is the 
Green's function of the electrostatic problem. In the limit 
when w)d the definitions of G1(x)  and n (x) simplest to 
interpret are 

The potential V(x) in (7) is then parabolic 

to the extent that w(d. 
In terms odd V(x) as given by (7)  and (7a), the single- 

electron potential Ve (x)  is defined as 

where q ( x )  is the potential of the electrons that fill the chan- 
nel. 

In the Thomas-Fermi approximation, when the equi- 
librium condition includes the energy of the zero-point oscil- 
lations 

the potential Ve (x)  turns out to be 

Herep is the position of the chemical potential. 
When n ( x )  is allowed for, this potential is not parabol- 

ic. The representation of Ve (x) by expansion ( 1 ) on the 
interval - w(x( + w can therefore not be proved in any 
limiting case [in contrast to the potential V(x) which has a 
parabolic asymptote (7a) in the limit w(d]. Its use, and 
particularly the definition (6) ,  must therefore be regarded 
as a variational principle of sorts, which permits formulation 
of qualitative analytic statements during the final stage of 
the computations. 

For future convenience, we describe here the asympto- 
tic behavior of the solution (4) ,  (6)  in the region w(d: 

. - 

(10) 

Here k is given by (7a). 
Obviously, ke is strongly renormalized (to the extent 

that aB/w 4 1 ) compared with the curvature k. 

- For arbitrary w/d, plots of ke and w/d against 
V, = V,/V,*, which follow from (5) and (6),  are shown in 
Fig. 3. It is noteworthy that w/d+ 1 when fig -0, and not at 
finite values of fig, as is actually the case, in view of the 
neglect of the gap h (see Fig. 2) between the metal and the 

FIG. 3. Dimensionless channel wicth fi = w/d from ( 5 )  as a function of 
the dimensionless control voltage V = V,/V: defined b y  Eq. ( 10). 

2d-system. The divergence of k, ( V, ) as vg - 1 has likewise 
no physical meaning. The theory discussed is valid in the 
region aB/w < 1, and the divergence sets in at a,/w > 1 (Fig. 
4).  

Using the definitions (4)-(6) and the data of Fig. 3 we 
can plot the function we ( V, ) and consequently, taking (3)  
into account, determine the I, (H) dependence for the con- 
ditions of Ref. 6. The corresponding values of we ( V,) are 
shown in Fig. 5, as well as the experimental we ( V, ) behavior 
that follows from the data of Ref. 6, using Eq. (3) .  Obvious- 
ly, the theory is far from agreement with e~periment ,~ al- 
though it reflects well the tendencies. Incidentally, the ques- 
tion of the numbers is encountered already during the early 
stage of the computation. Thus, the critical value of V,* from 
( lo),  calculated using the experimental parameters of Ref. 6 
( d  = 250 nm, m, = 0.067me, x = 12, and no = 3.56.10" 
cmP2)  yields V,* = 0.72 V, which 2-3 times smaller the ob- 
served6 V,* > 2 V. It appears that the numbers are influenced 
by the non-one-dimensionality of the ~ h a n n e l . ~  The same 
determination of V,* for channels that are more "one-dimen- 
sional" (Refs. 8 ,9)  agrees well with the observations. 

A few words on the rectangular approximation for the 
retaining potential. As noted above, a difficulty arises in this 
case in the determination of the connection between w and 
V,. It is caused formally by the general relation between 
V(x) and V, : 

FIG. 4. Dimensionless curvature = k, /k ,  from Eq. ( 6 )  for a single- 
electron potential V, ( x )  as a function of P= V,/V:.  The quantity k,, is 
defined as k, = n,f i2/m,  d '. 
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FIG. 5. Behavior of o, ( V, ). Circles-o, ( V, ) from Ref. 6 for a magnetic 
field H = 2.5 T. Solid line--calculated using the definition of = k , / m ,  
and k, from Fig. 4. The frequency o, refers to oi = k, /m, ,where k, has 
the same meaning as in Fig. 4. 

If the potential V(x) is rectangular, the condition ( 1 1 ) is 
meaningless, since 

and the integral ( 1 1 ) diverges. 
Even less definite is the rectangular approximation for 

the single-electron potential V, (x). No acceptable scheme 
for its construction exists as yet if local neutrality is violated, 
a condition obtaining in the vicinity of the electron channel. 

2. WIDTHSOF TRANSITION REGIONS BETWEEN THE o(V,) 
PLATEAUX 

The widths 61, of the transition regions between neigh- 
boring plateaux on the u (  Vg )plot and the behavior of these 
regions as functions of the magnetic field is a problem in 
itself. Experiment6 offers clear evidence that 61, increases 
with increase of the magnetic field strength. As to the theory, 
we have here at present two contradictory results. Glazman 
and Khaetskii,15 using the general idea5 that 61, is finite as 
T-0 because of the presence of a smooth barrier that per- 
turbs the electron motion along the channel, attempt to ex- 
plain the observed behavior of 61, (H) . They use a rectangu- 
lar quantizing potential V, (x,y) in the x direction. Buttiker, 
likewise in the context of a model with a saddle point in the 

V, (x,y) relief, cites a result contradicting the observation, 
wherein the width 61, decreases with increase of the mag- 
netic field. The single-electron potential V, (x,y) in the vi- 
cinity of the saddle was approximated by the power law 

after which the problem of passage of an electron through 
the saddle point can be solved exactly. 

It  is my opinion that the conclusions of Ref. 15, in the 
part pertaining to the behavior of 61, (H),  are in error, 
owing to the artificial definition, in Ref. 15, of the number of 
occupied bands in the electron channels. Consequently 
neither the behavior of 61, (H) nor the definition of 1, corre- 
lates with other studies. For example, expressions ( 18) and 
(24) in Ref. 15 for the band occupation numbers for differ- 
ent limiting magnetic fields are entirely different from the 
analogous expressions of Ref. 6 in the same model and at the 
same limiting field values [see Eqs. (2) of Ref. 61. 

We offer our point of view, confining ourselves at the 
present level to a discussion of Refs. 15 and 16 and with an 
aim at discerning the possible causes of the observed growth 
of 61, (H) in the framework of a theory using a smooth po- 

tential V, (xy) . Our main idea is that there is no need at all to 
introduce a saddle point to explain the experiments of Ref. 6. 

The conductivity of a quasi-one-dimensional plasma in 
the ballistic regime at a finite temperature is defined as3 

wherep is the location of the Fermi level and E,  the discrete 
part of the electron spectrum. If, as customarily (see, e.g., 
Ref. 16), u is plotted as a function of p, several deductions 
can be made: the widths of the transition regions decrease 
when the temperature is lowered and the magnetic field in- 
creased. Experiments, however, deal with the behavior of 
a (  Vg ).Toexplain this effect it is therefore necessary to know 
the explicit dependence of the electron spectrum on Vg at 
fixed H. Using the results above, we can implement this pro- 
gram and represent the conductivity a (13) in the form 

Here Z,, k,,  and I ,  are given by Eqs. (3) ,  ( 6), and (3) ,  
respectively. 

The derivative a u / c ~ V ~  at the points I = I ,  is equal to 

According to (2), the combination Z,l, in the second 
term of the derivative dg,/aVg in ( 15 ) is independent of H: 

The second term makes therefore no contribution to 
61, (H).  As for the first term of this derivative, it decreases 
with increase of the magnetic field. On the whole, therefore, 
the derivative do/6'Vg is a decreasing function of the mag- 
netic field at the points I = I,. In other words, an increase of 
the magnetic field extends the lengths of the transition re- 
gions 61, between neighboring steps, as we had to prove. 

3. ORIGIN OF DOUBLE PARABOLIC APPROXIMATION 

The purpose of the present section is to justify (with a 
definite accuracy) a number of statements used above. We 
have in mind the connection between the retaining V(x) and 
quantizing V, (x)  potentials and the role of the magnetic 
field in the determination of the parameters of the quasi-one- 
dimensional electron channel. 

A. We consider first a situation without a magnetic 
field. If V(x) is the potential that governs the properties of 
an electron channel along the y axis, the initial system of 
equations for the equilibrium of the channel properties of the 
channel are 

2e d 
q(x)=; -YI n(s)ln- ds, I t - $ 1  
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Here $, (x) is a single-electron wave function in the I th state, 
q ( x )  is the electric potential due to the Coulomb interaction 
of the electrons, n (x) is the local density of the electrons, w  is 
the width of the electron channel, p is the position of the 
Fermi level, d is the length connected with the screening of 
the electric fields by metallic electrodes placed along the 
 channel,^, is the electron momentum in they direction, and 
Ne is the total number of electrons per unit channel length. 

Assume that the retaining potential V(x) is in the main 
parabolic, meaning that it is real in the region w  Qid: 

V (3) = Vn+'/2k~z+ . . . (20) 

In the particular case of Fig. 2 this property is explicitly 
manifested (see Eq. 7a) and the pertinent commentaries). 
In this case it is convenient to represent the electron density 
n (X by a series of Chebyshev polynomials U,, (x ) : 

2 
wn,. = - n u .,,,(") dx. 

-= w 

Using (201422) and the general properties of the polyno- 
mials U, (XI, in particular 

+ 1 

we can restate the problem (16)-(19) in the form of the 
nonlinear-oscillator problem 

An additional advantage of the representation (24)- 
(27) is the presence here of a natural limiting transition to 
the classical equations defining equilibrium in the electron 
channel. In this case [see also Eq. (7)  ] 

V(x) +ecp ( X I  =P, (28) 

The solution (28 )-( 30) can be regarded as a zeroth approxi- 
mation for the system ( 16)-( 19) or for (24)-(27) if the 
number Ne is large enough 

In this approximation the effective curvature k ,  (25) tends 
to zero. 

Developing further the resultant perturbation theory in 
the parameter a , /w  4 1 or, equivalently, k e / k 4  1, we must 
put, in the zeroth approximation with respect to this param- 
eter, 

As a result, 

v,, w,"k,/m.. (34) 

The definition (33 ) of n (x)  follows from (2 1 ) if n, = 0, and 
the spectrum (34) follows from (24) in the limit as 9-0. 
This is a single-particle spectrum, and the effective potential 
Ve (x), just as V(x) of (201, is parabolic with a curvature ke 
(32) different from k  (20). Its value is determined together 
with the new definition of the electron-channel width w, 
which differs from the classical value wo (29). 

To determine the channel width w  we must reconcile 
representations ( 181, ( 19) of n(x)  with (21), (22). It is 
therefore necessary to calculate the moments n,, with the 
corresponding Chebyshev polynomials U,, (x) and com- 
pare these moments with one another. The number of mo- 
ments is determined by the accuracy with which the n(x)  
series (2  1 ) is set up. The condition for the solvability of the 
resultant homogeneous system of algebraic equations with 
respect to the coefficients n,, is that this system include a 
definition of the channel width w. 

In the first approximation of interest to us we are deal- 
ing with one moment no with the zeroth Chebyshev polyno- 
mial U, = 1. As a result, 

I 
N.. = - J dp, exp( 

P ~ / ~ ~ , + ~ A W , - - B ~  

nfi 1 -* T 

Furthermore, recognizing that in the approximation (32) 
the wave functions $, (x) in the definition (18) of n(x)  are 
oscillatory we must use hereafter the relation between the 
number 1 of nodes of the wave function $, and the width w, of 
the region in which it oscillates 

In the limiting case T+O, the definition (35) of Ne re- 
duces to 

which coincides with Ne of (2) at H = 0. Taking next into 
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account the relation (36) for I = I , ,  so that 8, = +kew2, we 
obtain from (37) 

where a, is the Bohr radius mentioned above. 
The definition (38) of w generalizes the classical result 

for w to include the case ke #O. Obviously, Eq. (38) goes 
over into the definition (29) of wo if ke -PO. 

The above results may create an impression that the 
series (2 1 ) for n (x)  converges with respect to the parameter 
aB/w. One could speak then of grounds for the parabolic 
approximation ( 1 ) of Ve (x). Actually this is not the case, 
and elaboration of the theory to take account of the anhar- 
monicity shows that the coefficient n2 is of the same order as 
no relative to the parameter aB/w, and one can speak only of 
a relative numerical smallness. Incidentally, the statement 
that the potential Ve (x) is not parabolic has already been 
discussed above; see Eqs. (8) and (9)  and the pertinent ex- 
planations. Comments on relation (6) are also called for. 
The definition of I, used for relation (6) does not in itself 
require absence of a magnetic field in the parabolic approxi- 
mation of the potential Ve (x). In fact, the quasiclassical 
number of levels in the one-dimensional Ve (x) well (9a) is 
given by 

+!d 

for an arbitrary Ve (x) dependence. In this sense, the theory 
of a quasi-one-dimensional channel without a magnetic field 
can be developed without resorting to the parabolic approxi- 
mation ( 1 ) of Ve ( x )  for a one-dimensional potential. It be- 
comes necessary, if the theory is to be analytically general- 
ized, to include the case H #O. To this end the correct 
quasiclassical number of levels in the Ve (x) well (9a), with 
allowance for the definition 

contained in the solution (4) and ( 5 ) ,  becomes equal to the 
total number I ,  of levels in the effective parabolic well, 
where this number is given by 1, = S, /he .  The end result 
of the above arguments is in fact Eq. (6). 

B. In the absence of a magnetic field the spectrum of 
single-electron excitations has again the structure (34), viz., 

Using this analogy, we have in lieu of (37) 

The three relations in (41 ) and (42), which contain the four 
variables Ne, we, I,, and w, are insufficient for the solution of 

this system. We need an additional connection between these 
quantities to close the system of the definitions. This relation 
is an analog of Eq. (36) and stems from the following consid- 
erations. If the magnetic field is strong enough, so that all the 
electrons are on the Landau ground level, then the single- 
electron wave functions have no zeros as in the absence of a 
magnetic field. Nevertheless, a connection between the sin- 
gle-electron spectrum and the channel width w does exist 
and can be written in the form 

10 = --- (P,'""" )' -- 
ell ' 2dl 

- h ~ t l r ,  

wherep,""" is the maximum momentum of the electron as it 
moves along they axis, and M is given by (40). Assuming 
next that kc %. ke we obtain in this limit just as for H = 0 

As a result we get for w from (41) and (44) a definition 
similar to (38). In other words, in two limiting cases, H = 0 
and a strong magnetic field, the definitions of w coincide. 

CONCLUSION 

In summary, a systematic description has been present- 
ed for the available experimental facts on quasi-one-dimen- 
sional electron channels in the ballistic regime, in the case 
H #O, using a doubly parabolic approximation. The pres- 
ence of the parabolic approximation (7a) of V(x) can be 
confirmed here in the limiting case w/d( I. When it comes 
to simplifying the form of the potential Ve (x)  [Eq. ( 1 ) 1, 
this procedure is not consistent, so that the results of the 
developed theory are in the main qualitative. Nonetheless, 
this is the first scheme that makes it possible to relate with 
one another the observed quantities with allowance for the 
Coulomb effects that accompany the formation of the elec- 
tron channel in systems with a divided control electrode. 

Among the specific results, we note primarily a justifi- 
cation of the assumption that the width w of the electron 
channel and the number N, are independent of the magnet- 
ic-field intensity [Eqs. (41)-(44) and the pertinent com- 
ments]. Using this statement, one can resort in the analysis 
of the experimental data to the definition (2) of I, and to its 
modification (3). Together with Eqs. (4)-(6), which relate 
we with V,, we have a self-consistent set of definitions suffi- 
cient to describe the available experimental data. By way of 
example, Fig. 5 shows a comparison of the calculated oe and 
of the same frequency extracted from experimental data.6 
The qualitative agreement between the theory and the exper- 
iment is obvious. 

A special question that arises in the discussion of the 
data of Ref. 6 concerns the behavior of the widths 81, of the 
transition regions between the plateaux on the a( V,)  de- 
pendence. A mechanism not connected with the presence of 
a saddle point in the path for the production of this quasi- 
one-dimensional electron channel. 

The theory can develop along the following lines. In the 
case of really quasi-one-dimensional channels, such as in 
Refs. 9 and 10, it is of interest to refine the solution of the 
system (16)-(19) in the sense of determining the further 
U,, coefficients of the expansion (2 1 ) of n (x)  . For systems 
exhibiting a stepwise behavior of the cond~ctivity,'.~ ac- 
count must be taken of the finite length of the electron chan- 
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nel in they direction. All these complication require the use 
of numerical methods. 
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