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The interaction of a spin with the random magnetic field created by the difference of the magnetic 
susceptibilities of the components of spatially inhomogeneous media leads to a number of radio- 
frequency spectroscopic effects: distortion of the measured diffusion coefficient, and new 
mechanisms of spin-spin and spin-lattice relaxation. The case of a spin diffusing freely in a 
random Gaussian magnetic field is considered. Analytical expressions are obtained for the 
measured diffusion coefficient, the free-induction decay, and the spin-lattice relaxation time. It is 
shown that the manifestations of the effects of the interaction with a random magnetic field can 
differ substantially for different relative magnitudes of the characteristic parameters. 

1. INTRODUCTION 

In spatially inhomogeneous systems, such as porous 
media and micellar and colloidal solutions, the magnetic 
susceptibility is different at different points in space. If the 
characteristic linear sizes of the inhomogeneities are greater 
than the interatomic spacings, the susceptibility can be re- 
garded as a certain functionx(r) of the spatial coordinates. 

After an external constant magnetic field H, along thez 
axis has been switched on, a spatially nonuniform magnetic 
induction is induced in the system: 

B (r) = ( 1 + 4 n ~  (r) ) H,,; (1) 

Because of this, the magnetic field B(r )  naturally has inter- 
nal gradients of the order of 4n-SxHo/{, where SX is the char- 
acteristic amplitude of the variation of the magnetic suscep- 
tibility and 5 is the correlation length of the induced 
nonuniform magnetic field 4 q  ( r ) H,. 

One of the widely used methods for investigating heter- 
ogeneous media is NMR spectroscopy (see, e.g., Ref. 1 ). 
Naturally, in view of this, the need arises for a theory that 
takes account of the effect of the nonuniform magnetic field 
4 q ( r ) H O  on various radiospectroscopic phenomena, such 
as diffusional damping of the spin-echo signal and spin-spin 
and spin-lattice relaxation processes. 

In the papers known to the author that are related to 
this effect (Refs. 2-4), the first of these problems has been 
discussed. However, it has been possible to obtain concrete 
results for just one of the limiting cases: Dt, (6 2, where D is 
the self-diffusion coefficient of the molecules that contribute 
to the NMR signal and t ,  is the time for which a molecule is 
observed (the so-called "diffusion" time). In this limit the 
spatial displacements of molecules are small. Therefore, for 
each of the molecules the magnetic field B(r)  and its spatial 
derivatives b'Ba/b'xB (in accordance with established tradi- 
t i ~ n , ~ ~  the full set of the latter will be called the magnetic- 
field gradient) can reasonably be regarded as constant over 
the time t ,  . By assuming next for these quantities a distribu- 
tion that is convenient for analytical calculations, it is possi- 
ble to obtain useful analytical results. 

Any attempt to analyze this problem in a more general 
situation comes up against the following two fundamental 
questions in the physics of disordered media: 

The first is related to the fact that the field 
SB(r) = 4 q ( r ) H 0  is not a random quantity but a random 
field. Therefore, averaging over all random realizations of 
6B(r) reduces to the operation of functional integration. 
The second is the problem of the diffusion of a particle in an 
inhomogeneous medium. 

In this general formulation the problem turns out to be 
extremely complicated. Therefore, it is natural to attempt to 
take both these aspects into account in isolation from each 
other. Problems associated with diffusional damping of the 
amplitude of the spin echo of a particle moving in a random 
external field have been discussed in a paper by the author.' 
In the present paper we attempt to discuss the influence of 
the random magnetic field SB(r)  on the amplitude of the 
diffusional damping and on the spin-relaxation processes. 
But we shall neglect completely the effect of the spatial inho- 
mogeneities of the system on the character of the displace- 
ments of the molecules, assuming that the latter are normal 
and in no way slowed down by self-diffusion. 

We note that even after this simplification the problem 
remains hopelessly complicated for the derivation of any an- 
alytical results, since the operation of functional integration 
can only be effectively applied to Gauss-distributed fields. 
Therefore, below, the random field SB ( r )  will be regarded as 
a Gaussian random field. 

2. DESCRIPTION OF THE MODEL 

We note, first of all, that the quantity ~ ( r )  in the rela- 
tion (1)  is, generally speaking, not a scalar but a rank-2 
tensor. Therefore, the operation ~ ( r  ) H, should be under- 
stood as the contraction of a tensor and a vector to give a 
vector. 

The magnetic susceptibility in diamagnetic and para- 
magnetic media is a small quantity ( 1x1 ( 1 ). This enables us 
to neglect the difference between the average value of the 
magnetic induction B(r )  and the field H,: 

For brevity, we shall denote the fluctuating part of the 
magnetic field B ( r ) as 

us= 4 x 5 ~  ( r )  Iio, (2)  
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where S,y(r) = x ( r )  - ( ~ ( r ) )  is the fluctuation of the mag- 
netic-susceptibility tensor. 

Next, for greater coherence of our account, we shall 
give certain necessary properties of a three-dimensional 
Gaussian random field (see, e.g., Refs. 6-8). 

The distribution functional of a random vector field has 
the form 

3 

where a and p are parameters describing the random field, 
B E(r) are the Cartesian components of the random field, 
and W(0) is a normalizing factor. 

We note that we have assumed for simplicity that the 
parameters a and f l  of the distribution are the same for all 
components of the field B* ( r )  . 

In what follows, a central role for us will be played by 
the binary correlation function (B X ( r , )  B (r,) ) ., which 
in the case of a Gaussian random field is known exactly: 

where { = (p/a)'I2 is the correlation length of the random 
field, S,, is the Kronecker delta symbol, and (...), denotes 
averaging over all realizations of the random field. 

For greater clarity we represent the parameter 
(4 rp )  in the relation (4)  in the form 

where a, is the characteristic minimum length scale of the 
problem and (B *,) can be regarded as the mean square fluc- 
tuation of the random field over the spatial scale a,. 

In this notation, the relation (4)  can be rewritten as 
follows: 

3. AMPLITUDE OFTHE DIFFUSIONAL DAMPING OFTHE 
STIMULATED-ECHO SIGNAL WITH A PULSED MAGNETIC- 
FIELD GRADIENT 

The technique discussed here is a traditional way of in- 
vestigating the translational mobility of molecules with 
magnetic nuclei and has been described repeatedly in the 
literature (see, e.g., Refs. 9-12). In the present section we 
completely neglect spin-lattice and spin-spin relaxation ef- 
fects, which are unimportant for the spin-echo phenomenon. 

The amplitude of the diffusional damping of the spin- 
echo signal is related to the spin dephasing induced by the 
action of the gradient magnetic-field pulses that are 
switched on after the first and third radiofrequency (RF)  
pulses and by the action of the random magnetic field B* ( r )  
during the period between the first and second RF  pulses 
and after the third RF  pulse. 

The spin-dephasing angle between the first two RF  
pulses is the sum: 

where 

is the dephasing, of a spin with position vector r ( t)  , induced 
by the interaction with the gradient g of the external magnet- 
ic field directed along the z axis and acting for a short time 8, 
and q, 7 = yJ;'B ( r ( t )  )dt is the dephasing induced by the 
interaction with the random magnetic field. 

An analogous relation can be written for the spin-de- 
phasing angle after the action of the third RF  pulse: 

where 
d 

%'=yj o @(f~+t)dL=y6gr(f.), 

in which t, is the "diffusion" time, i.e., the time between the 
first and third RF  pulses. 

The spin-echo amplitude is expressed in terms of the 
quantities q,, and q, by the relation 

where (...) denotes averaging over all random realizations of 
the field B* ( r )  and random trajectories of the spin. 

The amplitude of the diffusional damping of the spin- 
echo signal is defined as the ratio 

It can be seen from the relations (7)  and (8)  that the 
phases q, ; and q, ; do not depend on the random magnetic 
field B* ( r ) .  Therefore, in the calculation of the amplitude 
A ( g 2 )  it is convenient to average first over all realizations of 
the random fields: 

A (g ' )  =<esp {-i(cp,'-cp,')) <exp{-i(cpz"--cpll')) )o),, ( 10) 

where (...), denotes averaging over realizations of the ran- 
dom trajectories; obviously, (...) = (...)&, . 

Taking the relations (6)  and (7)  into account, we 
transform the factor associated with the influence of the ran- 
dom fields in the expression ( 10) to the form 

A {B') =(exp{-i(cp,N-cpIN)} )n 

to  

= ( e p { -  ( B  ( r ( t D + t ) ) - ( r ( t ) )  1). (1  1) 
0 

A Gaussian random field possesses the properties of a 
normal distribution, and this makes it possible to express the 
amplitude A{B *) in terms of binary correlation functions of 
the field B*(r): 

r, 

where 
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F (t"; t,; t , )  =2(B,'(r ( tD+t , ) -r  ( t , )  )BT- ( r (0 )  ) ~ n ( e x ~ { & ( t , , ) + ' ~ ( t , ) ) ) ,  
- (BZg(r ( tD+t2) - r ( tn f  t , )  )B,' ( r ( 0 )  ) ) I ,  

111 X (6') = 
~ r l ( c s ~ ( $ ( t , ) ) ) ,  -<B,'(r(t ,)--r ( t ,  ) ) l j , * ( r  ( 0 )  ) )a. 

It can be seen from ( 10) and ( 12) that the spin-echo 
amplitude A(g2)  has the structure 

A (g2)=<esp{&(to)+Ap(tD)))r.  ( 1 3 )  

where h ( t ,  ) andB(t, ) are random functionals of the parti- 
cle trajectories, specified by the relations 

i ( t D ) = y ' j ]  dt2dtlF(tD: t?: t , ) .  

The main difficulty in the calculation of the spin-echo 
amplitude A($)  is associated with the averaging over the 
random trajectories of the particles. In the general situation 
this difficulty seems to us to be insuperable. Therefore, we 
shall make use of the approximation mentioned in the Intro- 
duction, i.e., we shall neglect the influence of the inhomo- 
geneities of the system on the character of the translational 
displacements of the particles. The bracket (...). , which de- 
notes averaging over random trajectories, will imply averag- 
ing over trajectories of a particle that executes random walks 
with self-diffusion coefficient D. 

Even in this approximation, the expression for the am- 
plitude A ( g 2 )  is not simple enough to enable us to obtain 
some reasonable closed analytical expression. We confine 
ourselves, therefore, to the cumulant expansion of the spin- 
echo amplitude, taking the first nonvanishing terms into ac- 
count. Fortunately, for most real experimental situations 
this turns out to be entirely adequate. 

The point is that the term proportional to 2 in the ex- 
pansion 

determines the quantity D * ( t ,  ), which is experimentally 
measurable from the initial slope of l d  (2) and is called the 
apparent, or effective, diffusion coefficient. 

In the situation that we are studying, the quantity 
D * ( t ,  ) differs from the true self-diffusion coefficient D, 
since it contains contributions from the random field B* ( r ) .  
One of the principal problems in experimental investigations 
of spatially inhomogeneous media by the spin-echo method 
is the determination of the quantity D on the basis of mea- 
sured values of D * ( t ,  ) and the elucidation of the nature of 
this correction. 

In macroscopic isotropic systems, as can be seen from 
the relations ( 13 ) and ( 13a), in the cumulant expansion of 
the amplitudez (2)  [see the expression ( 10) ] all the terms 
proportional to odd powers of h ( t ,  ) vanish after averaging 
over random trajectories of the spins. Furthermore, in dia- 
magnetic and paramagnetic systems we have ISX I 4 l .  
Therefore, in calculating the apparent diffusion coefficient 

* ( t ,  ) it is reasonable to confine oneself to terms linear in 
P ( t ,  ). Taking this into account, we easily obtain 

Using the relation ( 13a) and the Markovian character 
of the random walks of the spins, we can transform the 
expression ( 15) to the form 

where 

and it has been taken into account that, as a rule, t ,  ) 7,. 

The term proportional to X ( t ,  ) in ( 16) is related to the 
influence of correlations between values of the random field 
B  * ( r  ( t )  ) that affected the kinetics of the spin system after 
the first and third R F  pulses. The other term reflects the 
action of the field B ( r ( t )  ) between the first and second R F  
pulses. 

The analogous contributions from the actions of the 
field B  * ( r )  between the second and third RF  pulses and after 
the third R F  pulse are equal to zero: In the former case this is 
due to the fact that the spins were oriented along the z axis, 
while in the latter case it is due to the absence of correlations 
in the motions of the particles in the time intervals from 0  to 
t ,  and after the time t ,  . 

We turn now to the calculation of the quantity X ( t ) .  
Using the relation ( 5 ) ,  we obtain 

After transformations, the right-hand side of the rela- 
tion ( 1 7 )  can be expressed in terms of the complementary 
error integral: 

where 

We shall write out the easily derived asymptotic rela- 
tions for the quantity 
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Using the definition ( 14) and the expansion ( 16), we 
obtain a relation for the apparent diffusion coefficient: 

In the problem that we are considering, it is natural to 
distinguish three characteristic times: the correlation time 
r, = 6 2/D of a particle moving in the random magnetic field 
B*(r),  the time interval r1 between the first and second RF 
pulses, and the "diffusion" time t,. Depending on the rela- 
tive magnitudes of these, three regimes of motion can be 
distinguished. 

A. Long correlation times (7, q t ,  qr , )  

From the relations ( 19) and (20) it is easy to find that 
the apparent diffusion coefficient is equal to 

In a certain sense this case is analogous to the limit 
(considered in Ref. 4) of large correlation lengths of the 
random magnetic field. The apparent diffusion coefficient 
D * is slightly smaller than the true diffusion coefficient D. 
The difference between them decreases with increase of the 
time t, . This has a simple physical meaning: With increase 
of the time t, the random trajectories encompass ever 
greater regions of space. This leads to averaging of the action 
of the random field B* ( r ( t )  ) on a particle, and its influence 
on the coefficient D * (t, ) tends to zero. 

In Ref. 4, as in our paper, the result D * (t, ) < D was 
obtained. However, the behavior of the relative correction 
SD /D = (D * (t, ) - D)/D as a function of the molecular 
self-diffusion coefficient is qualitatively different: ISD/ 
D I - D, whereas in our case I SD /D I - D - ' I 2 .  It is easily un- 
derstood that the decrease of the relative correction with 
increase of the coefficient D is natural, since it is one of the 
manifestations of the averaging of the random internal fields 
by the molecular motion. 

We turn now to a discussion of the other two cases. 

B. Intermediate correlation times ( tD$~c$71)  

Proceeding in the same way as above, we obtain 

(2% 
When the diffusion time is equal to 

t : = (9 ) (6 4/D 2 ~ ,  ) the sign of the correction SD 
changes. For times t, < t $, as in the case of long correlation 
times, we have D * < D, although the dependence on the ex- 
perimental parameters is different. For times t, > t :, on the 
other hand, D * > D. Furthermore, at the time 
t :* = ( + ) (6 4/D 2r, ) the correction SD as a function of 
the time t, reaches a maximum. 

C. Short correlation times, i.e., t , & ~ ~ & r ,  

The apparent self-diffusion coefficient turns out to be 
equal to 

As in the case of intermediate correlation times, the sign 
of the correction SD is positive for t, & t $*. The behavior of 
the relative correction SD /D as t, + UJ and D - P  UJ is physi- 
cally reasonable in all three cases. 

4. SPIN RELAXATION OF A PARTICLE MOVING IN A RANDOM 
GAUSSIAN MAGNETIC FIELD 

Spin-spin relaxation 

Spin-spin relaxation determines the decay of the free- 
induction signal G(t). Neglecting all the relaxation mecha- 
nisms except for the mechanism associated with the interac- 
tion with the random field B* ( r ) ,  we can write the following 
expression for the free-induction decay (see, e.g., Refs. 9, 10, 
and 13): 

For a Gaussian random field the functional integration 
that appears in the averaging operation can be implemented 
trivially and the expression (21) can be represented in the 
form 

The expression (22) is still rather complicated for the 
derivation of analytical results. We shall turn, therefore, to 
the cumulant expansion, confining ourselves to the first non- 
vanishing term: 

The correlation function (B : (r  ( t )  ) B : ( r  (0) ) ) is 
found by simple integration: 

(Dt ) 'I- 
X{I--- C Y  ( )  ( ~ t )  '" { } ] . (24) 

E b 

Below, we write out the easily obtained asymptotic val- 
ues of the expression (24) : 

I 
1 <B'-)u,, 
- . I l l<$=. 

3 (nDt)" '  
<LIZ' (r ( t )  ) 13,' (r (0) ) > = 

1 (B 'L )u ,c  
' I  (Dt)" ' 

DtBE2. 

Substituting these values into the relation (23), we obtain 
the following expression for the free-induction decay: 
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We shall consider the limiting values of this expression: 

where the spin-spin relaxation times are given by the rela- 
tions 

The limit (23a) describes the kinetics of the spin-spin 
relaxation in the limit of long correlation times. Attention is 
drawn to the non-Gaussian character of the decay, i.e., the 
power of the time in the exponential is equal to 3/2, and not 
2. This is due to the partial averaging of the random field 
B* ( r )  by the molecular motion. The other limit (23b) corre- 
sponds to the limit of short correlation times. Therefore, as 
follows from general considerations (see, e.g., Refs. 9, 10, 
and 13), the kinetics of the decay is Lorentzian. We note 
that, in contrast to the case of the dipole-dipole mechanism 
of relaxation, the relaxation times T: and T:* depend 
through the field B * on the NMR frequency: T:  - w - ~ ~ ~  
and TF* -w-' [see the relation (2)  1, while in the case of 
long correlation times they depend on the temperature. 

Spin-lattice relaxation 

Spatial displacements of the particle in a random mag- 
netic field give rise to modulation of the energy of the inter- 
action of the spin with this field. Fluctuations of the x and y 
components of the random field B*(r(t) ) lead to spin-lat- 
tice relaxation. 

The spin-lattice relaxation time is conveniently calcu- 
lated from the general formula (see, e.g., Ref. 13) 

where the operators !ppearing in the commutators have the 
standard mea~ings: I, is thezperator of the z component of 
the spin, and H,, ( t )  = - yfiI(t) B* ( r ( t )  ) is the operator of 
the Zeeman interaction of the spin with the random magnet- 
ic field in the interaction picture. 

By performing the standard operations of commutation 
of operators and calculation of traces, we transform (25) to 
the form 

In our chosen model the autocorrelation functions of 
the various components of the field B*(r ( t ) )  are equal to 
each other: 

Substituting the expression (24) into the relation (26), 
after integrating we find 

We note that, in accordance with Bloembergen-Pur- 
cell-Pound theory, the frequency and temperature depen- 
dences of the spin-lattice relaxation time for relaxation in- 
duced by modulation of the dipole-dipole interactions by 
thermal motion of a liquid are substantially different from 
these (see, e.g., Refs. 9, 10, and 13). In the low-frequency 
limit the time TI  does not depend on the frequency, while in 
the high-frequency limit it increases as T I  a w2. A character- 
istic feature of the temperature dependence of the time TI  is 
the presence of a minimum when the condition WT, = 1 is 
fulfilled. 

In the case that we are analyzing, the spin-lattice relaxa- 
tion time TI  becomes shorter with increase of the resonance 
frequency: TI  a w P 2  in the low-frequency limit, and 
TI  a w-~/' in the high-frequency limit. The temperature de- 
pendence of the time T,  is characterized by a monotonic 
increase with increase of the temperature. When the condi- 
tion WT, = 1 is fulfilled, instead of a minimum there is only a 
weakening of the temperature dependence: TI - D at low 
temperatures, and TI - D ' I 2  at high temperatures. 

As the temperature tends formally to absolute zero, the 
diffusion coefficient D+ 0; consequently, the time TI  + 0 
also. This conclusion, of course, is not physical, but is an 
artifice of the model of the Gaussian random field. The point 
is that the binary correlation function of a Gaussian random 
field [see relations (4)  and (5)  ] at short distances possesses 
singular behavior: 

Therefore, there should exist some smallest length scale a, 
(evidently of the order of the interatomic spacings) that 
determines the lower spatial boundary of the range of appli- 
cability of the model. From this it is clear that all the results 
of this paper are valid when the condition Dw-'$a; is 
fulfilled. 

5. CONCLUSION 

We shall summarize briefly the principal results: 
1. The measured (by the method of stimulated spin 

echo) self-diffusion coefficient D * of a particle moving in a 
random Gaussian field can be either greater or smaller than 
the true self-diffusion coefficient D [see relations 
(20a,b,c) 1. A decisive role is played by the relative magni- 
tudes of the characteristic times of the experiment (the time 
7, between the first and second R F  pulses and the "diffu- 
sion" time t, ) and the correlation time 7, = 6 '/D of the 
motion of the spin in the random magnetic field. When these 
parameters have a certain relative magnitude the difference 
between D and D * reaches a maximum and tends to zero as 
tD-'cQ. 

2. The kinetics of the spin-spin relaxation in the limit of 
long correlation times [see (23a) ] has a non-Gaussian char- 
acter with exponent equal to 3/2. The characteristic damp- 
ing time T :  of the free-induction decay in this limit has an 
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anomalous (in comparison with the dipole-dipole mecha- 
nism of relaxation) temperature and frequency dependence 
T: cc D "3w-413. In the limit of short correlation times [see 
(23b) ] the spin-spin relaxation time T ;* cc Dmp2. 

3. The spin-lattice relaxation time TI [see (27), (27a), 
and (27b)l does not have the minimum that is typical for 
dipole-dipole relaxation, and increases monotonically with 
temperature. When we go from low to high temperatures in 
the vicinity of the temperature satisfying the condition 
WT, = 1, a strengthening of the temperature and frequency 
dependences, from T, c D 112w-312 to TI  cc Dmp2, occurs. 

In conclusion, we shall give estimates of the orders of 
magnitude of the possible values of the spin-spin and spin- 
lattice relaxation times associated with the interaction of the 
spin with the random magnetic field. We set D- lop6 cm2/ 
sec, o- 10' sec-I, B*-4rlSxIHo = 4rlSxIw/y, a, = 5 A, 
and SX- lop6; then T,- 10V2 sec and TI - 1 sec. From this 
it can be seen that the spin-spin and spin-lattice relaxation 
mechanism that we have discussed may turn out to be fully 
effective and accessible to experimental investigations. In 
our view, it is especially necessary to pay attention to the 
kinetics of spin-spin relaxation in porous media with suffi- 
ciently large pore diameters - lo4-lo5 A at sufficiently high 
resonance frequencies w c lops-lo9 sec- I. 
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