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The spectral distribution of a resonance line in the presence of self-pressure broadening in the 
nonbinary region is calculated for the case in which one or more broadening particles is found in 
the Weiskopf sphere. It is shown that transition to the nonbinary region leads to a significant 
narrowing of the line and change of sign of the shift. The absence of a static limit is predicted. 

1. INTRODUCTION 

Broadening of spectral lines by self-pressure is caused 
by resonant transfer of excitation during the course of colli- 
sions of identical particles. As a rule, resonant transfer of 
excitation takes place as a result of dipole-dipole interaction 
and has a significant cross section, 10 - l 3  cm2. The problem 
of self-pressure broadening has been investigated since the 
1 9 3 0 ' ~ , ' ~ ~  however, there is still no complete theory of this 
type of spectral line broadening. 

Like any other broadening mechanism, self-pressure 
broadening is characterized by a binarity parameter 

where N is the density of the identical particles, p, is the 
Weiskopf radius, which for the dipole-dipole interaction is 
equal to 

In formula (2) D is the dipole moment of the particles 
and v is their velocity. If h < 1, the broadening is binary. In 
this limit the main questions of self-pressure broadening 
have been an~wered .~ -~  There are detailed calculations of 
the collision widths and shifts for line broadening of a num- 
ber of metal atoms,4 and a closed theory of absorption and 
scattering spectra has been constructed, including the case 
of an intense electromagnetic field.6 As for the other limiting 
case h> 1, here the behavior of the spectrum of a line broad- 
ened by self-pressure (not necessarily a resonance line) re- 
mains unknown, even qualitatively. Efforts at an analytic 
consideration of the quasistatic limit7 in self-pressure broad- 
ening have not led to any well-founded results. In recent 
studies of thin layers ( < 100 A),  Langmuir films, etc., direct- 
ed at the development of new technologie~,~ interest has aris- 
en, generally speaking, in nonbinary processes of resonant 
(or quasiresonant) excitation exchange and its optical mani- 
festations. For this reason, the classical problem of nonbin- 
ary self-pressure broadening has acquired a special signifi- 
cance from the viewpoint of achieving an understanding of 
the physics of such processes. 

In the present paper self-pressure broadening is ana- 
lyzed on the basis of the density-matrix formalism. We con- 
sider gas particles, identical two-level systems correspond- 
ing to resonant Am = 0 transitions, which exchange 
excitation via dipole-dipole interaction, of the internuclear 
axis. The equation for the density matrix is solved numeri- 
cally, assuming rectilinear motion of the particles in a box 
with dimensions a ,  X a, X a, and specularly reflecting walls. 

The spectral transitioi function is calculated from the rela- 
tion for the work of the field.6 

2. FORMULATION OF THE PROBLEM 

The equation for the density matrix of a system of iden- 
tical particles has the form 

here p is the density matrix of the entire system, Hot is the 
Hamiltonian of the ith particle, E is the intensity of the reso- 
nant electromagnetic field, Uii is the interaction operator of 
the ith and jth particles, and r p  is an operator that describes 
other types of relaxation of the system. 

For the dipole interaction the operator Uv has the form 

Uij= [DD'-3(Dn) (D'n) ]/Rij' .  (4)  

In Eq. (4) Rii is the distance between the ith and jth parti- 
cles. We should note an important fact. If the ith particle is 
the test particle and the remaining particles are distributed 
uniformly around it, the mean potential of the interaction of 
the ith particle with all the remaining particles is equal to 
zero. This means that the dipole interaction like the Cou- 
lomb interaction has a vector character, and in particular the 
multiparticle broadening theory of Anderson9 is also inap- 
plicable in this case. 

The transition spectral function can be found from the 
expression for the work of the field 

where P = Sp(Dp) is the polarization of the medium. 

3.THE BINARY REGION (ha 1) 

In the binary region only two particles participate in 
each collision, therefore there is no need to consider the en- 
tire ensemble of particles as a whole. 

Ifp, is the single-particle density matrix, then the equa- 
tion for it, taking into account only pairwise collisions, has 
the form6 

where 

is the spontaneous-relaxation operator of an isolated atom, 
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D is the dipole-moment operator,1° 

is the binary collision integral,6911 Uis the dipole-interaction 
operator ( 5 ), S is the evolution operator of the atom a and 
the atom a', satisfying the equation 

s+ ( t ,  t )  =S(t, t )  =.1X1'. 

The sign "x" denotes the direct product, Sp' is the race 
operator over all the states of one of the atoms, and T is the 
collision time. 

By introducing a kinetic time, which corresponds to the 
completed-collision approximation, the collision integral 
(9)  reduces to the form6 

where the quantities r do not depend on time. In Eq. ( 10) b 
is the impact parameter, and repeated indices indicates sum- 
mation. 

Solution of the equation for the density matrix with col- 
lision integral ( lo ) ,  followed by its substitution in the 
expression for the absorbed power, leads to the following 
form of the line spectrum of a two-level system: 

where 

Contour ( 11 ) coincides with the Lorentzian only in the 
absence of a shift; in real situations A- y. For a two-level 
system with 

U=D12'12RJ 

the collisional linewidth is equal to 

7% 1,5ne'fN/mo. 

Here f and o are the oscillator strength and the transition 
frequency. 

4. THE NONBINARY LIMIT (h>l) 

In the nonbinary limit, naturally, one cannot isolate a 
single atom as a subsystem. It is necessary to consider the 
equation for the entire set of identical particles. Taking only 
the dipole-dipole interaction into account, relaxation of the 
system of identical particles in an electromagnetic field is 
described by the equations 

wherep is the density matrix of the entire system. Note that 
Hand D are single-particle operators, and Uis a two-particle 
operator. 

In the weak-field approximation for a resonance line, it 
is sufficient to consider Eq. ( 12) for two-level particles in a 
basis of states of the compound system of the form 

l O > = l O , .  . . . . O i . .  . . . ox>. 
l l > = l i l , . .  . . (Ii,. . . .  
( N > = ( O , , .  . . .  Oi,.. ., I N > .  

where N is the number of particles, Oi means that the ith 
particle is in the ground state, and l i  means that the ith 
particle is located in the excited state. 

In a weak field ( iJpJi)  ( (OJplO) =: 1, and Eq. ( 13) has 
the form 

where poi = (Olpli), Eo is the amplitude of the electromag- 
netic field, Am is the frequency detuning of the field, and 
Uii ( t )  is the matrix element (4) for the interaction of the ith 
and jth particles. In what follows we will consider the transi- 
tion A m  = 0 (m is the magnetic quantum number), which 
corresponds to taking account in Eq. (4), in the coordinate 
system associated with the two particles, only of thez projec- 
tion of the dipole moment 

(The model can describe the behavior of identical atoms in a 
strong magnetic field. ) In Eq. ( 15) 0 is the angle between the 
internuclear axis and the z axis of the laboratory system. 
Note that interaction ( 15 ) corresponds to the condition of 
vectorality, which is easy to verify directly. 

The expression for the absorbed power has in this nota- 
tion the form 

T 

The summation in Eq. (16) corresponds to averaging the 
result over all the particles, and the integration-to calculat- 
ing the trace over the states of all the particles save one. 

Equations (14)-(16) determine completely the spec- 
trum of the resonance line. In the binary limit the solution of 
Eq. ( 14) can be easily found recognizing that all the poi are 
identical (the approximation of independence of binary pro- 
cesses). Taking into account interaction with only one parti- 
cle, it is easy to obtain the well-known expression in the theo- 
ry of line broadening for the line spectrum 

in which averaging over the states of all the particles corre- 
sponds to the limit T+ GO. Here averaging over the impact 
parameters and velocities of the broadening particles is auto- 
matic. '' 

In the static limit the approximation poi ( t )  r p o j  ( t )  is in 
principle inapplicable; nevertheless, let us consider the con- 
sequences which its use in Eq. ( 17) leads to. Setting Uii con- 
stant in Eq. ( 17) and carrying out the integration over time, 
we obtain 
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where (...) denotes averaging over the ensemble of particles. 
Calculating in the same way as for static broadening by ionic 
microfields in a plasma (the Holtsmark approximation) for 
the potential 

D' (1 -13 cos' 8) u.j = 
r3 

we obtain a Lorentz contour (a  sum of two Lorentz contours 
with zero shifts) with a width differing from the collision 
width only by the numerical factor 

However, this result is fundamentally invalid. For an accu- 
rate analysis of the quasistatic limit, we must change over in 
Eq. (14) to a continuous distribution of the particles in 
space. Here, since U(t,r) = U(r), we can seek the solution 
in the formp = p'e - Dropping the unimportant norma- 
lization factor DE, we obtain the equation 

[Note the fundamental difference of Eq. ( 19) from the case 
of broadening by ionic microfields in a plasma.] By virtue of 
the property of the interaction potential 

drlU (r, rf)=O 

the solution of Eq. ( 19) is apparent at once 

1 
p =-- s(Ao)=b(Ao). 

A o '  

The same solution can be obtained exactly by taking the 
Fourier transform. Thus, use of approximation ( 19) demon- 
strates the absence of a static limit in self-pressure broaden- 
ing. According to Eq. (19), in the static limit the resonance 
line spectrum should have a sharp peak against the back- 
ground of binary quasistatic broadening. 

5. RESULTS OF NUMERICAL CALCULATIONS 

The calculations of Eqs. ( 14)-( 16) were carried out on 
the basis of the method of particles in a box. T particles are 
introduced into a box of dimensions (a, ) X (a, ) X (a, ) with 
a random uniform distribution over the box and the direc- 
tions of motion. Reflection from the walls of the box is taken 
to be specular. The interaction potentials of the particles 
( 15) are calculated at every moment in the laboratory coor- 
dinate system, and the system is solved numerically (by the 
implicit one-step method) for the nondiagonal elements of 
the density matrix ( 14). The spectral function is calculated 
directly (16). The integration step varied from 1/200 to 
1/50 of the inverse Weiskopf frequency, the number of parti- 
cles T was varied from 5 to 50, and the dimensions of the box 
were chosen such that N = T/a,a,a,, where the density Nis 
determined by the binarity parameter h and the particle ve- 
locity v. 

The calculations were carried out for a fixed number of 
particles and a few ( k  = 5) initial random values of the co- 

FIG. 1. Resonance line spectra in the presence of  self-pressure broadening 
for various values of  the binarity parameter h for u = lo4 cm/s: a )  
N =  4.1016 ~ m - ~ ,  h = 0.0b4; b )  N =  3.4.10'' ~ r n - ~ ,  h = 0.5; c )  
N = 2.53.10" ~ m - ~ ,  h = 3.7; y = r D Z N / h  ( D  = 1 a.u. ~ 2 . 3 . 1 0 - 1 8 ) .  

ordinates and projections of the velocities of the particles, 
which made it possible to control the error of the calculation. 
By choosing the limits of variation of the integration step in 
time, the calculation error was reduced to a value substan- 
tially smaller than the statistical error associated with a fi- 
nite number of particles. The value of the statistical error 
was determined by comparing the calculations of the spec- 
tral function for various values of the number of particles, 
but fixed density. The relative variation of the linewidths 
and shifts in this case was inversely proportional to the cube 
root of the number of particles, thus: E = A  /N"3, where 
A  = 0.4. One can expect that for A'" = 50 the calculational 
error will not exceed 10%. 

Some results of the calculations, illustrating the behav- 
ior of the spectrum of a resonance line broadened by self- 
pressure are shown in Figs. 1 and 2. The results are normal- 
ized to the quantity 

FIG. 2. The same as for Fig. 1 ,  except u = lo3 cm/s and N = 7.7 .  1016 
h = 3.6. 
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6. CONCLUSION 

which coincides with the linewidth in the collision limit. 
Such a normalization allows one to make out with greater 
clarity the differences in the behavior of the line shape in the 
static and binary limits. 

As can be seen from Fig. la  in the binary limit 
h = 0.0644 1 the line shape is in good agreement with the 
analytical line shape. The linewidth grows linearly with 
growth of the density of the gas, and the line shift is equal to 
roughly half the linewidth. The situation changes abruptly 
with approach to the nonbinary limit. Already at h = 0.5 it 
appears as if there are two lines shapes, the first similar to a 
binary line shape shifted in the positive direction, and the 
second, which does not have an analog, shifted to the left. 
Comparing Fig. lb  with lc, it is easy to see that the width of 
the second line shape depends weakly on the density, where- 
as its shift (in the negative direction) depends linearly on the 
density and is roughly equal to 0.1 y. This line shape, in the 
limit, tends toward a &function. 

Figure 2 presents the results of a calculation of the reso- 
nance line shape for another value of the velocity v = lo3 
cm/s. As can be seen, the qualitative behavior of the line 
shape is independent of particle velocity. Interesting is the 
complicated structure of the line, associated with the ap- 
pearance of an additional peak in the line spectrum. A dis- 
cussion of this fact goes beyond the scope of this paper. 

The results pertain here directly to resonance lines. Re- 
garding the resonance lines of gases, observation of nonlin- 
ear behavior of the spectral line is hampered by reabsorp- 
tion. Nevertheless, our conclusions regarding the behavior 
of the line shift apply in full measure to transitions to an 
upper resonance level, which makes it possible to investigate 
these dependences directly. The behavior of the width of a 
line broadened by self-pressure in the nonbinary region can 
be investigated only in structures with dimensions < 1 p m  
(surfaces, films, clusters). 
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