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A complete acceleration cycle of ions trapped in an isomagnetic discontinuity of a steady-state 
magnetosonic shock wave is investigated in detail. The conditions under which the ions are 
captured are determined. The total number of trapped particles, the number of those passing 
through and reflected once from the discontinuity, and the number of particles accelerated in a 
specified energy interval are determined. The energy drawn by the accelerated ions from the wave 
is estimated. All the quantities of interest are determined as functions of the electric field in the 
discontinuity, of the amplitude of the potential, of the temperature, and of the masses of the ions 
incident on the discontinuity. The potential and magnetic-field perturbations produced by the 
accelerated ions contained in the front are estimated. 

1. INTRODUCTION 

The resonance mechanism of particle acceleration is be- 
ing quite diligently investigated of late, although its idea was 
advanced long ago.' Its gist is that a positive-potential wave 
moving across a magnetic field in collisionless plasma traps 
some of the plasma ions and accelerates them effectively 
along its front. A typical example of a structure with a poten- 
tial discontinuity that moves across a magnetic field is a per- 
pendicular magnetosonic shock wave (MSSW). Such shock 
waves have been investigated in sufficient detail in a labora- 
tory plasma as well as in outer space (see the reviews, Refs. 2 
and 3). Interest in MSSW has increased because they are 
among the main sources of high-energy particles and of heat- 
ing in both laboratory and outer-space plasma. In solar-ter- 
restrial physics, in particular, effects due to MSSW are most 
frequently discussed in connection with plasma processes in 
the sun's chromosphere, corona, and coronal loops, in solar 
wind, in the earth's magnetosphere, etc. One of the first at- 
tempts at a sufficiently profound investigation of using this 
mechanism to accelerate protons in MSSW excited during 
the evolution of solar flares was undertaken in Ref. 4. These 
ideas were further developed in other Resonant 
acceleration of ions was recently observed for the first time 
in laboratory experiments both in MSSW propagation and in 
a neutral current layer."-'4 

It is common knowledge that the maximum velocity of 
ions resonantly propagating in an MSSW front is given by 
w, = c E /B, where E is the maximum value of the electric 
field in the front, B is the magnetic field at the point where 
the electric field is a maximum, and c is the speed of light. E 
is usually estimated from the equation E = U, /d, where U, 
is the amplitude of the potential and d is the spatial dimen- 
sion of the potential discontinuity, so that w, = cU,,,/dB. 
According to the t h e ~ r y ' , ~ , ~  U, does not differ greatly from 
Ko/e, where KO is the energy of the ion incident on the dis- 
continuity at the shock-wave velocity and e is the ion charge. 
In experiments, as a rule, the amplitude of the potential is 
smaller than K0/e.2,3*'59'6 

The width d of the potential discontinuity in a shock 
wave depends strongly both on the Alfven Mach number M 

and on the angle 8 between the electromagnetic-field vector 
and the normal to the front. The dependence of d on the 
angle 8 was investigated in detail in Ref. 7, where it was 
shown that dzc/u,, in the angle interval 0, <8<r /2 ,  
where 0, = arctg [m/m, ) ; next, when 8 decreases from 
8, to zero the width d of the front increases and reaches at 
8 = r / 4  the value d -- c/wpi (here up, and up, are respective- 
ly the plasma electron and plasma ion frequencies, while m 
and me are the masses of the ion and electron). 

The (theoretically) minimum possible value of d, 
which determines the maximum E and is used as a rule by 
many workers for estimates, is the characteristic width of the 
magnetosonic soliton (M < 2 ,8  = ~ / 2 )  : d = c/u,, In Refs. 
1 and 4-10 there were obtained, just for the minima of 
d = c/wPe and U, = Kde, estimates of the maximum possi- 
ble energies of the accelerated ions for a perpendicular 
MSSW. 

As shown in Ref.7, the maximum energy of the reson- 
antly accelerated ions for a quasiperpendicular MSSW is 
m/m, times larger than for a quasiparallel MSSW. We 
therefore confine ourselves here specially to the case of a 
strictly perpendicular MSSW, since it is the most important 
one for resonance acceleration of ions. 

Laboratory investigations as well as satellite measure- 
ments of a near-terrestrial shock wave,  how^.^ that for a 
perpendicular MSSW with M < 3 the magnetic field in the 
front increases monotonically, and the growth scales range 
from 10 dupe to dm,,, i.e., the real scale d is much larger 
(and the maximum energy is much lower) than for solitons. 
In the case M >  3 the shape of the front becomes more com- 
plicated: a "pedestal" of scale - c/wpi appears ahead of the 
region of the main growth of the magnetic field, a magnetic- 
field spike is observed directly behind the front, and intense 
oscillations develop in the front. 

What is most important, and is of particular interest to 
us, is that a strong discontinuity of the potential is formed at 
M > 3 in the region of the growing magnetic field, and within 
this discontinuity the magnetic field is practically con- 
stant.2.3.~~.~7.~s The maximum velocity w,, and hence the 

maximum energy, calculated for parameters typical of the 
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region of isomagnetic discontinuity of an MSSW potential, 
can be substantially larger than in a magnetosonic soliton. 
Moreover, we shall show below that in this case the ions can 
be theoretically accelerated to unlimited energy. It  is there- 
fore most important to investigate in detail the laws govern- 
ing the trapping and acceleration of ions in an isomagnetic 
MSSW discontinuity at M> 3. This problem is in general 
extremely vital for MSSW, inasmuch as notwithstanding the 
numerous investigations, when it comes to resonant accel- 
eration of ions in MSSW the dependences of the final ion 
energy on the plasma characteristics and on the wave param- 
eters are not yet fully clear, and the number of particles 
reaching maximum velocity, the energy drawn from the 
wave by the accelerated particles, and many other questions 
are stil unanswered. 

The present paper reports an analytic as well as com- 
puter-aided investigation, in the single-particle approxima- 
tion, of a complete acceleration cycle of ions trapped in an 
isomagnetic discontinuities of a steady-state MSSW in a col- 
lision-free plasma. The conditions under which the particles 
are trapped are obtained. The total number of trapped parti- 
cles, the number of particles passing once and reflected once 
from the discontinuity, and the number of particles acceler- 
ated in a specified energy interval are determined for plasma 
ions having a Maxwellian distribution function and imping- 
ing on an isomagnetic discontinuity. The energy drawn by 
the trapped ions from the MSSW is also estimated. All the 
parameters of interest are determined as functions of the 
electric field in the isomagnetic discontinuity, of the ampli- 
tude of the potential, and of the temperature of the ions inci- 
dent on the discontinuity. The distribution function of the 
accelerated ions is determined in analytic form. The pertur- 
bations of the potential and of the magnetic field by the pres- 
ence of trapped ions are estimated, thereby casting light on 
the influence of the accelerated particles on the macroscopic 
structure of the shock-wave front. 

2. FORMULATION OF PROBLEM AND INITIAL EQUATIONS 

For a perpendicular MSSW with an isomagnetic dis- 
continuity, we confine ourselves to that region of its front 
where the potential discontinuity is localized. We assume 
this region to be a plane layer with x coordinates rigorously 
confined between x = 0 and x = d (Fig. 1). The unper- 
turbed plasma directly ahead of the discontinuity consists of 
electrons and ions with Maxwellian distributions in velocity 
(the unperturbed plasma is taken to be the one directly 
ahead of the discontinuity). A potential discontinuity in the 
form of a plane wave moves in the plasma strictly perpendic- 
ular to the magnetic field, with a constant velocity Sand in 
the negative x direction. The magnetic field vector with 
modulus B is directed along z. In the wave front, whose 
width is d, the potential P(x)  is assumed to increase linearly 
from zero to a value Urn beyond which, behind the front, it 
remains constant (Fig. 1 ) . (For brevity, the front is taken 
here and in Secs. 3-6 to mean the region of the isomagnetic 
discontinuity of the potential). The amplitude Urn of the 
potential is smaller than or equal to the energy of the main- 
plasma ions incident on the front (in the reference frame of 

The main simplification is that the electric and magnetic 
field are assumed to be independent of the coordinates with- 
in the confines of the potential discontinuity. 

It  is convenient to analyze the particle motion in the 
considered steady-state wave in a reference frame connected 
with the moving front. In the nonrelativistic approximation, 
a transition to the wave system will not change the magnetic- 
field vector components and the components Ex 
= E(x)  = - d P/dx, but will lead to the appearance of a 
field component Ey = SB /c  in all of space. 

We shall consider the motion of the trapped ions in the 
single-particle approximation, assuming that the number of 
these particles is small. If the ion incidentally incident on the 
unperturbed plasma encounters a potential barrier signifi- 
cantly higher than its kinetic energy, it will certainly be re- 
flected from the front. After reflection, the ion landing in the 
region ahead of the front will be returned to the front by the 
fields B, and Ey, will be reflected again, and thus oscillate 
about an equilibrium position determined in this case by the 
coordinate x = 0 until it lands for some reason behind the 
front. During the entire oscillation time the ion is trapped by 
the wave of the potential and is accelerated by the field Ey 
along the front of this wave. The ion trapping time and the 
number of times that the trapped particle crosses theyz plane 
are larger the larger the ratio of the wave potential Urn to the 
initial ion energy. This, in general, is the qualitative picture 
of the motion and acceleration of the particles. 

We proceed now to a quantitative description. Given 
the electric fields and under the assumptions made, the equa- 
tion of motion of a typical ion in the xy plane is 

dv/dt=eE(x) /m+lut ( t )  . (1)  

where v = v(t) = dx/dt, w = w(t) = dy/dt are the x and y 
components of the ion velocity, f = eB /mc is the gyrofre- 
quency, and 

For the ion kinetic energy K( t )  = m[u2 + w2]/2 we have 
the equation 

dK/dt=eE (x) v(t) +eE,w (t).  (3)  

Integrating (2)  and (3) once, we get 

w (t) =f [St-x (t) 1 +w,, (4)  

K(t) =m (vO2+w,2) /2+eE (x)x (t) +eE,y (t) . (5)  

Account is taken in (4)  and (5)  of the initial conditions 

where vo is the absolute value, since only ions with v > 0 land 
in the front. The quantity wo can be positive or negative. 

We shall track the motion of the particle until it reaches 
the point x = d (Fig. 1 ). From the system ( 1 ) and (2 )  we 
obtain after the nth crossing of the yz plane by the particle 
(we call such a crossing a collision) solutions in the form 

the wave): Urn < Ko/e, where KO = mS2/2. It is required to u(t)=Pn cos(Fn(t) )+Q, sir~(F,,(t))+S. ( 7 )  
find the law of motion of the ions entering from the unper- 
turbed plasma into the shock-wave potential discontinuity. w ( t )  =Q, cos(F,,(t))-P,, sin (F,(t))+SD, ( 8 )  
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The analogous relations for ions in the interval O(x<d are 

FIG. 1.  Schematic pattern of field distribution in an isomagnetic discon- 
tinuity of a shock wave. 

where 

t, is the instant of the nth collision: t, <t(t, + , , 

and is determined from the equation 

For the instant of the nth collision we obtain from (4)  
w(t,) =Sftn + w, During the time of ion motion 
f col - , - t, + , - t, between two successive collisions the y- 
component of the velocity changes by an amount 
dw = Sft y', i.e., the total change of the y-component is pro- 
portional to the time of motion. The change of the velocity x- 
component during the same time can be obtained from the 
equation4 

Analysis of ( 12) leads to the conclusion that during the time 
of particle motion from one collision to another the x-com- 
ponent of its velocity reverses sign, and the modulus in- 
creases when the ion moves ahead of the front (x < 0)  and 
decreases when it moves in the front (i.e., at O<x<d). The 
increase or decrease depends on the time of motion in accor- 
dance with ( 12). 

From Eqs. (7)-(10) one can obtain "local" energy 
conservation laws that hold for the particles only in the in- 
tervals between successive collisions. For ions moving ahead 
of the front (x < 0) or behind it (x > d )  we obtain a conser- 
vation law in the form 

[ v  ( t )  -SI2+ [ W  ( t )  -SDI2= [ U  ( t , )  -S12+ [ ~ ( t , )  -SD12. 

(14) 

In (13) and (14) t,(t(t,+, . 
To obtain the most complete picture of the motion of 

particles trapped in the front we need information on the 
constants of time at which the particle is farthest from the yz 
plane. These instants t, are determined from the condition 
v(t, ) = 0 from which, using (7)  and ( 1 I ) ,  we can obtain 
the explicit expression 

2 -Qn- (Qn2+ Pn2-s?)"' 
t,-t, = - arctg 

f S-P, (15) 

for ions moving in the space O(x<d(v( t, ) > 0)  and 

2 -w ( t , )+  [ w2 (tn)+Pn2-s21 % 
t,-t, = - arctg 

f S-P,  
I 

for ions moving ahead of the front (v( t, ) < 0).  In Eqs. ( 15 ) 
and ( 16), t, - t, is the time of ion motion from the instant 
of its nth crossing of the yz plane to the point of its maximum 
distance from this plane, t, (t, (t, + , . 

Obviously, at x > 0 the quantity x(t, ) determines the 
depth of penetration of the particles into the front, and hence 
the potential Urn = Ex(t, ) surmounted by the particle. Us- 
ing (9)  we obtain for Urn 

urn= (Elf [Pn  sin (Fn ( t , )  ) -Q, cos  (I;, ,  ( t , )  ) +Q,+sF,, ( t , )  1 .  

Another quantity conserved in our problem, apart from 
w(t) and K( t )  obtained from the conservation of the gener- 
alized momentum and of the energy [Eqs. (4), (5)  1, is the 
adiabatic invariant I, the calculation details for which are 
given in the Appendix. We present here the final expression: 

where v and w are taken at x = 0. 
Equations (4)-( 18) determine completely the charac- 

ter of the trapped-particle motion. 

3. DYNAMICS OF PARTICLES IN FRONT. TRAPPING 
CONDITIONS 

In the case in question, no forces whatever act on the 
particle along the z axis (along the magnetic-field direc- 
tion). We confine ourselves therefore to an analysis of the 
ion motion in the xy plane. The unperturbed-plasma parti- 
cles, moving in two dimensions, land on the wave front with 
arbitrary velocity components of v and w. We examine in 
detail the behavior of a particle arriving at the point x = 0 
(see Fig. 1 ). Obviously, the only particles landing in the 
front are those having positive velocity x-components at 
x = 0 of a selected coordinate frame moving together with 
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the shock wave: v > 0. Analysis of the solutions shows that 
all the particles landing for the first time in the front can be 
arbitrarily divided into two groups. The first consists of 
passing particles that land directly behind the wave front (in 
the region x > d )  . The second, trapped group is returned by 
the electromagnetic field to the region ahead of the front and 
lands again at the point x = 0 after moving on closed trajec- 
tories. The greater part of the ions lands again in the front 
after the first reflection and joins the transmitted ones. Some 
particles are multiply reflected, and it is they which are sub- 
ject to effective resonant acceleration by the field Ey . 

To determine which of the particles is trapped and 
which passes through, it suffices to analyze, with the aid of 
relations (7)-(lo), the behavior of a particle in the region 
O(x<d. If the x-component of the velocity vanishes in this 
region, the particle is trapped, otherwise it remains passing. 
The problem reduces thus to a determination of the region of 
existence of solutions for Eq. ( 15 ), which requires in fact an 
investigation of the function t, = t, (vo,wo) on the uo, wo 
plane (recall that vo and w, are the initial particle-velocity 
components at the instant t, = 0). Analysis shows that the 
boundary between the trapped and passing components on 
this plane is determined either by the vanishing of the radi- 
cand ofEq. (15): 

or by the relation 

Actually, ( 19) is reached only as a limit, since the radicand 
in ( 15) cannot be less than zero. To understand the meaning 

FIG. 2. Boundaries, on the vowo plane, between the passing, trapped, and 
once-reflected particles ( U = 0, D = lo). 

of the condition ( 19), we turn to the local conservation law 
( 14). It is easily seen that ( 19) is obtainable from ( 14) by 
putting 

Condition ( 19) means thus that the particle had reached a 
speed SD at its stopping point, and an elementary analysis of 
the ion motion in the front shows that the particle become 
passing as soon as this value is reached by the y-component 
of the particle velocity at v > 0. 

We arrive thus at an important but physically simple 
conclusion that a particle becomes passing in two cases: 1 ) 
when the y-component of the velocity at the stopping point is 
equal to or larger than SD; 2) the stopping point is behind 
the coordinate x > d. Otherwise the particle is trapped. 

Curves I and 2 on the vowo plane (Fig. 2) are plots of 
( 19) and (20), respectively. The region bounded on one side 
by curves 1 and2 and on the other by thew, axis is the region 
of the values of v, and wo at which the particles are captured 
by the wave. Particles with v, and wo outside this region are 
passing. As seen from Fig. 2, the inequality v,gSD - w, is 
satisfied in the greater part of the values of v, and w, belong- 
ing to curve 2. So long as this inequality holds, we have for 
the time of motion up to the stopping point the approximate 
equation ft, = vd(SD - wo) g 1. Substituting hence the 
value oft, in Eq. (20) we obtain its approximate analog 

It is easy to verify that relation (2 1 ) can be obtained from the 
equation of motion ( 1 ) of the particle in the region 0 < x < d 
by assuming the velocity w, to be constant, i.e., in the case 
when the velocity increment dw during time of motion of the 
particle from x = 0 to x = d is substantially smaller than w,, 
viz., dw = Sft, 4 wo. 

4. COMPUTER PROCEDURE. DIMENSIONLESS 
PARAMETERS OF THE PROBLEM 

The computation procedure that yields, given the initial 
conditions, the final values of the accelerated-particle pa- 
rameters of interest take the following form. We assume that 
the ion initially approaches the front from an unperturbed 
plasma and crosses the yz plane for the first time at the pa- 
rameters given by the conditions (6) (collision n = l ,  
t, = 0). Next, using the corresponding equations, we can 
calculate any quantity at any instant of time up to the next 
collision. First of interest is whether the particle is stopped at 
x > 0. If the particle is not stopped, i.e., if the radicand in 
( 15) is negative, or if the stopping point is outside the front, 
i.e., at x > d, the computation is discontinued and the parti- 
cle is assumed to be passing. If the particle is trapped, we use 
Eq. ( 1 1 ) to calculate the time of motion t 7' between colli- 
sions. Knowing t Y', we determine for the next collision the 
velocity components v and w as well as the path of the parti- 
cle along they axis between collisions. Using the obtained u, 
w, and y as initial values, we repeat the computation and 
verification by the procedure described above. 

The main difficulty in the above procedure is the deter- 
mination of the roots of Eq. ( 11 ), which calls for a comput- 
er. A good approximation of t 7' is 2(tm - t, ), where 
t, - t, is the time of particle motion after the nth collision 
to the turning point [Eq. ( 15) 1. The value of 2(t, - t, 

796 Sov. Phys. JETP 74 (5), May 1992 G. N. Kichigin 796 



obtained using ( 15) was the first approximation in the cal- 
culation of the root of Eq. ( l l ) . A special program for find- 
ing this root, consuming the bulk of the computer time, was 
accurate enough, as verified continuously by computing the 
quantity 

obtained from the energy-conservation law (5).  In each var- 
iant of the computation, the deviation of R from the initial 
value did not exceed 10 - (an ES-1061 computer was used). 

For convenience, all the equations were written in di- 
mensionless form. The time was normalized to l/f, the coor- 
dinate to S / '  the velocity to S, and the energy and tempera- 
ture to mS2/2. 

The dimensionless parameters of the problem were 

where Ti is the ion temperature. The parameter D is connect- 
ed with the electric field E, and the parameter U with the 
potential discontinuity in the wave. Obviously, the three 
quantities E, Urn, and d are related; E = Urn /d, so that two 
of them, E and Urn, could be specified. We point out that the 
parameter Cis expressed in terms of the known plasma pa- 
rameter p, = 8m Ti /B  ', viz. 

(n is the plasma density). Using parameters customarily en- 
countered in MSSW propagation under laboratory and out- 
er-space  condition^,^^^^'^"^ we obtain the ranges of the di- 
mensionless quantities of interest: 

One may question here the choice of the maximum of D and 
the minimum of C. The value C = 0.1 was chosen to allow 
for the fact that in an MSSW with M >  3 the ions in the 
pedestal of the shock wave can be heated, so that their tem- 
perature directly ahead of the isomagnetic discontinuity can 
be quite high. The choice of the maximum D = 1000 is justi- 
fied in Sec. 7. 

5. DETERMINATION OFTHE NUMBER OF TRAPPED, 
PASSING, AND ONCE-REFLECTED PARTICLES 

We assume here in all the quantitative results and esti- 
mates that all the unperturbed plasma ions have a Maxwel- 
lian distribution in velocity. Since we are considering parti- 
cle motion in the xy plane, we write this distribution in 
two-dimensional form (in the reference frame of the wave) 

nom -rn(v-S)' mw' 
g(u.  u7)= - esp  - -1, 

2nTi  2 T ,  (22) 

where no is the density of the unperturbed plasma. We ne- 
glect the influence exerted on the initial ion distribution 
function by the reflected particles that may appear quite far 
ahead of the front. This assumption is justified so long as the 
number of reflected particles is negligible. 

The total number of trapped particles is given by 

i.e., by the integral over the area bounded in Fig. 2 by curve2 
and by the w, axis. We assume here that the relation (20) 
represented by curve 2 is valid for all w all the way to 
w = SD, i.e., we have ignored relation (19); computations 
show that this hardly affects the end result. 

Integrating, we obtain ultimately the relative number of 
trapped particles in the form 

The equation for the number of passing particles is quite 
simple: 

In (23) and (24) we use 

It follows from the numerical computations that most 
trapped ions are once-reflected. The limiting values u, and 
w, separating in the trapped-ion region the singly and multi- 
ply reflected particles are represented by curve 3 of Fig. 2. 
This dependence can be approximated by the simple relation 

represented in Fig. 2 by the straight line. The number of 
once-reflected particles can thus be represented on the (v,, 
w,,) plane with sufficient accuracy by the region bounded by 
curves 2 and 4 and by the w, axis (this region lies below 
curve 4 in Fig. 2). We have thus for the number of once- 
reflected particles 

or in dimensionless form 
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6. CONDITIONS FOR ION ESCAPE FROM TRAP. ESTIMATE OF 
THE NUMBER OF ACCELERATED PARTICLES AND OF THE 
ENERGY THEY DRAW FROM THE WAVE. INFLUENCE OF 
RESONANT IONS OF THE MACROSCOPIC STRUCTURE OF 
THE FRONT 

We consider "deeply" trapped particles, i.e., those ac- 
quiring an energy close to the limit after executing a large 
number of oscillations on the front. The trapping conditions 
for a consecutive crossing of the xy by an oscillating ion are 
the same as for the first collision. Ultimately, when the parti- 
cle incident on the front has the parameters curve I or 2, or 
else outside the trapping region (Fig. 2), the particle passes 
through. The kinetic energy of an ion in the trapping regime 
grows continuously according to (5).  We shall use the parti- 
cle energy acquired by the particle at the point x = 0. 

Let an ion with some energy K have at x = 0 the same 
parameters as when it lands at a certain point A of curve 2 
(Fig. 2). At this point the velocity components are v = v, 
and w = w, and hence the ion energy is Kzmw2/2. Know- 
ing final values of the components v, and w, (see Fig. 2) and 
taking their relation (21) into account, we obtain the adia- 
batic invariant as a function of w, , viz., I, = I(w, ). Corre- 
sponding to this value of the adiabatic invariant at the initial 
instant of time is a whole set of values v, and w, that can be 
found using relations (A 1 ) and (A4). We can find similarly 
the set of initial values v, and w, for some energy K + dK. 
Knowing the ranges of v, and w, at which the ions ultimately 
acquire an energy specified in the interval dK, and knowing 
the initial particle distribution (22) in velocity, the number 
of these ions can be found. Computations by this scheme 
yield a rather cumbersome expression. All the computa- 
tions, however, can be substantially simplified by using the 
adiabatic invariant given by Eq. (A4). The connection be- 
tween the initial and final values of the resonant-ion velocity 
components can then be obtained in explicit form by using 
IA from (A3) and taking (21) into account: 

A computer analysis shows that this simplification un- 
derestimates somewhat (within order-of-magnitude limits) 
the sough values compared with the exact ones. We, how- 
ever, are quite satisfied, in view of the exceedingly simple 
manner we have obtained a very important estimate, with 
acceptable accuracy, of the number of accelerated particles. 
The region of the initial velocities of the ions accelerated in a 
specified energy interval are represented in this approxima- 
tion by a rectangle (cross-hatched in Fig. 2), two sides of 
which are parallel to w, and two other to v,. We choose the 
maximum value of w, in this region to be the ion thermal 
velocity w, = (2T,/m) "*. The reasons are, on the one 
hand, that at large values of w, the number of particles is 
exponentially small; on the other, we have confined our- 
selves to these characteristic velocity values to exclude ions 
with high initial energies (we assume that w, (SD) and to 
consider thus only those particles which have acquired ener- 
gy directly by acceleration, and furthermore an energy sig- 
nificantly higher than initial. The total number of particles 
accelerated in some energy interval dK is thus dependent 
now only in the velocity interval do,: 

where 

Taking (26) into account, we can express dn, in terms of w: 
dn, = f(w)dw, or in terms of K = mw2/2 viz., 
dn, = h(K)dK, where 

plays the role of the particle distribution function in velocity 

[v,* is determined by Eq. (26) 1, while 

drc. h (h ' )=  -= '2lL'"q; 
dh' 

where 

assumes the role of the distribution function in the energies 
of the accelerated ions. The function h ( K )  is shown in Fig. 3 
for one of the parameter sets. 

We can now find the total number, of interest to us, of 
the particles accelerated from minimum velocity value, 
which we choose to be SD /3, to a maximum equal to SD: 

where f(w) is defined by (27). 
Knowing f(w) we can determine the momentum-flux 

density, of interest to us, carried by the accelerated particles: 
S D  

This quantity determines which fraction of the plasma mo- 
mentum flux density nomS2 incident on the shock-wave 

FIG. 3. Distribution function in energy ( E  = 2K /mS of the accelerated 
ions ( D =  10, U =  1, T, = 2T,/mSZ = 0.25). 

798 Sov. Phys. JETP 74 (5), May 1992 G. N. Kichigin 798 



front is carried away by the accelerated ions, i.e., in fact the 
total energy extracted from the wave by these ions. This esti- 
mate was obtained under the assumption that the shock 
wave itself is not attenuated, i.e., its energy lost to particle 
acceleration is replenished by the work of external forces (a  
moving piston etc. ). 

We proceed now to discuss the influence of the trapped 
ion on the macroscopic structure of the shock front. This 
influence is due mainly to the presence of a group of charged 
particles in the front during the acceleration, each of which 
is continuously accelerated along they axis. This influence is 
substantial in view of the particle accumulation in the 
front." To understand the cause of the accumulation, we 
turn to the law of conservation of the flux of particles moving 
through the front. It is easy to verify that the flux of particles 
dragged out of the unperturbed plasma into the acceleration 
regime, 

is approximately equal to v,v,, where v, <S is the initial 
velocity connected by relation (26) with the minimum value 
of the final particle velocity w = SD /3, and n, is the number 
of accelerated particles (per unit volume). The captured 
particles, oscillating in the front, slowly "climb up" to the 
"hump" of the potential, as is clearly seen from the plotted 
time dependence of the potential surmounted by the ion in 
the course of its acceleration (Fig. 4). The speed of this pe- 
culiar drift of the particles can be estimated at v, z d  /ty (ty 
is the acceleration time). From the flux-conservation law 
Jz n, v, z nfv,, where nf is the density ofthe particles accel- 
erated in the front, it follows that n,-/no z D  '.6U0.6. For typi- 
cal MSSW parameters we usually have D '.6U 0.6) 1 and 
nf/na ) 1, i.e., the density of the trapped ions in the front can 
be substantially larger than the density of that particle frac- 
tion accelerated from the unperturbed plasma. 

To estimate the perturbations of the electric and mag- 
neticfields by the trapped particles, we assume the density nf 
of the accelerated ions is constant in the front, and that their 
space charge is not compensated for by electrons. The per- 
turbed potential is then 

Y D  

The perturbed magnetic field is Bf zjfd /c,  where jf is the 
accelerated-particles current density: 

The value of f(w) in the expressions for Uf and jf is deter- 
mined by Eq. (27). 

7. CALCULATION RESULTS AND THEIR DISCUSSION 

Figure 4 shows the time dependences of the energy 
K(t),of the velocity v(t), and of the potential P( t )  sur- 
mounted by the trapped ions in the course of the accelera- 
tion. The velocity and energy values are taken at the instants 
when the oscillating ion crosses the yz plane. What is re- 
markable here is the time behavior of thex-component of the 

FIG. 4. Time dependences of the energy K (curve I, of thex-component of 
the velocity v (2), and of the potential P (3) surmounted by the ion in the 
course of acceleration ( D  = 10, U = 1, w,, = 0, u, = 0.02). 

velocity v(t) in the case when the final energy is close to its 
limit. We see that v ( t )  increases during the initial stage, 
reaches next a maximum at the instant t = D /2f a maxi- 
mum, and then decreases to the initial value. According to 
(4),  the y-component of the velocity increases linearly with 
time. The kinetic energy K, which consists of two compo- 
nents mv2/2 and mw2/2, and increases like t mainly as a 
result of the growth of the component mw2/2. 

I I I I 

lo-' ~0~ 10' loz 
Tr 

FIG. 5. Dependences of the density (N,) of the accelerated ions located in 
the front, trapped in the acceleration regime (N, ), from an unperturbed 
plasma, of the energy density ( WE ) drawn from the wave by the acceler- 
ated plasma, of the potential discontinuity ( W,) of the ions in the poten- 
tial discontinuity, of the perturbed values U, of the potential, and of the 
perturbed magnetic field B, on the temperature 
T, =2T , /mS2  ( D =  10, U=0.6,  M =  5 ) .  
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Unlike all other dependences on the dimensionless pa- 
rameters, the temperature dependence of the ions (the pa- 
rameter C) turned out to be nonmonotonic, see Fig. 5. This 
figure, as well as Figs. 7 and 9 below, is plotted on the dimen- 
sionless variables 

Figure 5 shows for practically all the quantities a well pro- 
nounced maximum at Ti = ( 1-2)mS2/2. The temperature 
dependence to the left of the maximum (low-temperature 
region) is stronger than to the right (high temperatures). It 
turned out that at U = 0.6 the total number of trapped parti- 
cles depends weakly on the temperature, and the relative 
number of passing ions ranges from 0.5 to 1.0 for the consid- 
ered range of Ti. Worthy of attention here are the results of 
Ref. 10, where the values obtained for the number N, of the 
accelerated ions are substantially higher than ours. The rea- 
son for this difference is that the author of Ref. 10 included 
in error with the accelerated ones all the trapped particles, 
including the singly reflected ones. That is to say, he actually 
used the value N ,  in lieu of N A ,  yet it follows from all our 
calculations that N ,  9 NA in all cases. 

The dependences on the MSSW potential amplitude 
(Figs. 6 and 7) turned out to be quite strong: doubling Urn 
changes all the cited quantities by an order of magnitude or 
more. The dependences here are monotonic, and all the 
quantities but the number of the passing ions increase as a 
rule with increase of the potential. The increase of the num- 
ber of trapped, once-reflected, and accelerated particles can 
be easily understood by examining Fig. 2. The increase of the 
perturbed magnetic field and of the energy density of the 
accelerated ions with increase of Urn is due to the increase of 
the number of accelerated particles as well as of their veloc- 
ities, which increase with Urn on the average because of the 
increase of the limiting velocity. The latter in turn increases 
in proportion to the electric field in the field, which grows in 
turn together with Urn at a fixed width of the front. 

Strange as it may seem, it is possible in the discussion of 
the dependence of the potential to touch upon the problem of 
acceleration of impurity ions having different masses in the 
front of the shock waves. The ion component of a real plasma 
usually consists of ions having different masses and charges, 
and constituting with respect to principal ions, the majority 
of the positive charges, while the remaining ions are regard- 
ed as impurities. In the general case these impurity ions can 
also be trapped and accelerated, and we consider therefore 
the problem of acceleration of singly charged ions whose 
masses are either larger or smaller than those of the main 
ions. We assume that the macroscopic structure of the shock 
wave is made up entirely of the principal ions and electrons. 
The amplitude of the potential is regarded as equal to the 
energy of the main ions, Urn = mS 2/2e, incident on the wave 
with velocity S. We denote the ratio of the masses of the 
impurity and main ions by k. For the ions of the light 
(heavy) impurities incident on the wave front at the same 
velocity S, the kinetic energy will therefore be k times 
smaller (larger) than Urn. It follows from this reasoning that 
the laws of motion of the impurity ions can be described by 

FIG. 6 .  Dependences of the density of the trapped ions ( N ,  ), of the den- 
sity of the ions in the front ( N ,  ), and of the density of the ions accelerated 
from the unperturbed plasma ( N ,  ) on the discontinuity of the potential 
U. The arrows correspond to the density of the heavy-impurity ions in the 
case when the shock wave behind the discontinuity of the potential U  = 1 
propagates in a hydrogen plasma. Each dimensionless-density value 
marked by an arrow is normalized to density of the corresponding impuri- 
ty in the unperturbed plasma ( D  = 10, T, = 0.1). 

our derived Eqs. (4)-( 18), in which the dimensionless vari- 
ables must be renormalized and U ,  must be decreased by a 
factor k for heavy impurities and increased by a factor k for 
the light ones. At equal final velocity, the energies of the 
principal and impurity ions will differ by a factor k, and all 

FIG. 7. Density of the accelerated ions in the front ( N , ) ,  density of the 
ions trapped in the acceleration regime from the unperturbed plasma 
( N ,  ), density of the energy drawn from by the accelerated ions from the 
wave (WE), energy density of the ions in the potential discontinuity 
( W,), and perturbed values of the potential U, and of the magnetic field 
B,, as functions of the discontinuity of the potential U. 
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the times and distances along they  axis will change by k 
times. 

We consider first the case when the impurity-ion mass is 
lower than that of the principal one, k < 1. The possibility of 
accelerating the light-impurity ions was first pointed out in a 
preprint.20 Following this preprint, the impurity ions will be 
regarded as cold. It is readily seen that in this approximation 
all the impurity ions are trapped and accelerated. It seems at 
first glance that their limiting velocity is in this case equal to 
SD, but this is not so. It follows from the calculation results 
illustrated in Fig. 8 that the final velocity of the trapped 
particles is approximately equal to SD so long as D < l/k. 
For D > l/k the final velocity becomes smaller than SD and 
with increase of D it tends to a certain limiting value much 
smaller than SD. This is easily seen from an analysis of the 
computation results. The point is that if D% l/k the x-com- 
ponent of the velocity v is so accelerated that the "longitudi- 
nal" energy of the impurity ions becomes comparable with 
eUm, permitting the particle to leave the trapping regime by 
overcoming the potential barrier and going behind the front 
before they component of the velocity reaches the limit SD. 
For D < l/k the maximum value of Urn is such that the "lon- 
gitudinal" energy is always smaller than eUm. 

Let us dwell in greater detail on the results for larger 
values of the parameter D. Note that going over to infinite 
values of D corresponds to an MSSW model2 in which the 
potential jump is treated as an elastically reflecting piston. 
Taking into account the estimates obtained in Ref. 2, as well 
as Eq. (A3) in the Appendix, we obtain the connection be- 
tween w(t) and v(t) in the form 
w(t) = const. [v(t)/v(O) 13 .  In our case v(0) = S, and for 
large D this equation permits an order-of-magnitude esti- 
mate of the asymptotic particle energy and acceleration 

Iff 
I I I I 

lo1 loZ /03 10' D 

time: E, rn k -3 ,  t, rn k -3'2. These dependences are con- 
firmed by computations (Fig. 8 ). 

The laws governing the resonant approximation of the 
impurities of the heavy ions are considered in an interpreta- 
tion2' of the energy spectra of ions with different masses and 
charges, measured with the "Voyager" spacecraft. The 
number of accelerated particles was however not estimated 
there. Assuming the temperatures of the principal and impu- 
rity ions to be the same, we can obtain this estimate from 
relations (4)-( 18). Consider, for example, a hydrogen plas- 
ma in which an MSSW having a potential 
U = 1 ( U  = 2eU,/mS2 where m is the hydrogen mass) 
propagates. The arrows in Fig. 6 show for this case the po- 
tentials that will be "seen" by singly charged ion of various 
impurity gases, as well as the densities of the impurity ions 
that are trapped, accelerated, and located in the front. The 
dimesionless density corresponding to any one arrow on 
these figures is normalized each to the density of the corre- 
sponding impurity in the unperturbed plasma. Obviously, 
the maximum velocity of the accelerated ions does not de- 
pend on their mass and is equal to SD, while the maximum 
energy of the heavy ions is k times larger than the main ones. 
All the characteristic times are increased by a factor k, as is 
therefore the distance traversed by an accelerated ion along 
they axis. In a real plasma with resonantly accelerated ions it 
is precisely this distance (along y )  which limits in fact their 
maximum energy. It is just this factor which accounts fully 
in Ref. 21 for the maximum values of energy of ions having 
different masses and accelerated by an interplanetary shock 
wave. 

The dependences of the quantities of interest to us on 
the electric field in the front of a shock wave are shown in 
Fig. 9. It can be seen that the three quantities N,, B,, and 
WE depend weakly on E. As E increases, the energy density 

FIG. 8. Maximum energy of the impurity hydrogen ions accelerated in the FIG. 9. Densities of the accelerated ions in the front ( N , ) ,  of the ions 
front of a shock wave propagating in a plasma and having majority ions trapped into acceleration from an unperturbed plasma ( N ,  ), of the ener- 
heavier than the impurity ions as a function of the electric field in the gy drawn by the accelerated ions from the wave ( WE ),of the energy of the 
discontinuity ( D  = cE/BS) .  The amplitude of the shock wave is ions in the potential discontinuity ( W,) ,  and of the perturbed potential 
U,,, = mS2/2e, where m is the mass of the majority ion. The majority ions U, and perturbed magnetic field B, as functions of the electric field in the 
considered are those of xenon, krypton, argon, nitrogen, and helium. discontinuity ( D  = cE/BS) .  
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WF of the ions trapped in the front increases. This is not 
surprising, since when the trapped-ion density NF in the 
front is increased the average ion energy increases in propor- 
tion to E. It must be noted here that under conditions when 
the accelerated-ion energy can become transformed into 
heat, the effective temperature of the heated ions is deter- 
mined precisely by the value of WF. 

The magnetic field Bf perturbed by the current of accel- 
erated ions varies in the same manner as the density nf of the 
particles in the front. This can be verified by the relation that 
holds for a given wave amplitude: 
BF z en,-Ed / B z  en Urn /B. The perturbed potential Uf de- 
creases substantially when E is increased. It has turned out 
that the relative number of trapped and once-reflected ions 
are independent of E at the given parameters U and TI .  

Naturally, the computations have confirmed a conclu- 
sion, drawn by many workers, that the maximum energy K, 
of the accelerated ions is proportional to E (or D '. Most 
papers dealing with the acceleration of ions trapped in an 
MSSW front contain an estimate that can be expressed, in 
terms of the parameter D introduced by us, in the form 

( V, is the Alfven velocity), where the maximum value of D ' 
is equal to the ratio of the ion and electron masses: 
D ' = m/me (for hydrogen ions, in particular, D ' z 1800). 
It is readily seen that the parameter D is equal to m/me for a 
subcritical MSSW ( M <  3), in which the width of the dis- 
continuity is taken to have the minimum value d = dm,, 
and the maximum value Urn = Mm Vi/2e is used for the 
amplitude of the potential. 

In the general case we can write for the maximum ener- 
gy in a cold plasma 

where the dimensionless potential U is a function of the 
Mach number M. On the basis of Refs. 4, 5, and 8, where 
solutions for a soliton are used, one can conclude that 
UM ' z M, so that the equation for K,,, becomes quite simple: 

The use of (29) for a supercritical MSSW at M > 3 is 
questionable since, on the one hand, the soliton solution is 
not valid in this case, and on the other the front in a super- 
critical MSSW broadens substantially, D becomes small (for 
d = dmpi we have D z  11, and consequently the idea of ac- 
celeration becomes meaningless. It appears, however, that it 
makes sense to use this equation for M < 3 in an MSSW with 
an isomagnetic discontinuity, for the parameters of which 
the value of D may turn out to be large enough. 

Let us choose 20 Debye radii as the typical dimension of 
the isomagnetic discontinuity of an MSSW p~tential.'.~ This 
changes the maximum possible value of D = (m/m, ) I/' for 
the parameters of the front of a magnetosonic soliton by a 
factor 0.05c/vTe that depends on the temperature Te of the 
electrons in the plasma (vTe = (2Te/m, )I/'). Evidently, for 
T, < 1000 eV the above factor is larger than unity, in particu- 
lar 30 for Te = 1 eV and 3 for Te = 100 eV (the interval 
1 eV < T, < 100 eV is typical of interplanetary and laborato- 
ry plasma). Thus, for an MSSW with an isomagnetic discon- 

tinuity in a hydrogen plasma with T, = 1 eV it is in fact 
possible to have D = 1000 (as against D z 40 for a soliton). 
Furthermore, it follows from and computa- 
tion'' that as M increases the quantity U = 2e Urn /mS ' de- 
creases insignificantly, and that for the product of U and M ' 
one can assume the relation UM ' z M  which is valid for a 
subcritical MSSW. 

We can thus summarize the foregoing as follows: Eq. 
(29) for K, is valid at M >  3 for an MSSW with an isomag- 
netic discontinuity in the front, i.e., for energy limit in- 
creases approximately in proportion to M - D  ', while the fac- 
tor D ' can be of the order of m/me or even larger by one to 
three orders. 

It is noteworthy that increases of the parameter D and 
of the wave velocity S can lead to situations wherein the 
electric-field amplitude E in an MSSW isomagnetic discon- 
tinuity can exceed the magnetic field B. In this case the maxi- 
mum velocity SD will tend to that of light and resonant ac- 
celeration of the ions trapped in the discontinuity to 
unlimited energy is theoretically p~ssible.'~ For example, at 
D = 1000 the ratio E /B = DS/c exceeds unity if S >  3-10' 
cm/s. These parameters are quite realistic for an MSSW 
with an isomagnetic discontinuity, and consequently a small 
group of trapped ions can be accelerated here to infinite en- 
ergy. 

Let us examine the conditions under which the results 
of the present paper are valid. One of the main assumptions 
stated in the formulation of the problem-constancy of the 
magnetic field in the potential discontinuity-is perfectly 
justified for an MSSW with an isomagnetic discontinuity. In 
our opinion, the assumption that the electric field is constant 
has no special effect on the end results. 

Obviously, all the results are valid so long as the influ- 
ence of the trapped ions on the structure of the front is small. 
The effectiveness of such an influence is manifest in the per- 
turbations of the potential Uf and of the magnetic field Bf. If 
it is assumed that ratios Bf/B and Uf/Um less than 10% are 
already negligible then as shown by the computations, the 
influence in question can be regarded as no longer significant 
for the following values of the parameters: U< 0.5, D > 10, 
C >  3 ( T, < 0.1 mS2/2). Generally speaking, notwithstand- 
ing the smallness of the number of accelerated ions at certain 
parameters and the smallness of the perturbed Bf and Uf, the 
front still contains a noticeable energy density We drawn 
from the wave by the resonant particles, and a noticeable 
energy density Wf of these particles in the front. This is evi- 
dence that in a quantitative description of a shock wave the 
resonant ions must be taken into account in the relations at 
the discontinuity. Resonantly accelerated particles can in 
principle play in MSSW the role of collisionless dissipation, 
by analogy with reflected particles in a shock wave without a 
magnetic field. 

8. CONCLUSION AND PRINCIPAL DEDUCTIONS 

We conclu'de with concise statements of our main re- 
sults. Using a simple model to describe the structure of an 
isomagnetic discontinuity of an MSSW we obtained the con- 
ditions under which the particles are either trapped in the 
front, or go off immediately past the front, i.e., become pass- 
ing. It has been made clear that the majority of the trapped 
particles undergo a single reflection. The total numbers of 
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the passing, trapped, and singly reflected ions, as well as the 
numbers of ions accelerated in a specified energy interval, 
are determined for an unperturbed plasma with a Maxwel- 
lian ion distribution function. The energy drawn by the ac- 
celerated ions from the wave is estimated. For the number of 
accelerated and once-reflected ions, for the energy density of 
the accelerated ions located in the front, and for the per- 
turbed magnetic field and the magnetic field produced by 
these particles we obtained the dependences on the potential 
discontinuity, on the electric field in the front, and on the 
perturbed-plasma ion temperature. We determined the dis- 
tribution function of the accelerated ions. We touched upon 
the problem of resonant acceleration of singly charged ions 
of impurities with different masses in the front of an MSSW. 
The dependences of the maximum energy on the parameter 
D was obtained for light ion impurities having a zero tem- 
perature. For an unperturbed plasma containing only heavy 
impurity ions, we found which fraction of each impurity ions 
will be trapped and accelerated. We discussed the conditions 
under which our computations are valid and the pertinent 
range of variation of the problem parameters. 

From among the main conclusion, we single out the 
following: 

1. The high efficiency of resonant acceleration of ions in 
MSSW with isomagnetic discontinuities ( M >  3) was dem- 
onstrated. It was found that in this case the maximum energy 
of the accelerated ions exceeds by 1-3 order the heretofore 
known possible energies obtained for a subcritical ( M  < 3 ) 
magnetosonic shock wave.',"'0 The excess was determined 
by the spatial scale of the potential discontinuity, by the elec- 
tron temperature, and by the Mach number. 

Generally speaking, it is quite feasible for an electric 
field in an isomagnetic MSSW discontinuity to exceed the 
magnetic field, so that trapped ions of unbounded energy can 
theoretically be obtained in a discontinuity under resonant 
acceleration. 

2. All the computed quantities have maxima at an ion 
temperature Ti =KO = mS2/2, while at Ti (K, they depend 
substantially on the variation of Ti and U,,, . 

3. The presence of accelerated ions in a wave front was 
shown to influence strongly the macroscopic structure of the 
front, thus attesting to the need for taking them into account 
in the derivation of the relations on the shock-wave discon- 
tinuity. 

4. The results can be used as estimates for real magneto- 
sonic waves with arbitrary Mach numbers and with quite 
complicated front structure, where a potential discontinuity 
as well as a magnetic-field discontinuity can exist. 

APPENDIX 

DETERMINATION OF THE ADIABATIC INVARIANT 

To find the adiabatic invariant we turn to the energy 
conservation law (5 ) .  Substituting for w(t) and Y(t) in (5) 
their expressions in terms of x ( t )  and t, obtained from Eq. 
(4),  we obtain a conservation law in the form 

mvz/2+ P(x, t )  +Z (t) =mv,Z/2, 

where 

A part of the total energy 

is indicative of the motion of the particle along the x axis. 
This part of the total energy is not conserved. The potential 
part P(x,t) of the energy H(x,t) is useful since it is possible 
to estimate qualitatively from its form the motion of the 
trapped particle. A plot of the potential energy P(x,t) has 
the appearance of a well whose form varies slowly with time. 
At w, > 0 a particle in this well oscillates about an equilibri- 
um point with coordinate x = 0. During the initial state at 
w, < 0 both the well shape and the equilibrium-point coordi- 
nate change, i.e., the well-shaped deformation is more com- 
plicated in this case. For a trapped particle executing many 
oscillations about the equilibrium point x = 0 the energy 
H(x,t) varies quite slowly with time compared with the peri- 
od of the oscillations. This permits the use of the formalism 
of the adiabaticity of motion.24 According to this theory the 
adiabatic invariant can be expressed in our case by a closed- 
contour integral I = $ xdv. Substituting here the value of x 
obtained from the expression for H(x,t) we obtain, putting 
a(x,t) = [2H(x,t)/m ] 'I2, 

w2+a' a 
-t- 

S2 
arc sin [w'+a'~'~,  ' 

We have assumed in this equation that w = w, + Sft, i.e., we 
take the values of I at the instants at which x = 0. For t = 0 
w e h a v e w = w o ~ O a n d a = v o > O .  

We find now the approximate values of I in various 
limiting cases. At the initial instant when the inequalities 
u, g w, < S hold we obtain 

and at S >  uO% wO we have correspondingly 

With the inequalities SD - w > a, and w ) a we have 

The conservation of the adiabatic invariant I was con- 
stantly monitored in all the computations. In some cases I 
deviates from a constant at the very beginning of the compu- 
tations. These cases were investigated in detail and have 
shown that if w, < v, the value of I at the initial instant ex- 
ceeds the steady-state value for two or three oscillations. It 
was found that the initial excess of I depends only on the 
parameter u, and the excess varies like v; ' I2. The deviation 
of I from a constant is due to the fact that at the initial stage 
of the particle motion the period of its oscillations in the 
potential well is comparable with the characteristic change 
of its shape with time. After two or three oscillations the 
period decreases radically and the conditions for adiabati- 
city of the motion become much worse. Taking into account 
these fine points of the behavior of I, we monitored the initial 
value I = I(v,,w,) at w, < u,. For w, < v, < S, in particular, 
we used in lieu of (A1 ) the relation 
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Disregarding the initial stage of particle acceleration, a good 
approximation for I can be hereafter, for all vo and wo , the 
value given by (A3). 

In conclusion, the author thanks B. M. Bardakov and 
N. A. Strokin for helpful discussions. 
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