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This paper shows how the method of supersymmetric quantum mechanics can be employed to
obtain the exact solutions to a broad spectrum of problems describing a two-level system in an

alternating field.

1.INTRODUCTION

Exact methods of determining the behavior of a two-
level system in an alternating field are of considerable inter-
est because they reveal the physical aspects of the interaction
of laser radiation with matter in atomic-collision theory and
are used to build models of various physical situations. The
problem cannot always be solved analytically, however. The
exact solutions via a hypergeometric differential equation
can be found in Refs. 1 and 2.

This paper considers the problem of the behavior of a
two-level system in an alternating field from the angle of
supersymmetric quantum mechanics.>* The supersym-
metry method enables establishing the exactly solvable cases
of this problem, on the other hand, and finding the solutions
via algebraic calculations, on the other.

2. THE TWO-LEVEL SYSTEMIN AN ALTERNATING FIELD OF
VARIABLE AMPLITUDE

The behavior of a two-level system in an external alter-
nating field is described by the following system of differen-
tial equations:'?

{ id, (t)y=V(t)e *'a.(t)
id. () =V (t)e'*a,(t) ' (1)

where ¢ is the resonance detuning, 7V (¢) the energy of the
interaction of the external field with the two-level system,
and q, , (?) the population amplitudes of the ground |1) and
excited |2) states. Below we assume that ¥ (¢) = V' *(¢). For
a two-level atom in an external electromagnetic field in the
resonance approximation ¢ is qual to w,, — @, where w,, is
the atomic transition frequency, and w the laser field frequen-
cy.

Let us assume that before the external field was
switched on the system was in the |1) state, that is, we sub-
ject system (1) to the following initial conditions

a (t—+—o)=1 2
{az(h_w)zo. 2)

Obviously, as t— + o« the population amplitudes a,, (#)
acquire the following form:

a,(t—++o)=A, exp{ - % (s—2k)t}

+A3exp{ - (e+2).)t}.
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e—2 i
a,(t—~+o)=4, —?'ITEXP{—:Z'(S—zk)t}‘

et :
+4, b.) % exp{%(s*‘%)t}, (3)
where
A= [%+ Ve ] L Ve=V(—+w). (4)

Thus, to calculate the probability of the system’s transition
from state |1) to state |2) we must only find the coefficients
A, and A4,.

We introduce the function

[)(1)=(11(1)cx;){§—.l}+ a._.(l)cxp{——[;—l}. (&)

Clearly, b(?) satisfies the following second-order ordinary
differential equation:

d'b(.t) +
ar

(f7+ V(1) +iV (£) )b(t)=(). (6)
“t

This equation resembles the time-independent Schrodinger
equation in which ¢ acts as the spatial coordinate and the
difference between the total and potential energies is £/
4+ V(1) +iV(t). As t— + o, the function b(¢) satisfies
the following conditions:

(1(t)=exp(—l:l), t— — oo,
= (7
b(t) =B, exp (ikt)+B.exp (—iAt). t— +co.

Combining (5), (2), and (7), we obtain a relation that links
A, and B, ,:

2V,

—B,.. (8
PAZS 2 2y )

A 1,2 =

The structure of Eq. (6) has a remarkable property: it

can always be factorized, that is, can be represented in the
form

Q+Q--b(z)+fib(z)=0. 9
4
where
. 4
Q=== T + V(1). (10)

This property can be used to solve Eq. (9) or (1) subject to
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conditions (7) or (2), respectively, by the supersymmetry
method known from quantum mechanics.>* Following this
method, we consider the supersymmetric counterpart of Eq.

9,
Q-Q+1).(t)+%li,(t)=() (11)

with the following conditions:

et
b, (t)=exp (—T) t—» — oo,

b(t)=B," exp (M) +B.Y exp (—iM), t—> 4+ .
(12)

From Egs. (11) and (9) it follows that if the particular solu-
tion b, () of Eq. (11) is known, then

b(t)=aQ*b,(t) (13)

is the solution to Eq. (9), with « an arbitrary constant.
Now let us suppose that the function V() is the solu-
tion of the following functional differential equation:

V2 (an, t)—=iV (an, t)=V*(tnsr. £)FiV (@nss, £)+C (a0, @ni),
(14)

where

C(a,, Auy)=V,? (an) -V, (avu-l) =V ((l,.) -V (a"-H ) s

(15)

with the a, comprising the set of parameters of the external
field,and ¥V (a,) = V(a,,t— + «).Notethat Eq. (14) is
invalid for real a,, since V() is assumed to be a real function.
Using Eq. (13), we arrive at a relation that links B, , and
B{Y:

7o (ay) =2 (ay)

BI 2\0y)=
'—((l ) V ((Irl)_’t/z

B (a). (16)

Assuming that condition (14) holds true for V(a,t), we ob-
tain the following recurrence formula:
V. (ay) FA(ay)
V_(a,)—e/2

The procedure described can be repeated, replacing at each
stepa, witha, , inB,,(a,)and V' (a,). Asaresult we

get
V., (ll )+A.(au) (18)
l" 0 B| N
(@a)=DB,.(ay) I"Ju V@) e

Bx,:(ao)= Bl.z(at)- (17)

Let us now see how B, ; (ay ) can be determined. Prob-
lem (6) subject to conditions (7) is known to be exactly
solvable for an arbitrary V() if € = 0. Equation (9) illus-
trates this fact in a straightforward manner. The case where
£+#0 can also be reduced by the recurrence transformations
(18) to a known solution. Indeed, after the N th step we ar-
rive at an equation of the following type:

Q7 (ax)Q (ax)b(ax. 1)+ Q"_(:N_). b(ax. )=0. 9)

where
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d
Q= (aw)=%i—+ V(ux.1). (19)

2 o
M:%’—-}- V. (@)= V.5 (ay). (20)

‘The condition £.4 (ay ) = O is satisfied for complex N, that
is, we must perform an analytic continuation of the product
(18) defined on the set of natural numbers N to complex-
valued N. Then the particular solution of Eq. (9') has the
form

h(ax,t)y=C(ay)exp (—i J. V(ay. r)dr). @2n

where a, is determined by the equation .4 (ay ) = 0. Im-
posing the conditions at infinity, - 4 «, we can find
B,,(ay).

Thus, if V'(a,t) satisfies the functional differential equa-
tion (14), the problem of interaction of an external field of
variable amplitude with a two-level system is reduced to
solving the recurrence equations (18).

We illustrate this method with an example"* where
V(z)=%(thyr+1). (22)

As y—0 we have the limiting case of adiabatic switch-on,
while for ¥ — « the field is suddenly switched on at ¢t = 0.
With respect to its parameter, (22) does not satisfy Eq.
(14). For the equation to be valid in this case, we represent
V(t) as follows:

. Vo( 1 )
V)=V = — |ath vt + —
(t)=V(a,?) 5 (athyt+—),

where a is a parameter. It is easy to verify that with respect to
parameter a function V(a,t) satisfied Eq. (14). For V(a,t)
we have a,, = (2iy/V,)n + 1 and

V2 1 < VZ 1 2
C(@ny @nr) =~ (an+—) - _,:(am+——) :

4 Qn Qnt

withn =0,1,... .
After simple calculations we arrive at the following re-
lations for B, ; (a,):

N-1{

V4 (an)—A(ao)

Bi(a)=11 o= B (o)
s, g
PR | AL TP
g (6;?;_"’5 e B (e, (24)
where § = ie/2y, and
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& = ——(e+2V,—[e2+4V,2] ™),
4y
= 2‘7<e+2vo+[e=+4vo=1 "

To find, say, B,(ay) we must solve the equation .4 =0,
that is,

N—
g g ., Vi 1\*
_4+ Zc(a,,an+,)=—4—+ Vo — 40 (ux-f-—) =0,

n=0 Ay

and allow for the conditions (7). This yields N =8 — § and
B,(ay ) = 1. Substituting these into (23), we find that
I (B—a)T(5+1)

Bule) =T T+ D)

or, allowing for (8), we arrive at an expression for 4,:
_I'(-a)l'(®)
Y T(6—-a)T(B)

In a similar way we can find B,(a,) and 4, if we substitute
N=a —8and B,(ay) = 1 into (24). The final expression
for a, is
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ety LBZ)(®) Lo
a(t—+wo)= T(o—a)T(3) exp{——?‘—(b—z/x)t}

I'(a—B)I'(5) i
+mexp{ - —E(e+21)t},

which coincides with the results of Refs. 1 and 2, where this
problem was solved be means of a hypergeometric equation.
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