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This paper shows how the method of supersymmetric quantum mechanics can be employed to 
obtain the exact solutions to a broad spectrum of problems describing a two-level system in an 
alternating field. 

1. INTRODUCTION 

Exact methods of determining the behavior of a two- 
level system in an alternating field are of considerable inter- 
est because they reveal the physical aspects of the interaction 
of laser radiation with matter in atomic-collision theory and 
are used to build models of various physical situations. The 
problem cannot always be solved analytically, however. The 
exact solutions via a hypergeometric differential equation 
can be found in Refs. 1 and 2. 

This paper considers the problem of the behavior of a 
two-level system in an alternating field from the angle of 
supersymmetric quantum The supersym- 
metry method enables establishing the exactly solvable cases 
of this problem, on the other hand, and finding the solutions 
via algebraic calculations, on the other. 

2. THE TWO-LEVELSYSTEM IN AN ALTERNATING FIELD OF 
VARIABLE AMPLITUDE 

The behavior of a two-level system in an external alter- 
nating field is described by the following system of differen- 
tial  equation^:'^^ 

ici, (t)=17(t)e-'"'a,(t) 
ii,(t)=Va (t)eM1al ( t )  ' (1 

where E is the resonance detuning, ?iV(t) the energy of the 
interaction of the external field with the two-level system, 
and a,,, ( t )  the population amplitudes of the ground 11) and 
excited 12) states. Below we assume that V(t) = V * ( t ) .  For 
a two-level atom in an external electromagnetic field in the 
resonance approximation E is qua1 to w,, - w, where w,, is 
the atomic transition frequency, and w the laserfield frequen- 
cy. 

Let us assume that before the external field was 
switched on the system was in the 11) state, that is, we sub- 
ject system ( 1 ) to the following initial conditions 

Obviously, as t- + co the population amplitudes a,,, ( t )  
acquire the following form: 

where 

Thus, to calculate the probability of the system's transition 
from state 11) to state 12) we must only find the coefficients 
A, and A,. 

We introduce the function 

Clearly, b(t) satisfies the following second-order ordinary 
differential equation: 

!?C+(<+ dl' V'([)+iv(t))b(f)=().  
4 

This equation resembles the time-independent Schrodinger 
equation in which t acts as the spatial coordinate and the 
difference between the total and potential energies is E'/ 

4 + V2(t) + ij/(t). As t- + CO, the function b(t) satisfies 
the following conditions: 

b (t) =B, esp (iht) +B, exp (-ikt). t- +m. 

Combining (5  ) , (2),  and (7),  we obtain a relation that links 
A ,,, and B I,, : 

2 vo 
A, , ,  = B9.2, 

~ V O + E T ~ ~  

The structure of Eq. (6) has a remarkable property: it 
can always be factorized, that is, can be represented in the 
form 

e- 
Q'Q-6 ( t )  + - h ( 1  ) =O. 

4 

where 
d 

Q'=ki-  + V ( 1 ) .  
dl 

(10) 

This property can be used to solve Eq. (9) or ( 1 ) subject to 
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conditions ( 7 )  or ( 2 ) ,  respectively, by the supersymmetry 
method known from quantum  mechanic^.^.^ Following this 
method, we consider the supersymmetric counterpart of Eq. 
(91 ,  

with the following conditions: 

From Eqs. ( 1 1 ) and ( 9 )  it follows that if the particular solu- 
tion 6 ,  ( t )  of Eq. ( 1 1  ) is known, then 

( t )  =aQCbI ( t )  ( 1 3 )  

is the solution to Eq. ( 9 ) ,  with a an arbitrary constant. 
Now let us suppose that the function V ( t )  is the solu- 

tion of the following functional differential equation: 

V'(a,, t ) -$(a , ,  t ) = V ( u  ,,,. t)+iV (a,,,,, t )+C(a, , ,  an+,) ,  

( 1 4 )  

where 

C(a,,  a,+,)=V+~(a,)-17+z(an+l)=V-2(an)-V-2(an+l). 

with the a ,  comprising the set of parameters of the external 
field, and V ,  ( a ,  ) = V ( a ,  , t -  + co ). Note that Eq. ( 14) is 
invalid for real a ,  since V ( t )  is assumed to be a real function. 
Using Eq. ( 13 ), we arrive at a relation that links B , ,  and 
B ;,y: 

VT (a, , )  =>. ( 1 1 ~ 1 )  
I ~ ~ , ~ ( I I , , ) =  - /ll!i' ( ( l a , ) .  

1'- (0, ,)-E/2 

Assuming that condition ( 14) holds true for V ( a , t ) ,  we ob- 
tain the following recurrence formula: 

The procedure described can be repeated, replacing at each 
step a ,  with a ,  + , in B ,,, ( a ,  ) and V ,  ( a ,  ). As a result we 
get 

S - 1 

( ( I , , )  ~h (a , , )  

,,=,, 1'- ( ( 1 , , ) - ~ / 2  ' 

Let us now see how B ,,, ( a ,  ) can be determined. Prob- 
lem ( 6 )  subject to conditions ( 7 )  is known to be exactly 
solvable for an arbitrary V ( t )  if E = 0 .  Equation ( 9 )  illus- 
trates this fact in a straightforward manner. The case where 
E # O  can also be reduced by the recurrence transformations 
( 18) to a known solution. Indeed, after the Nth  step we ar- 
rive at an equation of the following type: 

d 
y Z ( u , ) = & i - +  d t  V ( I I . ,  t ) .  ( 1 9 )  

'The condition E , ~  ( a ,  ) = 0  is satisfied for complex N, that 
is, we must perform an analytic continuation of the product 
( 18) defined on the set of natural numbers N to complex- 
valued N. Then the particular solution of Eq. ( 9 ' )  has the 
form 

t 

where a ,  is determined by the equation E,, ( a ,  ) = 0 .  Im- 
posing the conditions at infinity, t -  + C O ,  we can find 
B1,2 ( a ,  1. 

Thus, if V(a , t )  satisfies the functional differential equa- 
tion ( 14),  the problem of interaction of an external field of 
variable amplitude with a two-level system is reduced to 
solving the recurrence equations ( 18) .  

We illustrate this method with an example'92 where 

As y - 0  we have the limiting case of adiabatic switch-on, 
while for y+  co the field is suddenly switched on at t  = 0 .  
With respect to its parameter, ( 2 2 )  does not satisfy Eq. 
( 14) .  For the equation to be valid in this case, we represent 
V ( t )  as follows: 

where a  is a parameter. It is easy to verify that with respect to 
parameter a  function V ( a , t )  satisfied Eq. ( 1 4 ) .  For V ( a , t )  
we have a ,  = ( 2 i y / V , ) n  + 1 and 

with n = 0,1, ... . 
After simple calculations we arrive at the following re- 

lations for B ,,, (a , )  : 

where 
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To find, say, B ,  ( a , )  we must solve the equation E,, = 0, 
that is, 

and allow for the conditions ( 7 ) .  This yields N = P - S and 
B, ( a ,  ) = 1 .  Substituting these into ( 2 3 ) ,  we find that 

or, allowing for ( 8 ) , we arrive at an expression for A ,  : 

In a similar way we can find B2(a0)  and A,  if we substitute 
N = a - S and B,(a ,  ) = 1 into ( 2 4 ) .  The final expression 
for a ,  is 

which coincides with the results of Refs. 1 and 2, where this 
problem was solved be means of a hypergeometric equation. 
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