Supersymmetry of a two-level system in a variable external field

R.G. Unanyan

Institute of Physical Studies, Armenian Academy of Sciences (Submitted 26 July 1991)

Zh. Eksp. Teor. Fiz. 101, 1463-1467 (May 1992)

This paper shows how the method of supersymmetric quantum mechanics can be employed to obtain the exact solutions to a broad spectrum of problems describing a two-level system in an alternating field.

1. INTRODUCTION

Exact methods of determining the behavior of a twolevel system in an alternating field are of considerable interest because they reveal the physical aspects of the interaction of laser radiation with matter in atomic-collision theory and are used to build models of various physical situations. The problem cannot always be solved analytically, however. The exact solutions via a hypergeometric differential equation can be found in Refs. 1 and 2.

This paper considers the problem of the behavior of a two-level system in an alternating field from the angle of supersymmetric quantum mechanics.^{3,4} The supersymmetry method enables establishing the exactly solvable cases of this problem, on the other hand, and finding the solutions via algebraic calculations, on the other.

2. THE TWO-LEVEL SYSTEM IN AN ALTERNATING FIELD OF VARIABLE AMPLITUDE

The behavior of a two-level system in an external alternating field is described by the following system of differential equations:^{1,2}

$$\begin{cases} i\dot{a}_{1}(t) = V(t)e^{-i\epsilon t}a_{2}(t) \\ i\dot{a}_{2}(t) = V(t)e^{i\epsilon t}a_{1}(t) \end{cases}, \tag{1}$$

where ε is the resonance detuning, $\hbar V(t)$ the energy of the interaction of the external field with the two-level system, and $a_{1,2}(t)$ the population amplitudes of the ground $|1\rangle$ and excited $|2\rangle$ states. Below we assume that $V(t) = V^*(t)$. For a two-level atom in an external electromagnetic field in the resonance approximation ε is qual to $\omega_{21} - \omega$, where ω_{21} is the atomic transition frequency, and ω the laser field frequency.

Let us assume that before the external field was switched on the system was in the $|1\rangle$ state, that is, we subject system (1) to the following initial conditions

$$\begin{cases} a_1(t \to -\infty) = 1\\ a_2(t \to -\infty) = 0 \end{cases}$$
 (2)

Obviously, as $t \to +\infty$ the population amplitudes $a_{1,2}$ (t) acquire the following form:

$$a_1(t\rightarrow +\infty) = A_1 \exp\left\{-\frac{i}{2}(\varepsilon - 2\lambda)t\right\}$$

$$+A_2\exp\left\{-\frac{i}{2}(\varepsilon+2\lambda)t\right\}$$

$$a_2(t \to +\infty) = A_1 \frac{\varepsilon - 2\lambda}{2V_0} \exp\left\{\frac{i}{2}(\varepsilon - 2\lambda)t\right\}$$

$$+A_2 \frac{\varepsilon + 2\lambda}{2V_0} \exp\left\{\frac{i}{2}(\varepsilon + 2\lambda)t\right\},$$
 (3)

where

$$\lambda = \left[\frac{\varepsilon^2}{4} + V_0^2\right]^{\eta_0}, \quad V_0 = V(t \to +\infty). \tag{4}$$

Thus, to calculate the probability of the system's transition from state $|1\rangle$ to state $|2\rangle$ we must only find the coefficients A_1 and A_2 .

We introduce the function

$$b(t) = a_1(t) \exp\left\{\frac{i\varepsilon t}{2}\right\} + a_2(t) \exp\left\{-\frac{i\varepsilon t}{2}\right\}. \tag{5}$$

Clearly, b(t) satisfies the following second-order ordinary differential equation:

$$\frac{d^2b(t)}{dt^2} + \left(\frac{\varepsilon^2}{4} + V^2(t) + i\vec{V}(t)\right)b(t) = 0.$$
 (6)

This equation resembles the time-independent Schrödinger equation in which t acts as the spatial coordinate and the difference between the total and potential energies is $\varepsilon^2/4 + V^2(t) + i\dot{V}(t)$. As $t \to \pm \infty$, the function b(t) satisfies the following conditions:

$$b(t) = \exp\left(\frac{i\varepsilon t}{2}\right), \quad t \to -\infty, \tag{7}$$

 $b(t) = B_1 \exp(i\lambda t) + B_2 \exp(-i\lambda t)$. $t \to +\infty$.

Combining (5), (2), and (7), we obtain a relation that links $A_{1,2}$ and $B_{1,2}$:

$$A_{1,2} = \frac{2V_0}{2V_0 + \varepsilon \mp 2\lambda} B_{1,2}. \tag{8}$$

The structure of Eq. (6) has a remarkable property: it can always be factorized, that is, can be represented in the

$$Q^{+}Q^{-}b(t) + \frac{\varepsilon^{2}}{4}b(t) = 0, \tag{9}$$

where

$$Q^{\pm} = \pm i \frac{d}{dt} + V(t). \tag{10}$$

This property can be used to solve Eq. (9) or (1) subject to

conditions (7) or (2), respectively, by the supersymmetry method known from quantum mechanics.^{3,4} Following this method, we consider the supersymmetric counterpart of Eq. (9),

$$Q^{-}Q^{+}b_{1}(t) + \frac{\varepsilon^{2}}{4}b_{1}(t) = 0$$
 (11)

with the following conditions:

$$b_{1}(t) = \exp\left(\frac{i\varepsilon t}{2}\right), \quad t \to -\infty,$$

$$b(t) = B_{1}^{(1)} \exp\left(i\lambda t\right) + B_{2}^{(1)} \exp\left(-i\lambda t\right), \quad t \to +\infty.$$
(12)

From Eqs. (11) and (9) it follows that if the particular solution $b_1(t)$ of Eq. (11) is known, then

$$b(t) = \alpha Q^+ b_1(t) \tag{13}$$

is the solution to Eq. (9), with α an arbitrary constant.

Now let us suppose that the function V(t) is the solution of the following functional differential equation:

$$V^{2}(a_{n}, t) - i\vec{V}(a_{n}, t) = V^{2}(a_{n+1}, t) + i\vec{V}(a_{n+1}, t) + C(a_{n}, a_{n+1}),$$
(14)

where

$$C(a_n, a_{n+1}) = V_+^2(a_n) - V_+^2(a_{n+1}) = V_-^2(a_n) - V_-^2(a_{n+1}),$$
(15)

with the a_n comprising the set of parameters of the external field, and $V_{\pm}(a_n) = V(a_n, t \to \pm \infty)$. Note that Eq. (14) is invalid for real a_n since V(t) is assumed to be a real function. Using Eq. (13), we arrive at a relation that links $B_{1,2}$ and $B_{1,2}^{(1)}$:

$$B_{1,2}(a_0) = \frac{V_+(a_0) \mp \lambda(a_0)}{V_-(a_0) - \varepsilon/2} B_{1,2}^{(1)}(a_0). \tag{16}$$

Assuming that condition (14) holds true for V(a,t), we obtain the following recurrence formula:

$$B_{1,2}(a_0) = \frac{V_+(a_0) \mp \lambda(a_0)}{V_-(a_0) - \varepsilon/2} B_{1,2}(a_1). \tag{17}$$

The procedure described can be repeated, replacing at each step a_n with a_{n+1} in $B_{1,2}$ (a_n) and V_{\pm} (a_0) . As a result we get

$$B_{1,2}(a_0) = B_{1,2}(a_N) \prod_{n=0}^{N-1} \frac{V_+(a_n) \mp \lambda(a_0)}{V_-(a_n) - \varepsilon/2}.$$
 (18)

Let us now see how $B_{1,2}$ (a_N) can be determined. Problem (6) subject to conditions (7) is known to be exactly solvable for an arbitrary V(t) if $\varepsilon = 0$. Equation (9) illustrates this fact in a straightforward manner. The case where $\varepsilon \neq 0$ can also be reduced by the recurrence transformations (18) to a known solution. Indeed, after the N th step we arrive at an equation of the following type:

$$Q^{+}(a_{N})Q^{-}(a_{N})b(a_{N},t) + \frac{\varepsilon_{\text{eff}}^{2}(a_{N})}{4}b(a_{N},t) = 0.$$
 (9')

where

$$Q^{\pm}(a_{\scriptscriptstyle N}) = \pm i \frac{d}{dt} + V(a_{\scriptscriptstyle N}, t). \tag{19}$$

$$\frac{\varepsilon_{\text{eff}}^2(a_N)}{4} = \frac{\varepsilon^2}{4} + V_{\perp}^2(a_n) - V_{\perp}^2(a_N).$$
 (20)

The condition $\varepsilon_{\rm eff}(a_N)=0$ is satisfied for complex N, that is, we must perform an analytic continuation of the product (18) defined on the set of natural numbers N to complex-valued N. Then the particular solution of Eq. (9') has the form

$$b(a_N, t) = C(a_N) \exp\left(-i \int_{-\infty}^{t} V(a_N, \tau) d\tau\right). \tag{21}$$

where a_N is determined by the equation $\varepsilon_{\text{eff}}(a_N) = 0$. Imposing the conditions at infinity, $t \to \pm \infty$, we can find $B_{1,2}(a_N)$.

Thus, if V(a,t) satisfies the functional differential equation (14), the problem of interaction of an external field of variable amplitude with a two-level system is reduced to solving the recurrence equations (18).

We illustrate this method with an example^{1,2} where

$$V(t) = \frac{V_0}{2} (\text{th } \gamma t + 1).$$
 (22)

As $\gamma \to 0$ we have the limiting case of adiabatic switch-on, while for $\gamma \to \infty$ the field is suddenly switched on at t = 0. With respect to its parameter, (22) does not satisfy Eq. (14). For the equation to be valid in this case, we represent V(t) as follows:

$$V(t) = V(a, t) = \frac{V_0}{2} \left(a \operatorname{th} \gamma t + \frac{1}{a} \right),$$

where a is a parameter. It is easy to verify that with respect to parameter a function V(a,t) satisfied Eq. (14). For V(a,t) we have $a_n = (2i\gamma/V_0)n + 1$ and

$$C(a_n, a_{n+1}) = \frac{V_0^2}{4} \left(a_n + \frac{1}{a_n} \right)^2 - \frac{V_0^2}{4} \left(a_{n+1} + \frac{1}{a_{n+1}} \right)^2,$$

with n = 0, 1, ...

After simple calculations we arrive at the following relations for $B_{1,2}(a_0)$:

$$B_{1}(a_{0}) = \prod_{n=0}^{N-1} \frac{V_{+}(a_{n}) - \lambda(a_{0})}{V_{-}(a_{n}) - \varepsilon/2} B_{1}(a_{N})$$

$$= \frac{\Gamma(\delta - \alpha + N) \Gamma(\beta - N + 1)}{\Gamma(\delta - \alpha) \Gamma(\beta + 1)} B_{1}(a_{N}), \qquad (23)$$

$$B_{2}(a_{0}) = \prod_{n=0}^{N-1} \frac{V_{+}(a_{n}) + \lambda(a_{0})}{V_{-}(a_{n}) - \varepsilon/2} B_{2}(a_{N})$$

$$=\frac{\Gamma(\delta-\beta+N)\Gamma(\alpha-N+1)}{\Gamma(\delta-\beta)\Gamma(\alpha+1)}B_2(a_N), \qquad (24)$$

where $\delta = i\varepsilon/2\gamma$, and

$$\alpha = \frac{i}{4\gamma} (\epsilon + 2V_0 - [\epsilon^2 + 4V_0^2]^{1/2}),$$

$$\beta = \frac{i}{4\gamma} (\epsilon + 2V_0 + [\epsilon^2 + 4V_0^2]^{1/2}).$$

To find, say, $B_1(a_N)$ we must solve the equation $\varepsilon_{\rm eff}=0$, that is.

$$\frac{\varepsilon^2}{4} + \sum_{n=0}^{N-1} C(a_n, a_{n+1}) = \frac{\varepsilon^2}{4} + V_0^2 - \frac{V_0^2}{4} \left(a_N + \frac{1}{a_N} \right)^2 = 0,$$

and allow for the conditions (7). This yields $N = \beta - \delta$ and $B_1(a_N) = 1$. Substituting these into (23), we find that

$$B_{1}(a_{0}) = \frac{\Gamma(\beta-\alpha)\Gamma(\delta+1)}{\Gamma(\delta-\alpha)\Gamma(\beta+1)}$$

or, allowing for (8), we arrive at an expression for A_1 :

$$A_1 = \frac{\Gamma(\beta - \alpha)\Gamma(\delta)}{\Gamma(\delta - \alpha)\Gamma(\beta)}.$$

In a similar way we can find $B_2(a_0)$ and A_2 if we substitute $N = \alpha - \delta$ and $B_2(a_N) = 1$ into (24). The final expression for a_1 is

$$a_{1}(t \to +\infty) = \frac{\Gamma(\beta - \alpha)\Gamma(\delta)}{\Gamma(\delta - \alpha)\Gamma(\beta)} \exp\left\{-\frac{i}{2}(\varepsilon - 2\lambda)t\right\} + \frac{\Gamma(\alpha - \beta)\Gamma(\delta)}{\Gamma(\delta - \beta)\Gamma(\alpha)} \exp\left\{-\frac{i}{2}(\varepsilon + 2\lambda)t\right\},$$

which coincides with the results of Refs. 1 and 2, where this problem was solved be means of a hypergeometric equation.

¹A. O. Melikyan, Candidate's dissertation, Erevan (1970); S. P. Goreslavskiĭ and V. P. Yakovlev, Izv. Akad. Nauk SSSR, Ser. Fiz. 37, 2211 (1973) [Bull. Acad. Sci. USSR, Phys. Ser. 37, 171 (1973)].

²N. Rozen and C. Zener, Phys. Rev. 40, 50 (1932); A. Bambini and P. R. Berman, Phys. Rev. A 23, 2496 (1981); C. E. Carol and F. T. Hios, J. Phys. A: Math. Gen. 19, 3579 (1986).

³E. Witten, Nucl. Phys. **B188**, 513 (1981); L. È. Gendenshteĭn and I. V. Krive, Usp. Fiz. Nauk **146**, 533 (1985) [Sov. Phys. Usp. **28**, 645 (1985)]

⁴L. E. Gendenshteĭn, Pis'ma Zh. Eksp. Teor. Fiz. 38, 299 (1983) [JETP Lett. 38, 358 (1983)].

Translated by Eugene Yankovsky