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An analytic expression of the optical spectrum is obtained for the two-photon absorption in 
collisions of hydrogen atoms in the ground state with a particle Y, the electron interaction with 
which is approximated by a 6-function potential. A convenient analytic representation is found 
for the matrix elements of transitions between the states of the molecular system. The nuclear part 
of the problem is solved by using the Landau-Zener formula. Using the results of calculations 
based on this theory, an analysis of the dependence of the two-photon absorption spectrum on the 
only parameter in the theory, the electron-Yscattering length, could be made. It was thus shown 
that the intensity distribution in the two-photon absorption spectrum is significantly different 
from the case of single-photon absorption. In addition to the well-known squared field parameter 
&5?J determining the smallness of the two-photon absorption, there appears in this theory a large 
parameter, partially compensating for the smallness of &5?J. This work also expands the class of 
problems for which an exact quantum solution can be found. 

1. INTRODUCTION 

During the past two decades, the collisions between 
atoms and molecules, accompanied by absorption or emis- 
sion of photons, have been intensely investigated both ex- 
perimentally and theoretically.'-' One of the most interest- 
ing classes of reactions of this type consists of elementary 
processes in which a photon is absorbed by the colliding 
complex, an inert gas atom or a halogen molecule or com- 
pound X, . In such a process, an exchange reactions-l3 

or other dynamically allowed processes may o c ~ u r . ' ~ * ' ~  The 
absorption bands corresponding to these processes usually 
are in the vacuum-UV region. The experiments are therefore 
difficult, particularly if the radiation source is a laser. Such 
processes can be studied in principle if one uses a doubled 
wavelength laser inducing two-photon absorption. In such a 
case, the reaction dynamically equivalent to ( 1 ) is 

The study of a reaction of this type was first reported in Ref. 
16. Clearly, the absorption coefficient should increase pro- 
portionally to the light intensity. One might also expect its 
magnitude to be small compared to the single photongro- 
cess, as determined by the factor 8; (Ref. 1 ), where 8, is 
the amplitude of the electric vector of the electromagnetic 
field. However, under usual experimental conditions even in 
the case of powerful pulsed lasers, $; 4 1 a.u. (0.5 x 10'' 
V/cm). Nevertheless, in a number of circumstances, the 
two-photon collision processes are quite promising. This is 
because in order to realize two-photon processes of type (2) 
one needs radiation sources in the near UV range, and this 
allows the use of industrial excimer lasers which are both 
powerful and reliable. 

Yet, the elementary processes involving two-photon ab- 
sorption are still very little investigated. Even in the case of 
the simplest typical models, there is no theory capable to 
describe the dependence of the cross section or of the absorp- 
tion coefficient on wavelength. This is precisely the problem 

solved in the present work. Our purpose is to develop for 
two-photon absorption spectra for atomic collisions, a theo- 
ry which might be subsequently extended to atomic-molecu- 
lar processes of type (2).  In the following, we shall analyze 
the problem of the optical spectrum corresponding to two- 
photon absorption in a colliding complex of the type H + Y. 
Within the framework of the proposed model, the electronic 
part of the problem is reduced to the study of the electron 
motion in the field of two centers, H + and Y, and interaction 
potential with Y will be approximated by a 6-function. The 
fundamental idea of using potentials with zero radius goes 
back to Fermi." The only parameter of the problem is the 
electron scattering length in the field of the neutral particle 
Y. The nuclear part of the problem is solved by using the 
Landau-Zener linear model. The single-photon absorption 
problem in a reaction of type H + Y + h+ (HY)* was 
solved in Refs. 18 and 19. 

2. PROBABILITY OFTWO-PHOTON ABSORPTION IN ATOMIC 
COLLISIONS 

An important first step in solving any problem of find- 
ing an absorption spectrum is an analysis of the states be- 
tween which the transition takes place. The states of the H Y  
system in the zero-range potential approximation are well 
knownZ0 (see also Presnyakov's article in Ref. 2 1 ) . They are 
found by solving the transcendental equation 

in which the function @(n,R) has the expression 

In (4),  R is the distance between the centers H + and Y, 
n = ( - 2E) 'I2 is the energy parameter, E ( R )  is the elec- 
tron energy and depends parametrically on the distance R, r 
is the gamma function, and M ,,,, , and W ,,,,, are the Whitta- 
ker functions. In the problem under consideration, a transi- 
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tion with the absorption of one photon occurs at distances 
R )  1 a.u. In this case, the ground state term li ) is horizon- 
tal, and the wave function of the external electron coincides 
with the wave function of an unperturbed hydrogen atom. 
The perturbed state If) of the molecular system HY after 
photon absorption can be found by solving Eq. (3) numeri- 
cally. The next step in solving the problem under considera- 
tion, concerning the two-photon spectrum of the collision 
process 

involves the solution of the Schrodinger equation 

with 

in which Ho is the Hamiltonian ofthe molecular system, and 
V is the interaction between the molecular system and the 
electromagnetic field and is given by the expression 

8=8, cos ot. (9)  

Here d is the dipole moment transition operator, 3 the elec- 
tric field vector, w the circular frequency, and t the time. Let 
us write the wave function as 

#IJ = z a i  ( t )cp,.  (10) 

where pi are the wave functions of the molecular system and 
depend parametrically on the distance R. These functions 
are eigenfunctions of the Hamiltonian Ho and are indepen- 
dent of time: 

The eigenvalues Ui (R ) are the electronic levels of the molec- 
ular system. Substituting ( 10) into the Schrodinger equa- 
tion (6), and neglecting the operator for nonadiabatic cou- 
pling (see below), we obtain for the amplitudes the system of 
differential equations 

The field is omitted from the diagonal matrix elements, so 
that they coincide with the energy levels. The set of sub- 
scripts (kj) is, in principle, infinite. Let J i )  be the state 
before collision of the quasimolecule HY. The system of dif- 
ferential equations ( 12), with the initial condition 
a, ( t - t  - oo )-Ski, describes the evolution in time of the 
state amplitudes. The probability of transition from the state 
J i  ) to a state If) is given by the quantity la,( co ) 1 2.  The sub- 
stitution 

T 

leads to the system 

i!jk = z h i ~ , , ,  crp [i Jdt(u,--ui)], 
i f k  - m  

which can be solved by successive approximations. In the 
zeroth approximation, 16, I = lak I = Ski, and in the first ap- 
proximation with k #j  we have 

Substituting in Eq. ( 14) the explicit expression for the ma- 
trix element Vki , and using Eqs. ( 8 ) and (9) ,  we find that in 
first order of perturbation theory 

We now assume that one-photon transitions are not possible 
due to the absence of a corresponding resonance. Incidental- 
ly, we omit from the integrand in Eq. ( 15) the points where 
the phase is stationary, i.e., where 

The method of stationary phasez3 allows us to find the 
asymptotic values of the integrals in Eq. ( 15), in the limit of 
fast variations of the phase: 

Due to the absence of stationary phase points, 
(b ,  ( oo ) ( = Ski. In the second order of perturbation theory, 
we must replace the amplitudes on the right-hand side of 
( 13 ) by the amplitudes bi in the form given in Eq. ( 15 ) in 
first order. We thus obtain four terms, only one of which has 
a stationary phase point defined by the equality 

Evaluating the integral by the stationary-phase method, we 
obtain 

which is the transition probability for passing through the 
stationary-phase point R,, which is the intersection of the 
energy of the initial state raised by 2iiu with the energy of the 
final state If). The quantities AFand v are respectively, the 
relative energy slope and velocity at the point R,, 

80' (ndji) (nda) . 8 0  
V . ,  = 4 n = - .  u,-u,-o ' a,, 

The expressions ( 19) and (20) have obvious physical inter- 
pretations. The expression ( 19) for the transition probabili- 
ty for the passing through the intersection point coincides 
with Landau's formula.24 The transition matrix element is a 
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product of the square of the field and the polarizability of the 
molecular system by an alternating field frequency w. The 
quantity I VifL2 must be averaged over the angle between the 
vectors n = %',/%', and dji, dJ. The states li ) and (f) be- 
tween which the transition takes place correspond to zero 
projections of the external-electron angular momentum 
along the internuclear direction. This is due to the fact that, 
in the zero-range potential approximation, only such states 
are different from the state of the isolated hydrogen atom. 
Therefore, 

Setting 

we may write 

Consequently, should the operators b k be known explicitly, 
the problem of calculating the sum S,  reduces to the calcula- 
tion of the matrix elements (b + , d - k ) v  and a subsequent 
summation over m. The sum (3 1 ) is fairly rapidly conver- 
gent, so that it will be sufficient to calculate only the first few 
terms. The advantage of working with the representation 
(31) rather than with the sum So of Eq. (26) is that the 
energy levels in the sum (26) have no analytic expressions 
and, as mentioned before, they must be found by solving the 
transcendental equation (4).  Moreover, the sum (26) im- 
plies an integration over the continuous spectrum, making 
the evaluation of S, even more difficult. 

To find b : we introduce the auxiliary operator C f ,  
which by definition is such that 

where d $, d ii, n + , and n - are covariant cyclical coordi- 
nates. It can be easily seen that upon substitution of the 
expression (2 1 ) in the sum overj from Eq. (20), the second 
and third terms yield identical contributions. 

Setting 

no= cos 8,, n ,= -2 -"  sin OedO, n-,=2-'" sin 8e-'Q. (22) 

and taking into account the fact that Ky is a real quantity, we 
have 

Hence, replacing the quantities cos48, sin48, cos28 and sinZ8 
by their average values, we obtain 

Then 

where 
and 

Clearly, up to a constant, the operator C is none other but 
the desired operator b :: 

To find C : explicitly, we use the known expression for the 
time derivative of an operator: 

d"( i>=i(H, ,C,k-C,"I l , , )  li). (36) 

Although the quantities So and S ,  have similar expressions, 
they are essentially different from a calculational viewpoint. 
This is because the sum in So is taken over the levels of the 
molecular system HY, whereas the sum in S,  is restricted to 
those levels j for which the component of the external-elec- 
tron angular momentum along the internuclear direction is 
unity. These are states of the hydrogen atom which are not 
affected by the presence of a 6-interacting center Y. At large 
distances between centers, the states k) as well as (f) in the 
sum for So also become hydrogen states. 

or, because of the relation ( 35 ), 

Similarly, we can find a recurrent relation between any two 
consecutive operators b 2 and b k + , : 

h , n k l i ) = ( ~ i , , b , ( t , , - b ~ + , ~ , , )  1 1 ) .  (38) 

Introducing 

b,,,k=6,,t~t, 3. EFFECTIVE TWO-PHOTON TRANSITION OPERATOR 

We shall now examine the problem of calculating the 
sums So and S , .  Since they will be analyzed in the same 
manner, let us introduce the notation 

and substituting for li ) the wave function of the hydrogen 
ground state, we can write (see also Ref. 24, 5 7 7 ) :  

By definition, 

Expanding S, in a power series in w, we obtain where r is the distance from the electron to the nucleus H + . 
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The solution can be found in the form of a power series in r : 

Substitution of the series (42) in the differential equation 
(40) leads to a system of equations for the coefficients a," 

from which one can find all necessary coefficients. To this 
end, we start with m = 0; since it follows from (41 ) that 
a: = S(s, 1 ), we can rewrite the system (43) as 

The operators we seek must be regular at the origin. This 
implies that a," = 0. Moreover, the series (42) should not 
diverge too strongly for large r, because this would make the 
matrix elements of Eq. (39) divergent. Hence, necessarily, 
starting with some m, function of s, all coefficients a," must 
be equal to zero, i.e., b, must be polynomials. We begin the 
solution of (44) with s = 1. Setting a: = 0 (only such a 
choice of a: converts the series (42) for b,  into a polyno- 
mial), we obtain a: = 1/2. Substituting this value in (44) 
and setting s = 0, we find that a: = 1. Therefore, 
6, = r + r 2/2. Given the values just found for a: and a:, it 
follows that 

aS1=6(s. 1) +'1?6(s, 2). 

in which Sv is the Kronecker symbol. We can thus write the 
relation (43) in the form 

- (sf l) ( s f4 )  
2 

a ,~,+(s+1)aS~,-6(s ,  1)-'/,6(s, 2)=0. 

(45) 

Starting with Eq. (45) for s = 2, and setting a: = 0, we find 
that a: = 1/6. Switching to s = 1, we obtain a$ = 11/12, 
and for s = 0, at = 11/6. Consequently, 

Continuing this iterative procedure, we can find the rest of 
the operators b, , which turn out to be polynomials of degree 
m + 1, with no free terms. The numerical values of the coef- 
ficients which determine the needed operators are given in 
the Appendix. A direct verification, using the explicit ex- 
pressions found for a,", confirms the validity of the relation 
(30) that we used to formulate the problem of finding the 
operators 6,. The expansion (42) for the effective operator 
for two-photon transitions, as well as the method described 
above, can likewise be used to solve other problems relating 
to two-photon absorption. 

4. ANALYTIC REPRESENTATION OF THE ABSORPTION 
SPECTRUM 

Using Landau's formula ( 19) for the transition proba- 
bility through the intersection point of the ground state ener- 
gy raised by 2 h  with the energy of the perturbed state, one 
can also obtain other statistical characteristics of the process 
under consideration. For this purpose, one must first inte- 
grate with respect to the impact parameterp, to calculate the 

total cross-section: 
cc 

o.=2n dppW (p, 80, 

for the collision process 

H+Y- (HY)'. (47) 

It is understood here that the reaction (47) occurs with the 
absorption of two photons, although the formal dependence 
on the light field is implicit in the cross section a,, which 
depends parametrically on Z?, and w.  Nevertheless, this rep- 
resentation is convenient, because it allows the use of other 
relations corresponding to collision processes taking place in 
the absence of light. In particular, by using the cross section 
a,, one can calculate the field-dependent velocity rate 

in which the angle brackets indicate averaging over veloc- 
ities with a Maxwell-Boltzmann distribution, and u,  is the 
relative velocity of the colliding particles at infinity. The 
number of reactions of type (47) per unit time is 

The quantity d [ H Y  *]/dt can be easily related to the optical 
properties of the medium. The most convenient and, in the 
case of photon absorption during atomic collisions, tradi- 
tionally most utilized concept is that of reduced absorption 
coefficient, q. This quantity can be evaluated by dividing the 
absorption coefficient of the medium, in cm - ' units, by the 
product [HI [ Y] of the particle concentrations. If the con- 
centrations are given in cm - 3 ,  the reduced absorption coeffi- 
cient is in cm5. The number of reactions per unit volume and 
per unit time is given in terms of the reduced absorption 
coefficient q by the relation 

in which J is the energy flux density, 

c is the velocity of light, and J/w is the number of photons 
passing per unit time through a unit area in a surface perpen- 
dicular to the light beam. The factor one-half in Eq. (50), 
indicates that there are two absorbed photons. Comparing 
expressions (49) and (50) and using the explicit expression 
for K, , we have 

The sum in (52) is taken over all quasicrossing points, and 
E, is the kinetic energy of the colliding particles. Formula 
(52) is similar to the expression for the absorption coeffi- 
cient in the case of single-photon absorption: 

However, unlike (53), formula (52) contains the quantity 
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ISg12, the explicit representation of which will be detailed 
below. 

Let us set in the expression ( 3 1 ) 

in which 

and use the wave function of the hydrogen atom ground state 

as well as the wave function of the final state 

If)=C(E, R)G(r, R).  (55) 

Here G is the Coulomb Green's f u n c t i ~ n , ~ " ~ ~  and C a nor- 
malization factor determined from the condition that 

I(flf)l2=I. (56) 

Introducing the notation 

we can rewrite 

The coefficient C was found in Ref. 19: 

Substituting the expressions (70) and (71) into (66), we 
have where @(n,R) is given by the relation (4). The Coulomb 

Green's function can be written as a series in partial waves: 

Using in formula (63) the explicit expression (42) for b, + , 
and then substituting the explicit expression for R ; + ' into 
(69), we find, interchanging the order of summation over n 
and s, 

where 

In these expressions, U and Mare confluent hypergeometric 
functions,22 and r ,  ( r ,  ) is the smaller (larger) of the dis- 
tances rand R. The quantities So and S, , which according to 
(25) generate the expression for ISifI2, can be written as 

S,, = -- W ~ ~ ( R I + '  +2RZut i ) .  
3yRn'" 

where 
n In general, exact calculation of J,, and J,, requires numeri- 

cal integration. However, one can obtain approximate ana- 
lytic expressions of these quantities. The presence of the rap- 
idly decreasing factor exp( - r )  in (75) allows us to extend 
the limit of integration in the first integral to infinity, and 
neglect the second integral, i.e., 

and 1 = 0.2. The final expression for the reduced absorption 
coefficient can be obtained by following the approach de- 
scribed in Ref. 19. Writing 

Here 

(64) 

and substituting (64) in (52), we obtain 
I,, = drr+'exp(-r)f2, (r) . 

0 

!? -=- (Pi, (R,) I 'R,'n2 
8.' 8n2 I rIf,,,l~, (2Rin) LVn:,, (ZRin) r (1-n) ( (65) Using in (77) the explicit expression (60) off,, , we 

obtain (see Ref. 24, Appendix f) 
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in which ,F, is the hypergeometric function. The second 
and third arguments of the hypergeometric function are in- 
tegers. Using then the known relations between contiguous 
hypergeometric functions,,, with second and third argu- 
ments different from unity, and also the formulae for the 
hypergeometric functions with identical second and third 
arguments, when F(a,b;b;z) = ( 1 - z) -", we can express 
r" + ' in terms of elementary functions, to obtain an analytic 
expression, which has, however, a rather complicated form. 

Formula (66) yields the reduced absorption coefficient 
in atomic units, and the result has the dimensions of the fifth 
power of length. To express the result in units of cm5, usually 
adopted in experiments, one must multiply the result of (65) 
by the factor (0.529X = 4.14X 

5. RESULTS 

In Figs. 1-3 we show the quantity 91%': as a function of 
the energy of the state into which the transition takes place. 

FIG. 1. a-States of the H + ysystkm in the zero-range potential approxi- 
mation (a, = 2.61); &Dependence of the reduced absorption coeffi- 
cient, divided by the square of the field magnitude on the energy of the 
state into which the transition takes place. I, in a.u. 

FIG. 2. Same as Fig. 1 ,  but with a, = 5.22. 

In the same figures we also indicate the energy levels of the 
corresponding states of the H + Ysystem. Comparing these 
results with those obtained19 for single photon absorption, 
one can note both similarities and significant differences. 
The similarities primarily consist in the presence of so-called 
satellite lines near the points of equal slope of the states be- 
tween which the transition occurs. Formally, these points 
are due to the vanishing of the denominator in (65). The 
shapes of the comparable functions are considerably differ- 
ent. While in the short-wavelength portion of the spectrum 
the results for two-photon absorption exceed the intensity of 
the one-photon spectrum by several times, or by an order of 
magnitude, in the long-wavelength region of the spectrum 
we see differences of two to four orders of magnitude, de- 
pending on the scattering length. 

The calculations of 9/69; as functions of energy were 
done with various numbers Nof operators b, . By taking into 
account the first three ( N  = 3) operators, in the short wave- 
length region of the spectrum, one obtains an accuracy of 
about 20%, but this accuracy becomes worse in the long- 
wavelength region. However, if one considers the first eight 
operators b,, the errors do not exceed a few percentage 
points over the entire spectrum. 

The computing time is primarily determined by repeat- 
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FIG. 3. Same as Fig. 1, but with a, = - 1.2. 

ed evaluation of integrals of type (75). If instead one uses the 
analytic formulae (76)-(78), the computing time can be 
redu~ed by an order of magnitude. However, the possibility 
of using these formulae depends strongly on the spectral 
range. Moreover, the validity of the analytic expressions be- 
comes questionable as the power of r increases, since ever 
increasing distances r come from which are not correctly 
represented by the analytic expression (78) make the main 
contributions to the integrals. As mentioned above, in the 
short wavelength portion of the spectrum one may consider 
a smaller number of operators b, , so that in this region the 
analytic expressions are more likely to be valid. On the con- 
trary, the need to consider a larger number of operators b,  
for long wavelengths makes the use of analytic expressions 
inapplicable in the long-wave portion of the spectrum. 

6. CONCLUSIONS 

In the case of a two-photon absorption spectrum, the 
quantity of interest is the reduced absorption coefficient q, 
which is proportional to g i ,  so that the intensity is deter- 
mined by this small parameter. In order to obtain the re- 
duced absorption coefficient, the ratio q / g i ,  shown in Figs. 
1-3 as a function of wavelength, must be multiplied by a 
factor gi. In experiment, go 1. As a rule, even when pow- 
erful pulsed lasers are used, go is smaller than an atomic 
unit by several orders of magnitude. The possibility of per- 
forming experiments involving two-photon absorption in 
atomic-molecular collisions may thus appear doubtful. Nev- 

ertheless, as our calculations represented in Figs. 1-3 have 
shown, in certain regions the small two-photon absorption 
intensity may be partially compensated for (up to four or- 
ders of magnitude) by the large values of the ratio q/$i, 
which in the case of two-photon absorptions is much larger 
than the reduced absorption coefficient for one-photon ab- 
sorption. An additional possibility of compensating for the 
small intensity of the two-photon transition intensity is re- 
lated to the wavelength doubling of the pump radiation. 
Since the radiation intensity in this type of experiments is 
usually detected indirectly, more often than not by fluores- 
cence intensity of the products, working at lower frequencies 
may allow the use of more appropriate and more powerful 
lasers, thereby lowering the intensity requirement by orders 
of magnitude. As a result, the two-photon experiments ap- 
pear competitive with the one-photon experiments, and 
from the viewpoint of the theory presented here these pro- 
cesses may successfully complement each other. 

The main condition for the applicability of the present 
approximate theory is that the range of the electron-neutral 
particle Ypotential be small (p, - 1 a.u. ) as compared to the 
electron wavelength in the vicinity of Y, i.e., 

Another assumption is the disregard of nonadiabatic 
transitions. Strictly speaking, the system of differential 
equations ( 12) should be written in the form 

where 

The term (pj I+,) in the diagonal matrix elements (81 ) is 
smaller than q, because the quantity 

contains the parameter R, the relative approach velocity of 
the nuclei (R - 10 -4-10 - a.u.). Although this small pa- 
rameter appears also in the non-diagonal matrix elements 
(pi I+, ), it may not formally be neglected in (22) compared 
with V,, , because the latter is proportional to g o ,  a quantity 
for which there is no lower bound, so that (pi  J k k )  may very 
well be larger than V,,. Nonetheless, formulae ( 17) and 
( 19) may still remain valid without allowance for the non- 
adiabatic coupling parameter. Indeed, when going from 
from (12) to ( 17), an additional third term of the form 

appears in ( 15 ). Furthermore, in second order of perturba- 
tion theory, substituting in the right-hand side of ( 13) the 
quantities b, containing non-adiabatic contributions and Qk 

as given in (82), we obtain not four, but nine terms. Yet, not 
more than one of these terms have a stationary-phase point 
defined by Eq. ( 18). This is due to the fact that the charac- 
teristic variation time of the non-diagonal elements is deter- 
mined by the collision time of the particle Hand Y, which is 
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7, - 10 - 13-10 - l4 S. The possibility of neglecting non-adia- The solution of the nuclear part of the problem was 
batic effects is determined, as in the theory of collisions with- based on the Landau-Zener model, which, however, breaks 
out participation of the light field by the Massey parameter, down in the neighborhood of the points where the relative 
which in our case is wr , .  Hence, the adiabatic approxima- slope of the energy terms vanishes (satellite atomic lines). 
tion holds if The analysis of the problem at these points requires a more 

detailed investigation, using known methods of collision 
o.r,> I. (83) theory. 
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