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A phenomenological equation describing spiral-like thermal structures arising when a liquid film 
is formed on a metallic surface heated by a beam of laser radiation is suggested and studied. 

1. INTRODUCTION 

When a metal is heated by laser radiation, a liquid phase 
of either the metal itself or its compound (e.g., its oxide) is 
formed on its surface. The liquid layer can strongly influence 
the heating dynamics and lead to the formation of various 
surface  structure^.'.^ Furthermore, one often has to deal 
with liquid films in such applied problems as laser doping 
and welding of metals, lasting information recording, etc. 
Therefore it is interesting to study various aspects of the 
dynamics of thin liquid layers on metallic surfaces in the 
field of laser radiation. 

In Ref. 3 experiments are reported on vanadium heating 
by a confined beam of continuous radiation of a C 0 2 -  or a 
YAG-laser in the air, the laser power being equal to 150 W 
and the beam radius to about 1 cm. A liquid film of V,O, was 
formed on the metallic surface. It has turned out that, in 
spite of the radiation power being constant and the shape of 
intensity distribution being smooth, various spatially inho- 
mogeneous thermal structures are observed: one-dimension- 
a1 (in the form of a series of moving points) and two-dimen- 
sional (in the form of rotating spirals with a different 
numbers of arms) (see Figs. 1-3). 

Spiral waves (reverberators) have been observed in var- 
ious media and many times simulated numerically and ana- 
lytically (see Ref. 4 and the references therein). However, a 
feature of the systems studied is that reverberators exist also 
in homogeneous media, and the inhomogeneity either in- 
fluences their evolution and interaction or is necessary only 
at the initial stage of their formation. As for the system stud- 
ied in Ref. 3, the existence itself of spiral waves is caused by 
external inhomogeneity. 

The aim of the present study is the construction of a 
phenomenological model qualitatively describing the ex- 
periments of Ref. 3. 

2. PROBLEM FORMULATION. INSTABILITY OF 
INHOMOGENEOUSLY HEATED LIQUID FILM 

Consider the following problem. An axially symmetric 
beam of continuous laser radiation is incident on a hairline- 
thin infinite planar layer of incompressible liquid absorbing 
this beam. The inhomogeneity of intensity distribution in the 
beam gives rise to inhomogeneous distribution of tempera- 
ture Tover the plane of the layer and, as a consequence, due 
to the temperature dependence of surface tension o( T), to 
inhomogeneous distribution of the latter over the liquid sur- 
face. The spatial inhomogeneity of the o distribution leads to 
formation of hydrodynamical currents flowing in the direc- 
tion of V a  at the upper boundary of the liquid. As the radi- 
ation intensity grows, the velocity of hydrodynamical 

streams increases, and, at a certain critical value, the flow 
loses its stability. This effect is accompanied by breaking of 
the axial symmetry of the velocity and temperature distribu- 
tions in the liquid. The arising pattern of secondary currents 
is the observed spiral-like structure. 

To describe the dynamics and shape of secondary cur- 
rents, we assume that the beam size is much larger than the 
characteristic wavelengths of arising perturbations. This al- 
lows to consider the main flow as locally one-dimensional, 
having only the radial component of the velocity. The con- 
vective instability of the liquid layer caused by the tempera- 
ture dependence of the surface tension a under inhomogen- 
eous heating along one coordinate has been studied in Ref. 5. 
Below we list those results of this study which are most im- 
portant for us. 

Let an infinite thin layer of incompressible liquid be 
heated in such a way that the temperature at its upper 
boundary grows linearly along the x axis. This is effected by 
heat supply (in our case, by means of radiation) across the 
upper boundary. Thermal expansion of the liquid is absent, 
and o( T) = a, - yo(T  - To). The steady-state flow is 
found by solving simultaneously the equations of hydrody- 

FIG. 1 .  (a) The photograph of the surface of a vanadium target heated by 
a CO,-la~er.~ (b) The solutions of Eq. (3 ) at different times t = 1 1.7 ( I ) ,  
48.6 (2) ,  63.3 (3) ,  105.0 ( 4 ) ,  132.0 ( 5 ) ,  and 160.8 (6) .  
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FIG. 2. The results of numerical study of Eq. (2) at 
different times r = 230 (a),  560 (b),  and 3210 (c), 
and the experimental photographs from Ref. 3 
[(d)-24 s, (el-30 s]. The parameters have the 
following values: f l=  0.1, v, = - 0.01, a = 0, 
A = I , B = l , C = O , q = 8 0 " a n d R = 2 6 . 2 .  

namics and heat conduction. Then its stability is analyzed by 
solving numerically the relevant spectral problem. 

Since the coefficients of the equations obtained do not 
explicitly depend on the time t and coordinates (x,y) (the z 
axis is vertical, and the x axis is along the temperature gradi- 
ent, ylx, y l z ) ,  the perturbations can be considered propor- 
tional to exp(pt + ik,x + ik,y). The result is a spectral 
functionp(k,;k, ;b) having the temperature gradient b as a 
parameter. For a certain value of b = b, an instability can 
develop, i.e., the components k, and k,, for which Rep > 0, 
appear. The analysis performed in Ref. 5 has shown the fol- 
lowing. 

1)  The instability arises, first of all, for k, #O, k,, #O, 
i.e., the most stable modes make a certain nonzero angle $ 
with the x-axis. 

2) At the moment of stability loss (Rep = 0)  it turns 
out that Im(p) #O. This means that convective billows due 
to instability move with a finite phase velocity. 

3. DERIVATION OF A PHENOMENOLOGICAL EQUATION OF 
LIQUID-FILM DYNAMICS 

Problem formulation: derive a phenomenological equa- 
tion for weakly supercritical structures on the basis of the 
above data concerning the perturbation spectrum. First, we 

FIG. 3. A-the photographs of spiral-like struc- 
tures arising on the vanadium surface under the 
heating by a beam of C0,-laser radiation. The beam 
diameter d is 2.4 cm, its power is 150 W. The time 
t = 174.5 s (a), 175.0 (b),  175.5 (c), 176.0 (dl ,  
183.3 (e), and 183.5 (f)  is measured from the mo- 
ment, when thelaser is s ~ i t c h e d o n . ~  B-theresults 
of numerical study of Eq. (2) at different times 
r = 2400 (a),  4431 (b), 4443 (c), 4527 (d) ,  and 
4566 (e). The parameters have the following val- 
ues: B=0.1, u,= -0.1, a=O,  A = 1 ,  B = 1 ,  
C = 0, 4 = 45" and R = 20.67. The time period is 
T =  84. 
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find the form of the linear part of the equation in the pres- 
ence of translational symmetry along they axis. In the case 
of weak supercriticality the behavior of the system is deter- 
mined, in view of the subordination pr in~iple ,~ by unstable 
modes. The plot of any function of general position depend- 
ing on two variables is close to a paraboloid near its maxi- 
mum. Therefore we can write for the increment p near the 
instability threshold (in the space of wave vectors) 

where p is the supercriticality parameter, A, B, and C are 
constants satisfying the condition of positive definiteness of 
the corresponding quadratic form, AB - C 2  > 0, and the 
wave vectors ( + k,, , + koy ) define the directions of the 
most unstable modes, for which Re(p) is a maximum. The 
imaginary part of the increment of perturbations that move 
with a nonzero phase velocity v(k),  is 

For small values of supercriticality we are interested in 
the behavior of Im(p) only in the vicinity of unstable modes. 
The simplest approximation of the function v(k)  describing 
drifting billows whose fronts make an angle $with the x axis, 
is v, = v,/cos $, vy = 0. This means that all structures drift 
along the x axis, and v, is the drifting velocity of the billows, 
inclined at the angle $ to the x axis, in the direction of k,. 
Other approximations of v = v(k)  is also possible. 

To pass on from the perturbation spectrum to the equa- 
tion for a real order parameter w, which may be interpreted 
as a deviation of the temperature from the equilibrium value, 
we make the change of variables k + - iV andp + d /at. Fur- 
thermore, it is necessary to add nonlinear terms, which 
would eliminate the instability. By analogy with the Swift- 
Hohenberg e q ~ a t i o n , ~  we write the nonlinearity in the form 
aw2 - w3. Thus, we arrive at the equation 

Here lkol is of the order of l/d, where d is the width of the 
liquid layer, and the sign of v, coincides with the sign of do/ 
d T  (which is arbitrary for solutions). 

Equation ( 1 ) has a certain generality, since it describes 
the loss of stability by modes whose wave vectors make a 
certain angle $ with the x axis. In fact, the spectral function 
always has such a form near the maximum [with the form of 
Rep preserved under the substitutions k, + - k, 9 

ky - - ky 1, and the behavior of the damped modes is not 
important due to the subordination principle. Note that for 
A = B = C and v, = 0 this equation reduces to the Swift- 
Hohenberg equation with the maximum of the linear growth 
rate on the ring lkl = k,. 

Up to now it was implied that the vector Va points to 
the negative x axis. If the external inhomogeneity is given in 
the form of the field a(x,y) at the upper boundary of the 
liquid, then, for the (T inhomogeneity scales much larger 
than l/k,, it is natural to make the change: d /dx+n,V, d /  
dy+n2V, where n, is the unit vector along Va, and n, is the 

unit vector in the perpendicular direction. We can assume 
that p, A,  B, C, k, , koy , and v, are smooth functions of the 
space coordinates. The specific form of these functions 
should be chosen in such a way that they reproduce the form 
of the perturbation spectrum for the locally one-dimensional 
main flow at a given point (if the corresponding depen- 
dences are known). 

Taking all this into account, we arrive, in the case of 
axial symmetry, at the equation 

Here v, is the phase velocity of the drift of the most unstable 
structure, r is the polar radius, g, is the polar angle and k,/ 
k, = cot $. As for the dependence of the parameters in Eqs. 
( 1 ) and (2)  on the gradient 6, the data of Ref. 5 do not allow 
to determine the corresponding relations. Therefore we will 
consider them, for the sake of simplicity, to be constant. In 
any case, in the framework of the suggestions made above, 
the variations of these quantities at distances of order l/k, 
should be small. Numerical estimates of the parameters 
made using the results of Ref. 5 give values of b, of the order 
of tens of K/cm. 

4. ANALYSIS OFTHE PHENOMENOLOGICAL EQUATION IN 
ONE DIMENSION 

In the series of experiments described in Ref. 3 the heat- 
ing conditions were closest to those of the one-dimensional 
problem. A laser beam was focused with the help of a cylin- 
drical mirror onto the plane of a target. The spot had the 
form of a strongly elongated ellipse. In the process of heating 
hot points formed near the center of the target and propagat- 
ing to its edges were observed (Fig. la) .  The dynamics of 
these structures can be described phenomenologically in the 
framework of the one-dimensional version of the model (2).  
In one dimension Eq. (2 )  has for k, = 1 the form 

The supercriticality P(x) ,  according to its physical mean- 
ing, is negative in the region far from the center of the one- 
dimensional laser beam, where the temperature gradients 
are not large. Furthermore, it can be negative in the middle 
of the beam, where the radial component of the main flow 
velocity is small. It is also evident from the meaning of the 
quantity v(x) that it should have different signs on different 
sides of the temperature distribution maximum. Equation 
(3)  should be supplemented by boundary conditions 

where I is the size of the region. Note that the problem (3)  in 
a finite region for v = 0 contains a Lyapunov f~nct ional ,~ 
and, therefore, its solutions tend to stationary states for long 
times. Furthermore, separation of the variables in Eq. (3) 
linearized near w = 0 gives rise, in this case, to a self-conju- 
gate eigenvalue problem, and the increments of correspond- 
ing modes turn out to be real. The term vdw/dx destroys the 
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self-conjugacy of the problem and the Lyapunov functional. 
Therefore stable nonstationary regimes become possible. 
There is no fundamental difference between one and two 
dimensions in this case. Oscillations arise due to interaction 
between modes. Let us see how this happens in the case of 
two interacting modes. 

For P(x)  = const and u(x) = 0, the solutions of the 
boundary problem (3), (4)  linearized near the point w = 0 
are cosines. Consider two neighboring interacting modes. 
Let the solution have the form w =s ,  cos(klx) 
+ s, cos (k,x) . 

Substituting this solution into (3)  and averaging over 
fast oscillating phases, we find for a = 0 

where K, are corresponding matrix elements of the pertur- 
bation u (x )  . 

In the absence of perturbation ( K, = 0)  for p,,p, > 0 
there is an unstable node at the point s,  = 0, s, = 0. When 
the perturbation is switched on, the roots of the characteris- 
tic equation of the system ( 5 ) ,  linearized near s, = 0 and 
s, = 0, are given by the expression 

If, as it usually takes place, V1,V,, < 0, then, for 
I V,,V,, 1 > ;(p, -p2 + Vll - V2,12, the instability of the 
zero equilibrium position has an oscillating character. As 
perturbation increases, asymmetrization of the phase por- 
trait of the system (5 )  occurs. For a certain critical value of 
the perturbation all its nonzero equilibrium positions van- 
ish. If the zero equilibrium position is unstable at the mo- 
ment of confluence of the last saddle-node pair, then a stable 
limit cycle with zero frequency is created from the separatrix 
loop. If the interacting modes are assumed to be close to each 
other, the cycle is created when I V,,I > Ip + ~, ,1 /2 .6"~ .  If 
the perturbation increases further, the zero equilibrium po- 
sition can become stable for Vll + V,, < 0 [see (6)  l .  Then 
the oscillating regime vanishes softly via an Andronov-Hopf 
bifurcation. In the two-mode approximation this occurs at 
P1 +P2 + VII + v22 = 0. 

If the region dimensions are large enough, not only two, 
but many modes of the relevant linear boundary problem 
can have positive increments. This leads both to a shift of the 
oscillation thresholds and to the onset of more complicated 
regimes. 

Numerical analysis of Eq. (3)  has confirmed the con- 
clusion that oscillating regimes are created with zero fre- 
quency as the drift term increases. The boundary-value 
problem (3) ,  (4 )  has been solved by an implicit scheme, 
using a five-point run with nonlinearity iteration.' Figure lb  
shows the w(x) dependences for different times in the case of 
the oscillating regime. Here I = 18.3a, P (x )  = - 0.3 ( 16/ 
1 ,) (x  - 1/4) (x  - 31/4),andu(x) = - 0.7(2x/l- l).The 
initial conditions are w (x )  = 0.3 cos ( 18~x / l ) .  The period T 
is equal to 112. The observed picture agrees qualitatively 
with the sequence of the photographs in Fig. la. 

5. ANALYSIS OF THE PHENOMENOLOGICAL EQUATION IN 
TWO DIMENSIONS 

Consider now Eq. (2)  describing the time evolution of 
the function w(x,y). Let us show that the introduced equa- 
tions can describe the spiral-like structures. In fact, the per- 
turbations have locally the form of quasiharmonic billows 
making everywhere the same angle qb with the radius-vector. 
Therefore it is evident that the line of constant phase should 
be close to a logarithmic ~ p i r a l . ~  Since the period of the struc- 
ture remains roughly the same, as new arms of the spiral are 
created as the distance from the center increases. 

Since Eq. (2)  has a term describing drift along the radi- 
al coordinate, the many-arm spirals will move either away 
from the origin or towards it. If for an arbitrary polar angle q, 
the spiral twists in the same direction, its motion can be in- 
terpreted as rotation. Both twist directions are equiprobable, 
but they cannot coexist. In the case of a purely cubic nonlin- 
earity one of the structures necessarily suppresses the other 
through nonlinear interaction. This can be shown on the 
basis of the reduced equations for the mode amplitudes in the 
case of translational symmetry. 

Thus, spirals twisted in opposite directions cannot 
coexist in the same spatial region. Nevertheless, their coexis- 
tence is possible in different regions. The results of numeri- 
cal calculation show that while moving along the angular or 
radial coordinate the direction of the spiral twist often 
changes. This can apparently be accounted for by the fact 
that in such a way it is easier to satisfy the condition of con- 
stancy of the structure period when moving away from the 
center. 

We give now the results of the numerical analysis of Eq. 
(2)  for C = 0. The problem has been solved by an implicit 
scheme using separation of the angular and radial coordi- 
nates. At every half-step the solution has been found by the 
method of a five-point r u n h i t h  boundary conditions 

Nonlinear terms have been introduced into the coefficients 
of the run. 

Figures 2a-2c show an example of numerical analysis of 
Eq. (2 )  with boundary conditions 

w I ,,,=0,3 cos (027,47cp+282,9r). 

Figures 2d and 2e show the photographs of the structure 
recorded in Ref. 3 for a medium focusing of the radiation 
beam (diameter d equals 1.8 cm). It is seen that the number 
of arms increases with the distance from the center. 

The numerical results close to the structures shown in 
Fig. 3A have been obtained by introducing the,relations 

kr= (R13r)"' cos I), k,= (R/3r) '" sin I) 

for initial conditions 

w I ,=,,=O,3 cos (IEicp+2,23r+0,17), 

(see Fig. 3B). 
Figure 4 shows an example of a rotating spiral-like 

structure with the number of arms increasing with the dis- 
tance from the center. The initial conditions are 
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FIG. 4. The results of numerical study of Eq. 
(2)  at different times t = 2205 ( a ) ,  2241 (b),  
2277 (c),  2313 (d) ,  and 2349 ( e ) ;  k, = cos $, 
k- = sin 11. The parameters have the following 
vilues: P=0.1 ,  u o =  -0.1, a = 0 ,  A = l ,  
B =  1, C =  0, $=  45",and R =40.338. Thepe- 
riod T of the quasiharmonic process, at the 
mints r = R is 108. 

s 1 ,=.=0,145 sry [-  cos (18rp+0,25nr+ 0,17) 

(r-0,33R)'] 
+O.i exp[ - . , cos (6rp+0,25nr+0,17) 

(b,b3iij2 

Owing to the nonuniform rotation velocity at different dis- 
tances from the center, the arms reclose. 

It is seen from Figs. 2-4 that by varying the coefficients 
in Eq. (2) we can simulate various experimental situations. 

Numerical studies have shown that, as the Swift-Ho- 
henberg equation, Eq. (2) has many different attractor solu- 
tions (including nonstationary ones in our case). The ques- 
tion of their regions of attrzstion has not been studied in 
detail. 

6. CONCLUSIONS 

The main conclusions of the present study are the fol- 
lowing. The structures in the form of hot points and rotating 
spirals with many arms, observed in the experiments on va- 
nadium heated by laser radiation, can be described as a result 
of interaction of weakly supercritical secondary flows due to 
loss of stability by thermocapillary convection. Such a con- 

vection is caused by spatially inhomogeneous distribution of 
a over the surface of the liquid vanadium oxide. The struc- 
tures mentioned above can be qualitatively described by a 
?henomenological equation for an o rdx  parameter obtained 
with the help of data on the perturbation spectrum near the 
threshold of stability loss. 
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