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A theory is developed describing the drift of a planar 180-degree domain wall in a collinear 
antiferromagnet with equivalent sublattices in a weak external magnetic field oscillating with an 
arbitrary frequency. The character of the dependence of the drift velocity on the frequency and 
polarization of the oscillating field is determined for different ratios of the parameters of the 
uniaxial and planar anisotropy. 

A reasonably complete theory of the drift motion of 
domain walls (DWs) or their elements in an oscillating field 
has been constructed for ferromagnets (FMs). This was 
made possible by the simplicity of the single-sublattice mod- 
el. There exist several approaches to solving the problem of 
the dynamic response of such a magnet to nonlinear external 
excitations. According to Schlomann,' in a circularly polar- 
ized field a domain wall should be subjected to an effective 
pressure, arising due to the difference of the magnetic energy 
density on both sides of the wall. Another approach employs 
the assumption that the frequency w of the oscillating field is 
much higher than the frequency of the characteristic oscilla- 
tions of the or the frequency of oscillations of the 
domain Finally, a systematic theory was recently de- 
veloped for domain-wall drift without the restriction w)w, 
but assuming that the amplitude of the oscillating field is 

These theories are supported by many experimental 
results, most of which were obtained in our country. 

At the same time, domain-wall motion in an external 
oscillating or nonuniform magnetic field is characteristic not 
only for magnets with ferromagnetic ordering. In particular, 
Bar'yakhtar et al.' pointed out that such motion is possible 
in antiferromagnets ( AFMs), and this has been established 
experimentally .8 

In the present paper a systematic asymptotic theory is 
constructed for the drift of a flat domain wall in a multi- 
sublattice magnet in a weak oscillating field. The oscillating 
field is assumed to be elliptically polarized, and the limiting 
cases of high and low frequencies of the field are studied. 

1. EFFECTIVE EQUATIONS OF MOTION OF THE 
MAGNETIZATION OF AN AFM IN AN OSCILLATING FIELD 

In order to describe the dynamics of a two-sublattice 
anisotropic AFM we start from the equations for the nor- 
malized ferromagnetism vector m and antiferromagnetism 
vector 1, which are related to the magnetization vectors M ,  
and M ,  of the sublattices by the relations 

Mt+-Mz Ml-M2 
m=- I = -  

(1)  
2Mo ' 2Mo ' 

where y is the gyromagnetic ratio, E is the damping param- 
eter, 

are the effective magnetic fields, and W is the energy of the 
AFM. 

We represent the energy of a collinear AFM with ortho- 
rhombic symmetry in an alternating field as a sum of the 
energy Wo of the AFM itself and the energy of the alternat- 
ing field W, : 

Here 6, a,,  and a, are the homogeneous and inhomogeneous 
exchange constants, respectively; PI, P, and p,,  p ,  are the 
uniaxial and planar anisotropy constants; h, = Hc/Mo is 
the constant external field, which we assume is parallel to the 
uniaxial anisotropy axis H, = H,e,; h'"' = H'"'/Mo is the 
oscillating magnetic field, where H'"' = R ~ ( H  exp(iot) ). 

We determine the ratio of the anisotropy constants in a 
manner so that the domain wall is oriented in the zx plane 
and the ferro- and antiferromagnetism vectors rotate in the 
plane of the wall 

Setting IM, I = IM,I = Mo we obtain the conditions which b-$~>o, p~-pz<O. 

relate the vectors m and 1: We substitute the explicit form of the effective fields 
into Eqs. (3)  and then take into account the fact that in the mz+lz=l. (ml) =0. (2 )  long-wavelength approximation all terms containing gradi- 

The dynamics of these vectors in the presence of dissipation ents of the magnetization, together with the terms stemming 
is described by the system of Landau-Lifshitz equations: from the magnetic anisotropy energy, can be d r ~ p p e d . ~  As a 
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result, since the inequality m2412 is also satisfied, as is ob- 
vious for a collinear AFM, we obtain the following equations 
for the vectors m and 1: 

[ll] - ca [lln] = ooYz [lez] + qalu [I$] - v [ll] 
-ya(1H)[1H]-y{21(1~)-~(")+1(1~~Ei(0))},  (8) 

where the prime denotes differentiation with respect toy; c is 
the characteristic velocity, which for H = 0 is equal to the 
minimum phase velocity of spin waves in the linear theory; 
and, w, is the frequency of uniform resonance of magnetiza- 
tion oscillations with H = 0 (Ref. 9).  It is easy to see that on 
the one hand the relations obtained above with H'"' = 0 are 
identical to the analogous well-known formulas of Ref. 9, 
while on the other hand they show that they can also be used 
to describe nonlinear waves of magnetization of an AFM in 
the absence of a constant field, the role of which, in the last 
case, the field H'"' plays. For this reason, in what follows the 
constant field is not necessarily taken into account in Eq. 
(8).  

2. PERTURBATION THEORY 

By analogy to ferromagnets6 we assume that the dy- 
namic distribution of the vector 1 in the domain wall of an 
antiferromagnet can be represented in the form 

where y = y - Y(t), Y(t) has the meaning of a coordinate, 
and L(y) and n(y,t) describe the distribution l(y,t) in the 
coordinate system of the domain wall. 

Substituting Eq. ( l o )  into Eq. (8)  we obtain 

[L;] -P[L~']+ (P)'[L, L"+n"] -Y [L, Lp+n' ]-c2[LL"] 

-oo2L,[Le,] -or2L,[Le,] +v [L, n-Y (nf+L') ] 
(11) 

Next we set 

P(t)=V,+V,+. . .+li,(t)+li,(t)+. . . , 
Y (t)=V,+V,+. . .+ii, (t) +ii,(t)+. . . 

with zero mean values of the oscillating variables 

&(Y, t) and u,(t) (13) 

(nc)=(di>=<iiO=O, i= l ,  2, . . . , 

where the numerical indices indicate the order of smallness 
of the quantities relative to the amplitude of the oscillating 
field. 

Since we are interested in the stationary motion of a 
domain wall, we write out, using Eqs. ( 12) and ( 13 ), the 
zeroth (ground state) and first two orders of the perturba- 
tion theory for Eq. ( 11 ) : 

These same conditions ( 12) and ( 13) applied to the rela- 
tions (2)  yield 

L,2=2, L,Ln,, <(n,)')= -2L,L,. (17) 

The equation of the ground state (14) has a well-known 
solution in the form of a quasi-Bloch planar domain wall 

L0(y)=e,sin O(y)+ezcos e(y),  (18) 

sin 0(y) =ch-I (y/A), cos 0(y)= -th (y/A), A=c/o,. 

The equations of the higher order aproximations ( 15) and 
( 16) are most simply studied in a local Cartesian coordinate 
system {e, ,ey ,ell 1, which we orient so that 

In what follows we drop the order indices of the quantities n, 
and L,. 

As a result the equations for both the oscillating vari- 
ables ( 15) and the average variables ( 16) split into indepen- 
dent equations for the components ii, (c) ,  ii, ({) and L, (61, 
Ly : 
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= (E) ':(R:' C O ~  e-R? sin 0 )  . 

N= (nn'-nLnA1)2 sin 0- (n,)2 sin 20 

v, - ($)'sin 0  cos B+V (-sin A 0 + 2 ( l i , ~ , ' ) ) ]  

+ (l ) ' [H:"' H?' cos 20+ ( (H:" )'- (H:.' )')sin 0  ms 01 
00 

+ ( $ ) $ [ n , ( ~ : * ' s i n  B+H:.' cos B ) ] .  

( 2 2 )  

Here 

n(f, t )=Re [n(E) exp ( i o t ) ] ,  u , ( t )=Re  [Eexp ( i o t ) ] .  

We do not write out the equation for L, ( f ) ,  since it does not 
contain the desired quantity V, and for this reason it is of no 
further interest to us. 

The obtained eq~ations include the negative-definite 
self-adjoint operator A?. The zero eigenvalue of this opera- 
tor, describing a uniform shift of the domain wall, corre- 
sponds to the eigenfunction 8 ' ( f )  = sin 8 ( f  ). Hence it is 
easy to find the solutions of these equations. Thus the condi- 
tion for Eq. ( 2 2 )  to have a solution is that the right-hand side 
of the eqtation be orthogonal to the eigenfunction of the 
operator A?. AS a result, we obtain an expression for the drift 
velocity of the domain wall similar to the corresponding 
expression for a ferr~magnet:~ 

3. APPLICATION OF THE THEORY 

Let the oscillating field be polarized in the plane of the 
domain wall, i.e., By' = 0 .  In this case the solution of Eq. 
( 2 0 )  can be found in the form f i ,  (6) = a, sin 8 + a, cos 8 .  
Substituting it into Eq. ( 2 0 )  we find 

The solution of Eq. ( 2 1 )  can be found similarly, and it is 
equal to 

i o ~ f l : ~ )  sin - i o y ~ r '  
'(')= w (.+iv) +o: 

cos 8. 
o ( o + i v ) + o l 2 + o t  

( 2 5 )  

Using the solutions ( 2 4 )  and ( 2 5 ) ,  we obtain from Eq. ( 2 3 )  
an explicit expression for V,: 

where 

We shall analyze the limiting cases. 
First we note that there is a definite relation between the 

drift velocity, and the symmetry of the AFM. In this connec- 
tion we distinguish AFMs having orthorhombic symmetry 
( w , ~ ~ , ) ,  substantially uniaxial AFMS (w,  > w ,  2 v ) ,  and 
uniaxial AFMs ( w ,  = 0 ) .  The parameter v, determined by 
relaxation and uniform exchange, also plays a characteristic 
role. 

For orthorhombic AFMs the ratio of the parameter v  
and the frequency of the oscillating field w  is of no funda- 
mental significance, if they are significantly lower than the 
uniform-resonance frequency w, ( v , o  (a,) : 

For a substantially uniaxial AFM, with the same restriction 
on the values of v  and w  depending oin their ratio, we have 

v2=Vd[;-;)' Re(??'))' for 

V  - Vd Re(h("))' for o > v .  ' -2  ( 3 1 )  

The drift velocity in a purely uniaxial AFM is equal to 

It is obvious from the expressions ( 3 0 )  and ( 3 2 )  that 
for low frequencies of the oscillating field ( w ( v ( w , )  the 
drift velocity is proportional to the small quantities ( w / v )  
and ( w / o ,  ) ', and since v  and w ,  are fixed parameters, it is 
obvious that the drift velocity decreases as the frequency w  
decreases. For orthorhombic AFMs this result is also valid 
at frequencies w  ) v ( 2 9 ) .  For substantially uniaxial and 
purely uniaxial AFMs in the frequency interval v  ( w  (0 ,  

the drift velocity does not depend on the frequency of the 
oscillating field and is proportional only to the squared am- 
plitude of the field. The strongest effect should be expected 
in this case [formulas ( 3  1 ) and (33  ) 1. 

If the frequency of the oscillating field is much higher 
than the frequency of uniform resonance ( w  % w,) ,  then the 
drift velocity is determined uniquely and is equal to 

733 Sov. Phys. JETP 74 (4), April 1992 V. S. Gerasimchuk 733 



This result agrees with the well-known results of Refs. 2-4, 
where it is shown that the effect of a rapidly oscillating field 
is proportional to the parameter (yg '"'/a)2. 

Substituting typical values for AFMs A- cm, 
6- lo3, P-p- 1, Mo- 10' Oe, A- (A = &/Mo is the 
dimensionless relaxation constant), we obtain a,- 10" s- I, 
Y-108s-', Vd-105m/s. 

The amplitude of the oscillating field (the small param- 
eter of the problem) is a quite variable parameter. The point 
is that although the proposed theory is applicable if the am- 
plitude is small, the upper limit for the theory is still deter- 
mined by the reasonable requirement that the drift velocity 
should not exceed the velocity of the domain wall for the 
given magnet in an external oscillating field. 

From the limiting relations presented above [especially 
the relations (3 1 ) and (33) ] it is obvious that even for R< 1 
the drift velocity of the domain wall has a significant value: 

An appreciable effect can also be observed in all other cases 

with the appropriate choice of the parameters of the oscillat- 
ing field. 

I thank Yu. I. Gorobets and S. I. Denisov for helpful 
discussions and remarks. 
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