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Using an extension of the memory-function method to the case of low temperatures, we derive an 
analytical expression for the curve of the magnetic-resonance absorption line. The expression 
takes into account the first four moments of the lineshape. The results are in good agreement with 
experiment. 

1. INTRODUCTION 

The low-temperature theory, based on the method of 
moments, of the shape of a magnetic-resonance absorption 
line appeared in the 1950s and basically reduced to calculat- 
ing the corresponding moments of the resonance line. The 
first three moments for the EPR line1.' and the first moments 
for the NMR line (Ref. 3, Vol. 2)  were calculated. It was 
shown experimentally and theoretically semiqualitatively 
that as the temperature decreases the EPR line narrows and 
becomes asymmetric, irrespective of its shift1.' (in the case 
of a cubic lattice with zero first moment the third moment 
was found to be nonzero). The same thing was observed in 
the case of NMR on 19F-nuclei in CaF,, where the shape of 
the resonance line transformed with increasing polarization 
of the nuclei from Gaussian to Lorentzian (Ref. 3, Vol. 2) .  
We note that when the method of moments is applied in both 
the high- and low-temperature regions the lineshape is 
judged according to the ratio M4/M :, where M2 and M, are 
the second and fourth moments of the resonance line: if M,/ 
M: = 3 holds, the line is considered to be Gaussian and its 
width is determined only by the second moment M2; if, how- 
ever, we have M4/M: % 3, the line is considered to be Lor- 
entzian and its width is determined by both the second and 
fourth moments. As a rule, however, for specific materials 
the ratio M4/M: is never exactly equal to 3 and it is obvious 
that even in the case of a Gaussian shape, apart from M2, 
higher order moments should also contribute to the line- 
width. In addition, it is impossible to obtain an analytical 
expression for the lineshape with the help of the method of 
moments and, correspondingly, it is impossible to compare 
with experiment. It is in this connection that a theory giving 
an analytical expression for the lineshape, was developed in 
the high-temperature region with the use of memory func- 
tions (Ref. 3, Vol. 1 ) . 

In the present paper the method of memory functions is 
extended to the case of low temperatures. We note that we 
assume that the temperature of the Zeeman spin subsystem 
is low (the polarization ofthe nuclei is high, i.e., fiw,/kT2 1, 
where &I, is the Zeeman splitting, k is Boltzmann's con- 
stant, and Tis the absolute temperature), while the tempera- 
ture of the secular dipole-dipole interactions is assumed to be 
high (spin-spin ordering is much smaller than the Zeeman 
ordering, i.e., fiw, <kT, where fiwd is the average dipole- 
dipole interaction energy ), which is entirely valid in the case 
of strong constant external magnetic fields (Ref. 3, Vol. 2) .  

As is well known, in the memory-function formalism 
the high-temperature theory of the shape of a resonance line 
consists of using the integrodifferential equation 

1 

where Go( t )  and KO( t) are, correspondingly, the high-tem- 
perature correlation functions of the lineshape and the mem- 
ory, whose odd moments are equal to zero (Ref. 3, Vol. 1 ). 

At low temperatures the situation is somewhat more 
complicated, since the odd moments of the low-temperature 
shape function G(t)  and memory function K( t )  are now 
different from zero [K( t )  is expressed in terms of the deriva- 
tives of the spin operators I' ( t ) ,  from which the correlation 
function G(t) is con~t ruc ted~.~] .  In what follows we take 
into account only the first Nl  and second N2 moments of the 
memory function K( t ) .  It is easy to verify that for nonzero 
first moment M, of the function G(t) the mathematical de- 
vice employed in Ref. 3 (Vol. 1)-substitution of the La- 
place transforms of the power series expansions of G(t)  and 
K( t )  into a Laplace transform equation of the type ( 1) for 
the functions G(t) and K(t)--cannot be used to express the 
moments N, of the memory function K( t )  directly in terms 
of the moments M, of the correlation function of the line- 
shape G( t)  because the conditions for the applicability of the 
theorem concerning the convolution of functions in La- 
place's method are not satisfied. For this reason, we employ 
at the outset the approximation5 

and write an equation of the form (1)  for the "unshifted" 
shape function G ,  ( t ) :  

t 

and in addition K(0)  = M i  is the second moment of the 
function G, ( t ) .  

Applying to Eq. ( 3 )  the Laplace transform, we find 

zG, (2)-l=-K(z)G,(z), 

whence we find 
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where 

and w is the frequency of the alternating magnetic field. 
As in Eq. (2),  we separate from K( t )  the first moment 

N, and employ for the "unshifted" memory function K,  ( t )  
the usual Gaussian approximation 

where M ;  and N; are the second moments of the functions 
Gl ( t )  and K,( t ) ,  respectively, whose first moments are 
equal to zero ( M  ; = N ; = 0). Laplace transforming Eq. 
(7  and using Eq. (6)  we find 

where 

is the Dawson (plasma dispersion) function, which has a 
bell-shape in the interval [0,0) with a maximum value of 
~ 0 . 5 4 . ~  

We now express N, and N $ in terms of the moments 
M,, M,, M,, and M4 of the shape function G ( t ) .  For this we 
first find a relation between the moments of the functions 
GI ( t ) ,  K, ( t )  and G(t),  K(t) .  We differentiate the expression 
(2)  with respect to time and find 

Similarly, from Eq. (7) we obtain 

Substituting into Eq. (4) the expansions 

and using Eqs. ( 10) and ( 11 ), we find 

where,uf = M L / ( M ; ) ~ .  
Using now the expressions (8)  and (9),  keeping in 

mind the expressions ( lo),  ( 14), and ( 15) and using the fact 
that, according to Eq. (2),  G(A) = G, ( A  + N, ), we finally 
obtain from Eq. (5 ) 

where 

The formula ( 16) gives an analytical expression for the 
shape of the magnetic-resonance line at low temperatures in 
the memory-function formalism, taking into account both 
the shift and deformation of the line, which are determined 
by the moments MI  and M,, respectively. We note that, hav- 
ing written an equation of the form ( 1 ) for the memory func- 
tion itself, we can take into account the contribution of the 
higher-order odd moments. 

3. COMPARISON WITH EXPERIMENT 

The following relations (Ref. 3, Vol. 2)  are valid for a 
spherical sample of CaF, with a simple cubic lattice, a sys- 
tem of nuclear spins with I = 1/2, and orientation of the 
external constant magnetic field H,JJ [ 1001 : 

where p is the spin polarization and M,(O) is the second 
moment at high temperature (p 4 1 ). Substituting these ex- 
pressions into Eqs. ( lo) ,  ( 14), and ( 15) we obtain from Eq. 
(16). 

where 

One can see that as p-0 (high temperatures) f (x)  
transforms into its high-temperature analog given in the 
monograph Ref. 3 (Vol. 1 ) . The computer calculations, per- 
formed using the formula ( 18) for polarization p, = 0.355, 
p,  = 0.57, p, = 0.785, and p4 = 0.87, corresponding to the 
experimental values of Ref. 3 (Vol. 2),  are presented in Fig. 
1 (solid lines). In the same figure the dashed lines show the 
experimental curves of the absorption line shape for the 
same values of the polarizations (Ref. 3, Vol. 2) .  

Since for MI  = 0 we have M;/(M; )2 = M ~ / M ~ ,  it is 
easy to see that asp-0 the function f (x)  assumes a shape 
close to Gaussian (for example, forp = 0.355 we obtain M,/ 
M: z2.34),  while f o r p z  1 the shape of the resonance curve 
is close to Lorentzian (for p = 0.87 we have M4/M: 
z 5.36), to which the resonance curves in the figure corre- 
spond. As for the ratios of the heights of the absorption lines, 
they are practically of the same order of magnitude as the 
experimental ratios [the height of the resonance line is main- 
ly determined by the first term of the denominator in the 
formula ( 18) 1. In the experiment, however, as one can see 
from the figure, the height of the line increases more rapidly 
with increasing polarizationp than follows from the expres- 
sion ( 18). For example, the ratio of the heights of the experi- 
mental lines, corresponding to the polarizations 0.87 and 
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FIG. 1. Shape of the absorption signal for different values of the polariza- 
t i o n : ~  = 35.5% (1),57% (2),78.5% (3),and87% (4).Thesolidcurves 
represent the calculation using the formula ( 18); the dashed curves repre- 
sent the experimental results (Ref. 3, Vol. 2). 

0.785, is equal to ~ 2 . 3 ,  while according to the formula ( 18) 
we have -- 1.48. The greatest difference occurs between the 
ratios of the heights of the absorption curves for the polariza- 
tions 0.87 and 0.355: =: 11.2 in the experiment and z 3 from 
the expression ( 18). 

The computational results also differ from the experi- 
ment in the base of the lines (on the wings of the resonance 
lines). This difference results from the fact that the present 

approximation takes into account only the second and 
fourth moments M, and M, of the lineshape. As one can see 
from the figure, the lineshape and linewidth agrees best with 
experiment in the case of highest polarization. It is obvious 
that the maxima of the experimental curves are shifted more 
for lower values of the polarizations, while for a polarization 
of p = 87% the shift of the top of the theoretical curve is 
insignificant. This can be explained by the fact that, first, in 
the present approximation, together with the higher order 
even moments of the lineshape (M,,M,, ...), the contribu- 
tions of the higher odd moments (M,,M,, ...) are neglected 
and, second, according to Eq. (17), as p-+ 1 the moment 
M, -0 and its contribution to the deformation of the line is 
minimal. 

Finally, we note that the center of gravity of the curve is 
virtually unshifted because M,  = 0; as one can see from Fig. 
1, this also agrees with experiment. 
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