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A theory is constructed for the Hall effect for ultrasmall polarons, with radius much smaller than 
the lattice constant and comparable to the amplitude of the thermal vibrations of atoms. It is 
shown that the Hall mobility pH in this model differs radically from the drift mobility. The 
temperature ofp, does not have the simple activational form, but rather it has the form 
ln(p, T 'I2) - kT/eH - EaH/kT, where EaH is three times smaller and e, is eight times larger 
than the activation energy of drift mobility. This result makes it possible to reliably identify 
ultrasmall polarons from measurements of the temperature dependence of the Hall mobility and 
electric conductivity (under the condition that the current carrier density is constant). 

A new model of low mobility was formulated in Ref. 1. 
It is an extension of the model of small-radius polarons. In 
this model the effect of the displacements of atoms of the 
crystal lattice from their equilibrium position as a result of 
phonon vibrations on the intersite resonance integral, which 
determines the width of the bare electronic band, is taken 
into account. This effect is caused by the change produced in 
the overlapping of the electronic wave functions on neigh- 
boring lattice sites due to the change in the interatomic dis- 
tances accompanying thermal displacements. The possibil- 
ity that the dependence of the resonant integral on the 
phonon variables could affect the behavior of small polarons 
was first pointed out in Ref. 2. However this effect was first 
specifically discussed in Ref. 3. 

1. FORMULATION OFTHE PROBLEM 

The Hamiltonian in the model of ultrasmall polarons 
after the polaron canonical transformation was derived in 
Ref. 1. Neglecting the electron-electron correlations, it has 
the form 

Here w, is the frequency of a phonon with momentum q (in 
order to simplify the notation, here q, generally speaking, 
also incorporates the number of the phonon branch j), b 
and b, are phonon operators, a,+ (a, ) are operators creat- 
ing (annihilating) electrons at the lattice site m, I,,, is the 
intersite resonance integral for atoms which are at rest in the 
position of equilibrium, and q,,, is a multiphonon operator 

Here 

u m ( q )  = ( 2 N )  -"-rq oxp(-iqRm), 
(3)  

u,,. ( q )  = (2N)-X6mm, ( q )  {exp;-iqRm)-exp ( - i q R m , ) ) ,  

R, is the radius vector of the mth site, y, is the electron- 

phonon coupling constant (in the Froelich Hamiltonian), N 
is the total number of atoms in the system, 

h '" 6,,,,. (q) = a (=) ( e ,  (Rm--Rfd ) ) I R m - h  1 -'. (4) 

e, is the characteristic vector of the normal vibrations of the 
phonon branch, M is the mass of an atom, and a-' is the 
localization radius of the atomic wave function. The quanti- 
ty a is determined as follows: 

I, ,~=I, exp i -aJRm-R, ,  I ) .  ( 5 )  

The effect of thermal displacements on the resonance 
integral is taken into account through the contribution urn,, 

in Eq. (2).  For v = 0 the Hamiltonian (2)  corresponds to 
the standard model of small-radius polarons. 

The hopping contribution to the mobility ph for the 
model of ultrasmall polarons was calculated in Ref. 1 from 
the Hamiltonian ( 1 ) . The result is the expression 

which we shall require below. Here a is the lattice constant, 
I=I,, is the resonance integral (5 )  between the nearest 
neighbors, R,, - R, = g is a vector drawn to the site of the 
nearest neighbor, T is the temperature, and the quantity 
u, = ea2/fi has the dimensions of mobility; 

Here S ,  = S,, (q) [see Eq. (4)  1, and 

In Eq. (6)  the quantity z is the number of nearest neighbors. 
We note that in Ref. 1 the expression for ph was obtained 
only for the case of a square lattice ( z  = 4). However this 
result can be easily extended to the case of a hexagonal struc- 
ture (z = 6 ) .  It should also be noted that in Ref. 1 the expres- 
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sion for E - ' ,  as compared with Eq. (8), has an additional 
term - A:/ E t a ,  where 

1 
A. = (1 - cos qg)6,'yq. 

q 

However this contribution vanishes for lattices without a 
preferred direction. In the present paper we neglect contri- 
butions of this type. Here we also note that for lattices with 
A, = 0 the expressions obtained in Ref. 4 for the absorption 
coefficient for light and the I-V-characteristic in the model 
of ultrasmall polarons simplify significantly. 

For a wide range of materials with low mobility the 
mobility exhibits a temperature dependence which is not of 
the standard activational type, but rather is described by a 
relation of the form ( 6 )  (see Ref. 3 ) .  

It is considered that the radical difference of the Hall 
mobility pH from the drift mobility, both in order of magni- 
tude and with respect to the temperature dependence, is a 
strong argument in favor of the mechanism of current trans- 
port by small polarons. In particular, the calculation per- 
formed in Ref. 5 showed that for small polarons in hexagonal 
crystals we have p,  -exp ( -E,/kT), but pH - exp( - Ea /3kT), i.e., the activation energy is three times 
lower for the Hall mobility than for the drift mobility. The 
significantly more complicated calculation performed later 
for square lattices6.' showed that, generally speaking, for 
these structures the activation energy does not decrease ex- 
actly by a factor of 3, but even here the Hall and drift mobili- 
ties differ radically. 

We underscore the fact that here and below we are talk- 
ing only about quite high temperatures, when transport pro- 
ceeds by means of hops between lattice sites. At ultralow 
temperatures, however, transport acquires an ininerant 
character and the Hall effect can be studied with the help of a 
Boltzmann-type transport e q ~ a t i o n . ~  At intermediate tem- 
peratures transport proceeds by means of intersite electron 
tunneling, and the force exerted by the magnetic field is not 
the Lorentz force.9 

The present paper is devoted to developing a theory of 
the Hall effect in the ultrasmall-polaron model in the high- 
temperature region of hopping transport. The calculation is 
based on the Hamiltonian ( 1 ) using the diagrammatic tech- 
nique, which was formulated in Ref. 4 and is an extension of 
the diagrammatic technique of the theory of small polar- 
ons. '07" In this model the Hall mobility, similarly to the drift 
mobility, also does not have a purely activational character. 
For this reason, the measurement of pH could serve as an 
important tool for determining the character of current 
transport in the material of interest. In the present paper the 
calculation is performed for the very simple case of a hexag- 
onal lattice, when the probability of intersite transitions in a 
magnetic field can be calculated in the lowest, three-site ap- 
proximation. 

2. HALLCURRENT IN THETHREE-SITE APPROXIMATION 

We shall study the hexagonal configuration shown in 
Fig. 1. The hopping contribution to the current j in the ap- 
proximation of nearest-neighbor hops can be written in the 
form'O,' ' 

FIG. 1. Planar hexagonal structure. The magnetic field is oriented per- 
pendicular to the plane of the figure. 

where n is the current-carrier density, g is a vector drawn to 
the site of the nearest neighbor (g takes on six values), and 
Wog (E, H )  is the probability of a hop between the sites 0 and 
g and depends on the electric field E and magnetic field H. 
The Hall mobility is most conveniently calculated starting 
from the assumption that E and H are arbitrary in magni- 
tude and then linearizing with respect to these fields at the 
end of the calculation. 

The Hamiltonian ( 1 ) can be extended as follows to the 
case when a magnetic field is p r e ~ e n t . ~  The intersite reso- 
nance integral I,,, acquires an additional phase factor 
which depends on the vector potential A. For the gauge 
A = [ H x r ] / 2  the effect of the magnetic field reduces to 
replacing 

in Eq. ( 1). As for the electric field, taking it into account 
leads to the appearance of an additional term 

in Eq. ( 1 ). The appearance of this term in the diagrammatic 
technique described in Ref. 4 requires associating with each 
interaction point the additional factor 

where ti is the time associated to the interaction point i and 
m, (mti ) is the site index of the electron line entering (leav- 
ing) this point. These extensions of the diagrammatic tech- 
nique in the presence of finite E and H  are entirely analogous 
to those which are made in the standard theory of small 
polarons in the presence of external  field^.'^.'' 

We now calculate the probability Woe (E, H). In the 
lowest (second) order in the interaction the magnetic field 
drops out of the expression for Woe. This is connected with 
the fact that in this approximation W,,. -Imm, I,,, , and 
according to Eq. (10) the phase factors of the resonance 
integrals mutually cancel (see also Refs. 5, 10, and 1 1 ) . For 
this reason the transition probability for the Hall effect must 
be calculated in the next order of perturbation theory. The 
corresponding diagrams for hexagonal structures are shown 
in Fig. 2. The diagram in Fig. 2b is the complex conjugate of 
the diagram in Fig. 2a. According to the rules formulated in 
Ref. 4 the probability Wog has the form 
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FIG. 2. Diagrams describing the probability of intersite hops which give 
the first nonvanishing contribution to the Hall current for hexagonal lat- 
tices. 

x[ (1-eiqg) (e-'q~'-e-'~g) (~,,*+6~0.) (~9+6a , )  

x exp{io, (t-tl+i$) ) 

+ (~-~- iqg)  (eiqg'-eiqg ) (yq+60g) (yq*+6g1B.) 

x exp {-ioq (t-tl+i$)} 

+ (I-e-iqg') (eiqg-eiqg') ( ~ ~ ' + 6 ~ , 8 . )  (~q+6g*0) 

x exp{ioq (t+i$)) 

+ (e-iqg-e-iqg') (yq+6,*) (yq*+6oa.') 

x exp{-io, (t+iP)) 

+ (1-eiqe) (I-e-'qg') (yq*+6go') (yq+bo) 

x exp{ioq (t'+i$)) 

+ (l-e-'qg) (I-eiqg') (yq+60g) (~9*+60g~*) 

x exp{-io, (t'+i$)). (1 1) 

Here the summation over g' includes for given g two values 
(inFig. 1, g =  g, andg',) 

with B = fi/2kT, and y and S are defined in Eqs. (3) and 
(4). The following symmetry relations follow from the con- 
dition that the atomic displacements are real: 

yq=y:qr 6mm' (q)=6i,rn (-q). (13) 

Taking these conditions into account and making the substi- 
tution of variables t ' -. t ' + t we transform the relation ( 11 ) 
into the form 

WOI (E, H) = 2 Re LA T ~ ~ T , ~ T , ~ ~  exp (-Sog-Sgg;-~g,o) 
I' 

zti 

Here we take into account the fact that, according to Eq. 
(4),Smm. r 6,-,. = -S,.-, .  InEq. (14) theindicesq 
in the quantities y and S have been suppressed. 

The expressions for the probabilities (1 1) and (14) 
were written out neglecting the divergence-cancelling terms 
at long times t and t '. These counterterms represent dia- 
grams divided in all possible ways by phonon (wavy) lines. 
The procedure for summing these counterterms gives the 
nonhopping contribution to the conductivity, which pre- 
dominates at low temperatures and is not discussed in the 
present paper (see Refs. 5, 10, and 11 for a more detailed 
discussion). 

In the subsequent calculations we assume that the sym- 
metry of the lattice imposes some symmetry relations on the 
phonon spectra. First, we require that all cross terms pro- 
portional to the product yS in Eq. ( 14) vanish: 

In order to verify this we study, for example, the quantity 

According to Eq. (4)  the vector A can be represented in the 
form 

where 

The quantity a, does not depend on the vectors of the nearest 
neighbors. 

The vector A can be represented in the form 
A = A, + iA,, where 

A, = z a q  [ 1 + cos q (g-g' )- cosqg - cos qgll, 

A, = ..[sin qg' - COB qg + sin q (g-g' ) 1.  
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It is obvious that for lattices without a distinguished direc- 
tion the vector 2, aqcosqg can be directed only along g. On 
the other hand, it does not change when g is replaced by - g, 
and for this reason it is equal to 0. Hence it follows that we 
have A, = 0. 

Similarly, for such lattices 

which is zeroth order in the magnetic field. Substituting now 
the linearized expression for Wo, into Eq. (9)  we obtain for 
the Hall current j,, directed along the y-axis (see Fig. 1 ) , 

z a q  sin qg=cg, where 

where c is a scalar that does not depend on g. For this reason 

x exp ( L ~ . [ c o s  o , ( t+ iP)+  oos oq(t ,+tf i ) .  
The remaining terms in Eq. ( 14) can be analyzed similarly 
and it can be proved that this relation is true. 

Second, we assume that 

In deriving Eq. (20) we used the fact that we are interested 
only in thereal part of the integrals over t and t '. This made it 
possible to make the following substitution, taking into ac- 
count the symmetry of the integrand: 

=z (a,)  (1-eiqg) ( i -e - iqg ' )  ( 1  7 12+6i6g.). (16) 

We also took into account the fact that The meaning of this relation can be understood from the fact 
that these three sums differ from one another only by an 
interchange of the vectors g, g - g' -+ g' - g and g' - g', g. 
Each pair of these vectors represents the side of a triangle, 
formed by a triplet of nearest neighbors of the hexagonal 
structure (see Fig. 1 ). This proves Eq. ( 16) for lattices with- 
out a preferred direction. We note that by assumption only 
the centers of localization form a hexagonal structure. In 
principle, however, the symmetry of the full crystalline 
structure, determining the phonon spectra, can be lower. 

The relations ( 15) and ( 16) greatly simplify the expres- 
sion for the transition probability, which assumes the form 

3. TEMPERATURE DEPENDENCE OFTHE HALL MOBILITY 

We perform the double integration in Eq. (20) with the 
help of the identity 

Jdt dt'f ( t ,  t', t+ t t )  

wng=2 ~e ( - +) TogTgg~Pa~o exp (-Sa-Sgv -,-Sg*) 
g' 

Using this relation and displacing t, t ', and t " by ifl we trans- 
form Eq. (20) into the form 

x exp { z A q l c o s  oq ( t+ ia )+  m a q ( t 1 + i P )  

+ cos oq ( t+ t f+ iP )  I}, (17) 

where 
where 

The expression for W can be further simplified by lin- 
earizing it with respect to the magnetic field. In this approxi- 
mation we must make in Eq. ( 17) the substitution 

The integration in Eq. (22) is performed by the saddle-point 
method customarily employed in the theory of small polar- 
ons (see, for example, Refs. 4 and 1 1 ). The first saddle-point 
to lies on the imaginary axis, to = iv, and 7 satisfies the equa- 
tion 

where 

[see Eq. ( 10) 1. We are not interested in the contribution Expanding the exponential in a series in powers of t  around 
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the point t = i7 up to quadratic terms and performing the 
integration we obtain 

In this case, for h , / a k T  4 1 and A, b 1 it is easy to verify 
that the characteristic value fl in the integral (21) is quite 
small, so that we have'w, 7 4 1. Then we obtain from Eq. (3)  
the following explicit expression for 7: 

Now, expanding in Eq. (24) the exponential in a series in 
powers of w, 7 up to quadratic terms, taking into account 
Eq. (25 ), we have 

We now substitute Eq. (26) into Eq. (2 1 ) . After an elemen- 
tary integration over fl we have 

Now we can find an expression for the Hall current j,, sub- 
stituting Eq. (27) into Eq. ( 19) and confining ourselves to 
the linear approximation in the electric field E: 

Now we can perform the summation over the nearest neigh- 
bors g and g' taking into account the geometry of the prob- 
lem, shown in Fig. 1. The result is 

where a = lgl is the lattice constant. 
Now we pass in Eq. (29) to the high-temperature classi- 

cal limit hq < kTof interest to us. According to Eq. ( 18), in 
this temperature range 

where E, is the polaron activation energy (17), 

Using the explicit expression for S, (4)  we have 

Now we take into account the fact that the eigenvectors of 
the phonon oscillations satisfy the sum rule 

We recall that summation over the indices j of the phonon 
branches, as we have already noted above, is implied in all 
summations over q. Here a and p are the projections on the 
coordinate axes. When we take this identity into account, the 
expression for E assumes the form 

We note here also that the energy E (7)  appearing in the 
expression for the drift mobility (6)  is related to E:  

In order of magnitude, with a-' z 1 A and m =: g, the 
energy E is equal to eV, i.e., it is much less than kT. For 
this reason the quantities E A and E are virtually identical 
to E, . We also note that the ratio ~ / k T i s  the squared ratio of 
the de Broglie wavelength to the localization length. 

Now we study the quantity 3(2,Aq - S) in the tem- 
perature range kT> h, . This combination appears in the 
argument of the exponential in Eq. (29). When this expres- 
sion is expanded in a series in powers of the small parameter, 
the first term of the expansion is proportional to T. The most 
important property of such an expansion is the fact that the 
terms proportional to the squared electron-phonon coupling 
constant IyI2 cancel in the first term of the expansion. Only 
terms proportional to S2 remain. This remaining contribu- 
tion has the form 

1 ..% EK;;;((1 - cos qg) 1 8g12+(1-e'qg) ( 1 - e - ' q g r ) 0 ~ 6 ~ ~ 1  
N ' ,  

where E -  ' is determined in Eq. (8) ,  and 
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As concerns the next term, proportional to T -', in the ex- -= kT 
pansion of the quantity 3 (BqAq - S )  , we include in it only E 

4 ~ ~ ( p o g ) ~ > ,  

the contribution proportional to lyI2. This contribution is kT 
equal to - 3Ea /ZkTwith E, determined in Eq. (7). Taking -= 

en 
3a2( bog) bog' ) 

this term into account, the expression for a,, (jH = a,, E) 
in Eq. (29) assumes the form --- kT 3 kT kT --a" ( (~ ,g)~>-  - = - 

4€ 2 4€ 8€ - - - - -  .- 

Hence we obtain the following relation between E and E, in - .  . 

the short-range approximation for a hexagonal crystal: 
(34) 

eH=8e. (37) 

Here we have neglected the difference between E and E, 
[see Eq. (30) 1. The quantity uo = ea2/fi has the dimension 
of mobility. 

We can now find the Hall mobility 

C ox,, C oz,, 
P ~ = - j j - c = H = *  

The drift mobility p, is determined in Eq. (6).  For the case 
of hexagonal crystals, which we are studying, in this formula 
we set z = 6. From Eqs. (43) and (6) we have 

At the same time we determine the Hall constant R = p, / 
cuxx : 

For E-' = 6;' = 0 the expressions (35) and (36) trans- 
form, of course, into the results of the standard theory of 
small polarons (see Ref. 1 1 ) . 

We now note that the quantities E-' and E;', intro- 
duced above, can be expressed in terms of the mean-square 
displacements of the atoms. For this we introduce p, -the 
displacement of an atom from its equilibrium position: 

The mean-square displacement in the high-temperature lim- 
it has the form 

Thus if for hexagonal crystals the Hall mobility activatid 
energy is three times lower than the drift activation energy, 
the characeristic energy E, is eight times greater than E. If, 
however, the first assertion is not based on model consider- 
ations concerning the phonon spectra, then the second ratio 
is valid only for short-range interactions. 

The temperature dependence of the drift mobility p, 
(6)  and Hall mobility pH (35) is illustrated in Fig. 3. In the 
region of not too high temperatures these curves become 
straight lines as functions of 1/T. As the temperature in- 
creases the temperature dependence of both p, and pH be- 
comes stronger. For the drift mobility this transition occurs 
at the temperature kT, = (EE, ) ' I 2 .  For the Hall mobility 
this transition occurs at a higher temperature: 

In this high-temperature region the functions f defined in 
the caption to Fig. 3 become straight lines as a function of T. 

It should be noted that in practice, when measurements 
are peformed over a temperature range which is not too 
wide, the dependence shown in Fig. 3 can look like an activa- 
tional dependence for which the activation energy changes 
at T- T, and TH for p, and p H ,  respectively. For this rea- 
son, in order to make a more reliable comparison between 
theory and experiment the temperature dependence of 
f must be constructed both as a function of both Tand T - ', 
and it must be verified that these functions do indeed become 
linear at high temperatures (on the T-scale) and at low tem- 
peratures (on the 1/T-scale) . This procedure makes it possi- 
ble to reconstruct both parameters Ea and E of the theory. 
Such an analysis of the experimental data was performed in 

- -& eqaer* exp [ iq(RmP-Rm) 1. N M u ,  

Hence it follows that 

kT 
-= 
f 

2a2( [ (PO-p,)gI2>, 
I 

In the short-range approximation, when ( P O ~ P U  ) = O FIG. 3. Drift mobility (curve 1 ,  f = ln(ph T i / ' ) )  and Hall mobility 
holds, we thus obtain (curve 2, f = In@, T" ' ) )  as functions of l /T.  
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Ref. 3 for the temperature dependence of the electric con- 
ductivity of a large number of materials. 

Measuring the Hall and drift mobilities simultaneously 
and comparing the experimental results with the functions 
(6) and (35 ) makes it possible to judge, with a high degree of 
reliability, whether or not ultrasmall polarons are present in 
the material under study. We also note that the Hall coeffi- 
cient in this model (35) differs radically from the quantity 
l/enc, which is obtained (to within a numerical factor) in 
the theory of current transport on the basis of the classical 
Boltzmann equation. In addition, the quantity Renc not 
only differs radically from unity, but it also depends strongly 
on the temperature: 

Renc 2 E. 7 kT + A, I n  a----- 
T 3 k T  sf5 

where A does not depend on the temperature. The relation 
(38) was written taking into account Eq. (37), i.e., it is valid 
only for the short-range model. 

In conclusion we emphasize once again that the specific 
results obtained in the present paper are valid only for hexag- 
onal structures. For square lattices the theory is much more 
complicated, but the qualitative results of the theory can 
hardly differ radically from those obtained above, as in the 
case of the standard theory of small case of the standard 
theory of small polarons. The ~ n l y  radical difference for the 
Hall effect in lattices of these two types is the existence of ap- 
n anomaly in the Hall effect for hexagonal structures. This 

anomaly consists of the fact that the sign of the Hall emf does 
not change at the transition from electronic to hole conduc- 
tivity. In cubic crystals, where a four-site model (and not a 
three-site model, as for hexagonal structures) must be stud- 
ied in order to calculate the Hall effect, thep-n anomaly does 
not occur (see Refs. 1 1 and 12, as well as Refs. 13 and 14). 
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