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It is shown that in polariton systems in thermal equilibrium a state of the photon subsystem in 
which the number of photons is described by a sub-Poisson distribution arises as the temperature 
decreases. 

1. INTRODUCTION number of problems in the theory of magnetism, and other 

New collective states of the electromagnetic field, phenomena. 

whose quantum, fluctuation, and correlation properties dif- A Hamiltonian of this type can be transformed by a 

fer from the usual (random and coherent) well-known linear transformation (see, for example, Ref. 8 

states, have recently been predicted in quantum optics and 
observed experimentally. In particular, states with a sub- 
Poisson distribution of the number of field quanta have been 
produced and a "sub-Poisson laser" has even been built.4 

We recall that coherent light has a Poisson photon 
number distribution while incoherent light has a Gaussian 
di~tribution.'.~ Distributions that are narrower than in the 
case of coherent light are customarily termed sub-Poisson. 
These "new" states of the electromagnetic field are nonequi- 
librium states, and they are generated by nonlinear interac- 
tion of light with the medium in the process of lasing or 
scattering. 

It is certainly of interest to investigate the question of 
the existence of thermodynamically equilibrium states of 
Bose fields with nonstandard statistical properties. This is 
primarily because the mechanism of interaction of bosons of 
different physical nature in condensed media in many cases 
exhibits the same nonlinearity as the processes employed for 
generating sub-Poisson states in optics. 

It has recently been shown that squeezing of quantum 
fluctuations of the amplitudes of a Bose field can be observed 
in the simplest model of a degenerate parametric process in a 
state of thermodynamic equilibrium below some tempera- 
ture.' But the character of the distribution of the number of 
quanta remains super-Poisson. 

In the present paper we show for the example of some 
simple models employed in solid-state physics that the sta- 
tistical properties of a Bose field can change as the tempera- 
ture decreases and we establish the condition for the appear- 
ance of a sub-Poisson distribution. 

to a diagonal form 

after which different thermodynamic characteristics of a 
system of free quasiparticles, described by the operators a;  
and a ,  with a spectrum En are usually calculated. Such 
quasiparticles have a complicated structure. In the case of 
polaritons, for example, they consist of an optical phonon 
interacting with photons of frequency E /fi (Ref. 9) .  In this 
case, one component of such a quasiparticle can be investi- 
gated by experimental methods, for example, with the help 
of Raman scattering of light,'' which makes it possible to 
determine the spectral characteristics of phonons. In what 
follows we shall be interested in the quantum-statistical 
properties of the phonon subsystem, in particular, the char- 
acter of the distribution of the number of phonons in polari- 
tons which are in an equilibrium state with temperature T. 
For this, it is first necessary to calculate the variance of the 
number of quanta in different modes: 

where the averaging is performed over the equilibrium state 
of the system ( 1 ) with some temperature T: 

(an+an)" - 1 

2. MODELS OF THE POLARITON TYPE 
~ n ( m ) =  (i+<an+an))*+m 7 (an+a,,)=[ e x p ( s ) -  i] . 

In the theory of ~olaritons, model problems with Ham- - - 
iltonians which are bilinear in Bose operators of two types- The condition for the appearance of a sub-Poisson dis- 
photons and phonons-are studied: tribution of the number of quanta in the k th mode evidently 

has the form 
ff = (Ak,a.+al t+Aklakar+J3k,ak+a,). 

k, 1 vhc$ah+ak>. ( 2 )  
(1)  

Bki=Bl;, Arl=Alh, This inequality establishes a relation between the tempera- 
ture T of the system and the microscopic characteristics ap- 

wherea? and ai are creation and annihilation operators and pearing in the Hamiltonian ( 1 ) [the interaction parameters 
AU and B,,. are characteristic frequencies. This form is very and the characteristic frequencies A,, and Vk,; 
general and it can be used to describe a quite wide range En =En (A, B ) ] .  Physically, it is natural to expect that at 
of phenomena in solids, including exciton-phonon interac- sufficiently high temperatures the distribution of the num- 
tion in molecular crystals, light-scattering by phonons, a ber of quanta should be random (Gaussian). Therefore the 
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condition ( 2 )  for fixed A and B in Eq. ( 1 ) can be satisfied 
only by lowering the temperature. In this case the equality 

can be viewed as an equation for determining the threshold 
temperature 

below which there are significant quantum fluctuations, 
which are not smeared by thermal noise. 

3. TWO-MODE SYSTEM 

For convenience, in order to avoid complicated expres- 
sions, we confine our attention to the case of one mode of the 
photon field interacting with a quasiresonant mode of opti- 
cal phonons. The Hamiltonian of the system has the form 

where x is the coupling constant, and w, and w, are the 
frequencies of the modes a and b. We diagonalize the Hamil- 
tonian ( 4 )  with the canonical transformation 

where the operators a and B satisfy the commutation rela- 
tions [a ,  a + ]  = [P ,P t ]  = 1 and commute with one an- 
other, while the transformation parameters have the follow- 
ing form: 

us- , v=-p  = 
2(1-k2)" 2(1-k2)" 

( 6 )  

where 

Since the Hamiltonian ( 4 )  is stable," we have k < 1 .  As a 
result we obtain the diagonalized Hamiltonian 

with dimensionless eigenvalues 

Here we have introduced the following notation: 

Next we calculate the following averages: 

<a+a>=v2 [ h + n g + l ] + h ,  (b+b>=vz[n,+n6+l]+n6, 

Va=Vb=v2 (v2+1) [2~nB+na+n6+1] ,  

where 

&=[exp (Ea /8 ) ' - I ] -* ,  n ~ =  [exp ( E d @ )  - I ] - ' .  ( 10) 

Here the averaging is performed over the eigenvectors of the 
Hamiltonian ( 8).  

A sub-Poisson distribution for the mode a results if the 

FIG. 1 .  Threshold temperature Sth [see (9) with T =  Tth] versus the 
coupling constant k given by Eq. ( 7 )  for the following values of the detun- 
ing parameter w: 1.0 ( I ) ,  0 (21, and - 1.5 ( 3 ) .  

inequality ( 2 )  is satisfied. In our case this inequality has the 
form 

The solution of the biquadratic inequality ( 1 1 ) lies in the 
region bounded by the roots v: a : v2  a < v2 < v?-+ ., where 

Since v2 > 0  and v2- a < 0  hold everywhere, the restriction on 
v2 will actually have the form 

A sub-Poisson distribution for the mode b is realized 
when a similar inequality is satisfied: 

where 

It is also easy to find the threshold temperature T t h  for 
the mode a as a function of the parameters w,, w,, and x 
from the equation 

v 2 ( v 2 +  1 ) ( 2 n z n $ + n z + n : +  1 )  

= v 2 ( n z  + n; + 1 )  + n z .  ( 1 4 )  
The equation for determining the threshold temperature Tth  
for the mode b has the form 

v2(v2 + 1 )  ( 2 n z n ;  + n z  + n? + 1 )  

= v 2 ( n z  + n :  + 1 )  + n:, ( 1 5 )  
where n z  and n: are determined by the expressions ( 1 0 )  
with T = Tth.  Numerical solutions of Eq. ( 14) are presented 
in Fig. 1 for different values of the dimensionless parameter 
w. 

4. DISCUSSION 

Thus, our example of the simplest model of the polari- 
ton type shows that a sub-Poisson phonon distribution can 
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arise at temperatures below some threshold temperature 
Tth, determined by the values of the parameters of the Ham- 
iltonian. The condition 

corresponds to a Poisson distribution, realized for the coher- 
ent state of the corresponding Bose field,' and this state is as 
close as is possible to a classical state, since it has minimum 
and symmetric quantum fluctuations. Hence Tth can be 
viewed as the threshold temperature of the transition from a 
state with significantly quantum behavior ( T <  Tth)  into the 
region of classical behavior ( T >  Tth) .  Of course, a phase 
transition in the usual sense does not occur at the point Tth, 
since such a transition must be associated with spontaneous 
breaking of symmetry of the collective state of the system 
(see, for example, Ref. 12). 

There arises the question of how this "nonclassical" be- 
havior of phonons in thermal equilibrium can be observed 
experimentally. The methods of Raman scattering of light 
can apparently also be used for this purpose. Since, however, 
information about the statistical properties of phonons is 
contained in the second-order correlation function V, it is 
obviously insufficient to measure only the spectral charac- 
teristics of the scattered light. It is also necessary to measure 
the correlation functions of the scattered light and to recon- 

struct the phonon correlation function from its relation with 
the correlation functions of the scattered light. 
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