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A new model, which allows for the exchange interaction of electrons on the x2 - y2 and z2-levels 
of copper, is suggested for explaining the mechanism that leads to unusually strong electron 
(hole) pairing in the conducting Cu-0 layers in high-Tc superconductors (of the YBa2Cu30, 
type). It is demonstrated that the resulting virtual bound states of conduction electrons coupled 
with electrons on thez2-levels act as local two-particle states. The interaction of these bound 
states, whose energy is close to EF, with conduction electrons leads to high values of Tc and 
arbitrary values of the ratio 2A/Tc, which depend on the energy parameters of the problem. A 
large body of experimental data on high-Tc superconductivity can easily be explained within the 
framework of the proposed theory. 

1. When superconductivity with an exceptionally high 
transition temperature T, was discovered in 1986 in sub- 
stances of the form La, -, Sr, CuO, and YBa2Cu30, -, , the 
problem of the mechanism of such strong electron pairing 
emerged. Notwithstanding the fact that electron-phonon 
coupling in high-Tc superconductors is fairly strong, as was 
demonstrated subsequently in tunneling experiments, a 
large number of features suggest that electron-phonon cou- 
pling does not play the main role in high-Tc superconductiv- 
ity. Estimates of electron-phonon coupling constants done 
by Fried1 et ~ 1 . ~  provide little hope of explaining the values of 
about 90-100 K for Tc within the framework of the tight- 
binding theory. At the same time, superconductivity in high- 
Tc superconductors in many respects resembles ordinary s- 
type pairing in the BCS model. However, while retaining 
some properties of the BCS model, the theory must, obvious- 
ly, give, say, a power-law dependence of Tc on the coupling 
constants rather than an exponential if it is to provide a natu- 
ral explanation for the high value of Tc. The same results 
follow from the theories proposed in Refs. 3 and 4, which 
consider simultaneous transitions of two electrons from the 
conduction band to a model two-particle center. In this pa- 
per I discuss only superconductors containing Cu-0 planes 
and examine the properties of 2-0 superconductivity in a 
separate layer, assuming that on the whole the interaction 
between layers stabilizes superconductivity on the macro- 
scopic level. It appears that on the basis of certain physically 
justified assumptions one can describe the motion of elec- 
trons (or holes) in Cu-0 planes via an effective Hamilto- 
nian, which leads to results resembling those of the above- 
mentioned t h e ~ r i e s . ~ . ~  Toward the end of this paper I show 
how some of the experimental data can be explained within 
the scope of the theory proposed here. 

2. In this section we will see that the appearance of a 
hole with a definite spin on z2-orbitals of copper lowers the 
energy of a band hole with an opposite spin on thep-levels of 
oxygen near such a site, and repulsion of band holes with like 
spin occurs. This leads to an antiferromagnetic interaction 
similar in many respects to the kinetic exchange interaction 
in the Hubbard model.5 

Let us assume that a 2 -0  conduction band in a Cu-0 
plane is formed by hybridized p-orbitals of oxygen and 
dx2 - -orbitals of copper. The overlap integral is denoted by 
t. Since it is known that in alloying the majority of holes 
appear on oxygen, the position of the energy levels must cor- 

respond to the one depicted in Fig. la. Here only one elec- 
tron can be in the dX2 - y2 -state since Coulomb repulsion is 
assumed strong and we are dealing with the lower Hubbard 
subband. 

If in the antiferromagnetic phase the spins of these elec- 
trons are ordered, however, the antiferromagnetic order is 
disrupted in the process of alloying and the direction of the 
spin of each electron is not fixed. Suppose that we remove an 
electron with spin "down" from a deeper level of copper, z2 
(Fig. lb) .  Because of strong intratomic exchange interac- 
tion (Coulomb repulsion), the spin of an electron on the 
x2-y2-orbital becomes aligned with the spin of the electron 
remaining on the z2-orbital, that is, "points" up. (This is a 
manifestation of the Hund rule.) Now let us consider two 
cases: near such a copper atom there is a band hole (on oxy- 
gen) with spin (a)  "up" and (b)  "down." The difference in 
energy of these two states depicted in Figs. l b  and lc  can be 
estimated in the same manner as is done for the kinetic ex- 
change term in the Hubbard model5 or for the superex- 
change Kramers me~hanism.~  In the case depicted in Fig. lb  
no transition of an electron from the x2 - y2-orbital of cop- 
per to oxygen is possible. But if the spins point in opposite 
directions (Fig. lc) ,  such a transition becomes possible, and 
in the second-order perturbation theory in the overlap inte- 
gral t this leads to a lowering of energy by AE = - t 2 / E s ,  
where Es is the energy difference between the p-level of 
oxygen and the x2 - y2-level of copper with a hole on the zZ- 
orbital. Note that Es is greater than Ed, the difference in 
energy of the x2 - y2-orbital and the p-orbital determining 
the band motion proper when the z2-orbital is completely 
filled. Hence, if in the tight-binding approximation the band 
width W is approximately 4t 2/E,, , then I AE I /  W = Epd / 
4 E s  < 1. The energy difference AE between two spin con- 
figurations (Figs. lb  and lc)  can be taken into account as is 
done in the superexchange theory6 by introducing a new 
term into the system's Hamiltonian: 

where U = A E =  - t 2 / E s  <0. 
A similar expression can be written for the case of high- 

Tc superconductivity of the electron type in the event of 
interaction of an additional electron on the A-orbital of cop- 
per (instead of a hole on thez2-level) with the band electrons 
on the x2 - y2-orbitals of the neighboring copper atoms. 
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FIG. 1. 

Note that naming the levels according to their classification 
in the atom is somewhat ambiguous since in a real crystal the 
eigenstates are combinations of initial states due to orbital 
overlap. Nevertheless, for the sake of simplicity we will use 
the nomenclature of initial orbitals. In what follows we will 
not distinguish either between alloying of the n- andp-type, 
and the charge carriers in a band will be called electrons for 
the sake of definiteness. 

3. To simplify matters, let us assume that instead of 
moving over a real 2 - 0  Cu-0 crystal the electrons move over 
a simple square lattice to each site of which there corre- 
sponds a unit cell of the initial lattice. Information on the 
detailed structure of states in a unit cell is lost in this case, 
but such an approximation is quite sufficient for describing 
the superconducting properties as long as the coherence 
length (is much greater than the lattice constant a. Thus, we 
start with the following Hamiltonian: 

resent, as usual, the contribution from the last term in the 
Hamiltonian (2)  in the mean-field approximation in terms 
of pair averages. For the Fourier components of the Green's 
functions over space and "time" 7 we arrive at the following 
system of equations: 

where w = (2n + 1 )TT and 8 = I U I (dl, ci, ) 
= I U I B,, ( + 0).  Energy shifts of the U ( A )  type are as- 
sumed to be included in &, and &,, which are reckoned from 
the chemical potential level p. The dispersion law for E, is 
determined by the hopping integral to ,  and state d is as- 
sumed to be positioned above p ,  that is, &, > 0. 

To simplify presentation we will ignore, for the time 
being, the effect of hybridization Von the properties of band 
electrons in their normal state. Assuming that V/E, g 1, to 
within terms of the order of ( V/E, )' we arrive at a system of 
equations for the functions G and F + similar to the ordinary 
Gor'kov equations:' 

Here c z  and d it; stand for the electron creation operators, 2Vpe 
respectively, in the conduction band and at a higher atomic (io-ek)Gk. +(&) F ~ . + = * ,  
level with spin a at site i. The Ic, ) states describe the con- 
duction band formed by the hybridizedp-orbitals of oxygen 2Vp'ea 

( io+s , )~ . .++ (-) G..=o. 
and the d,> - -orbitals of copper, and the Id, ) states de- 
scribe the formation of a hole in a z2 state for the case dis- This system of equations suggests that eaective order 
cussed in Sec. 2. The third term describes the weak hybridi- parameter A, which determines the gap in the band electron 
zation of band and localized d states (say, the z2 states of Cu spectrum, is in terms of the order parameter p as 
with thep states of neighboring oxygen atoms). Finally, the follows~ 
fourth term, given by Eq. ( 1 ) with U <  0, appears only when 
electron motion in the conduction band is strongly correlat- 2vped A(@)=- 

oZ+sd= ' ( 5 )  
ed because of strong Coulomb repulsion on the copper atom. 
We assume that there exists the following hierarchy of ener- 
gy constants, starting with the band width W-4t: 

To describe superconductivity we employ the tempera- 
ture Green's function technique.' We introduce the follow- 
ing four functions: 

Using the equations of motion for the Matsubara operators 
C(T) and d ( r ) ,  we can obtain a system of equations for the 
Green's functions. To make this system closed, we first rep- 

Equation (3d) makes it possible to express B  :, where 
B, = N - ' Z, B ,  , in terms of F + and G, which leads to the 
following equation for 0 :  

Since F + and G are expressed in terms of A ( a )  according to 
(4) in the usual way (as in the BCS theory), simultaneous 
solution of Eqs. (5  ) and (6)  enables one to determine bothp 
and A(&) and find T, . In some cases, however, simple split- 
ting, as in system (3), is not sufficient because the important 
opportunity to describe the virtual bound states of the exci- 
tonic type of c- and d-electrons is then lost. This is illustrated 

668 Sov. Phys. JETP 74 (4), April 1992 P. I. Arseev 668 



FIG. 2. 

by Eq. (6).  The first term in (6)  allows, in the ladder ap- 
proximation, for multiple scattering of a band electron on an 
electron in state Id,) and corresponds to the sum KO of all 
diagrams depicted in Fig. 2. Using the function G,, of the 
normal state in determining Tc, we arrive at the following 
expression for this sum (N  -'2, -t W - ' J ~ E ,  ) : 

U 
OKo-l =[ 1 + +JI " .  I - ' .  

max { ~ d ,  T) 

We see that for E, < E ~ ,  where is determined from the 
equation 

KO( T )  becomes infinite at a certain temperature T-&a. The 
point is that if one of the electrons has transformed to state 
Id, ), the Hamiltonian (2) describes the problem of an impu- 
rity potential at site i for the band electrons. In a 2-0 system 
such a potential always leads to the appearance of a bound 
state near site i separated in its energy from the continuous 
spectrum by a finite gap. Equation (8)  determines the size of 
the binding energy of this state. 

The singular behavior of KO( T) indicates the need to go 
beyond the scope of the overly simple splitting employed in 
deriving system ( 3 ) . In determining Tc one must allow in a 
more precise manner for the possibility of formation of a 
bound state of band electrons near a site with a filled level E, . 

To this end we consider the Green's function 

The idea of introducing this function is that the func- 
tion provides information about the electron motion in a 
band on the condition that simultaneously an electron in 
state [ d l )  appears at the ith site. Using K k,, (T), we can 
modify Eq. (6) in the following manner. 

where K(Q) = J ~ ' ~ ~ ' ~ ~ K ( T ) ~ T ,  and Q = 2mT.  Note that 
the series representing KO is the simplest approximation to 
K. Combining Eqs. (4),  (5),  and ( lo) ,  we get a self-consis- 
tent equation for the order parameter 0 ,  which for 0 -0  
determines Tc : 

To find Kii (Q = 01, we write the equation that K Lm, (7) 

satisfies: 

Since we are speaking of free charge carriers appearing in a 
zone during alloying, we assume that both the electron con- 
centration in the band and the probability of state Id, ) being 
filled are low. In this case the last two terms in Eq. (12) 
contribute little because they contain only one extra annihil- 
ation operator, which requires that an additional electron be 
present near the given site. Later we will return to an expla- 
nation of this approximation. If the last two terms are 
dropped, Eq. ( 12) becomes closed. Its solution can be ex- 
pressed in terms of the eigenfunctions $* ( m )  of the problem 
of an impurity defect positioned at a fixed point i: 

f 

Employing the functions $* (m) and allowing for the fact 
that 

we arrive at the following expression for the Fourier compo- 
nents K km,  : 

wheref l=2mT,  nd = (fid),andnA = (AA). 
It is essential that for a 2-0 band the lowest energy value 

E*,, must always correspond to a state localized near the ith 
site and separated by a finite gap from the bottom of the 
conduction band. From Eq. (9)  it is easily established that 
the binding energy E, is determined from Eq. (6): 

eo=W exp  (-WIU) . 
For greater clarity, the energy level diagram is depicted in 
Fig. 3. In what follows we will also use the amplitude value of 
the wave function of the bound state at the impurity point 
(site i with a filled Id ) state): 

goz= We01 U2. (15) 

For states in the continuous spectrum, however, we have 
I $* (i)  1'- N - I .  For I E ~ ~ ,  + E, I this bound state will 
provide the main contribution to K ji (0) ,  as shown by for- 
mula ( 14). The occupation numbers nA and n, entering into 
the expressions for K remain indeterminate and must be 
found self-consistently, allowing for the fact that the possi- 
ble existence of a bound state greatly influences the effective 
one-electron energies. Combining ( 14) with (9) yields 

Since n, is assumed small, sites with filled states Id ) are 
far from each other, and in the vicinity of a given site i we can 
introduce a model Hamiltonian that allows for spectrum 
transformation for n, $0: 

h 

Using HA,  we can easily show that 

where f ( E * ~ ,  ) is the Fermi distribution function. In other 
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words, if there is an electron in state Id ), the filling of state 
IA ) is determined by the one-electron energy levels defined 
by Eq. ( 13). Moreover, we have the following expression for 
nA,, : 

where tCt,(k) is a Fourier component of the wave function of 
the bound state [A,). The same formula can be obtained by 
solving the equation for the Green's function of band elec- 
trons that allows for multiple scattering on a point-like po- 
tential Un, at site i. Employing the properties of tC0(m) that 
follow from the solution to Eq. ( 13 ), we obtain 

Now if we combine Eqs. ( 16) and ( 18)-(20), we arrive at 
the following system of equations for determining n, and 
"A" : 

For f (&A,, ) 5 1 this yields 

Retaining in Eq. ( 14) only the state [A,) and expressing n,,, 
in terms of n, via Eqs. ( 16) and (21), we get 

The most interesting case is when Tc 2 I&,,, + E, ( and 
K (0) = &n,/T. The transition temperature is deter- 
mined by Eq. ( 1 1 ), which after summing over w and k yields 
(only the term with UK ii is retained) 

This assumption is justified if 

Equation (24) demonstrates that to within insignificant 
logarithmic correction terms Tc is a power function of the 
coupling constants. 

Let us return to the approximations that made it possi- 
ble to arrive at the above result. First, the average occupa- 
tion numbers n, are assumed small. Hence, the bound states 
that form at each moment of time at different sites are as- 
sumed to be independent of each other. This requires 

where R :, -a2/ W / E ~  is the radius of the bound state 
with a the lattice constant. This condition makes it possible 
to ignore the last term in Eq. ( 12) and justifies the use of Eqs. 
( 18)-(21). In addition, (26) shows that in accordance with 
(22) the Fermi level cannot lie above a certain quantity (see 
Fig. 3). 

The second constraint stems from the fact that the con- 
centration n of electrons in a band must be so low that the 

FIG. 3. 

formation of the bound state ICI, at site i leads to a consider- 
able change in the effective one-particle energy for state Idi ). 
This is determined by the condition 

In this case the average occupation numbers In, ) are deter- 
mined in a nontrivial manner: by the energy of the bound 
pair Idiilo) rather than by the one-particle energy E, . If the 
correlation between these states that leads to the formation 
of a bound state with U were not sufficiently strong, then 
although Eqs. ( 14) and ( 16) remain valid for any two states, 
for T+O we would have n, K exp( - E,/T) -0, and the sin- 
gularity in K ii (a= 0) given by (23) would vanish. In other 
words, in the calculation of the average energy of the band 
state described by the wave packet coinciding with IC,o(m), 
EAo = 8, I$,(k) 12&, , pair correlations due to U are impor- 
tant when E, and EA0 lie considerably higher than EF and 
the energy of the bound state is close to EF. When the density 
of states in the band is constant, this condition is equivalent 
to (27). If this condition is met, the penultimate term in 
( 12) can also be ignored, since qualitatively it describes the 
change in properties of the bound state when there is an 
electron in the continuous spectrum and the corrections in- 
troduced by the electron are small. This also supports the 
fact that when the splitting 

is used, allowing for this term has no effect on E,,, and IC,o in 
the present theory. 

Direct solution of system (3)  yields the following 
expression for T, : 

WedZ 
T . = E ~  exp [- ----I Z I U I V ~  ' 

which corresponds to the BCS expression with an effective 
constant = VU/E, in the conduction band, a constant that 
appeared because of hybridization of the d and c states. The 
transition from Eq. (6),  which follows from (3d), to Eq. 
( l o )  and, respectively, from (28) to (24) follows from the 
fact that instead of the simplest vertex representing the inter- 
action of band electrons and depicted in Fig. 4a we use the 
vertex of Fig. 4b with a virtual intermediate bound state. 
This modification must be allowed for only for certain de- 
grees of occupation of the band (see Fig. 3). Since for low n 
condition (25) breaks down, n, is much lower than unity for 
E ~ , ,  + E, % T, and the term with K: (0)  in Eq. ( 1 1 ) becomes 
negligible. However, as the concentration increases, n, 
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FIG. 4. 

grows fairly rapidly according to Eq. (22) after the point 
eAo + E, = 0 is passed, condition (26) breaks down, and the 
bound states begin to interact strongly with each other, 
which leads to a broadening in the pair-level energy and dis- 
appearance of the auxiliary effect. 

4. Solving Eqs. (5)  and (6)  for any temperature below 
T, enables one to find P (  T) and A ( T). This, however, re- 
quires a correct definition of the Green's function K(R)  
when anomalous averages appear. In this case Eq. (12) 
changes. Because of the appearance of anomalous averages 
F: = (czcjT ), with allowance for transition V, one must 
bear in mind in calculating the function K fnm, (a) that a 
closed loop may be inserted into a diagram at any point, 

just as in Eq. (6) this fact is taken into account for the sim- 
plest series KO. Accordingly, into the effective Hamiltonian 
used to write the equation of motion for K fnm,  we must intro- 
duce an additional term, 

Using the same approximations as before, we assume that 
virtual bound states appear at different sites independently 
of each other. Then we find that by expanding the operator ci 
in the operators c, corresponding to the states $, , 

to a first approximation, we can leave in (30) only the state 
with A = A, if, as earlier, we have I&,,, + E, I geO. Let us 
demonstrate the validity of this fact by employing an impor- 
tant relation linking the order parameter BA = (c, , di, ) 
with the occupation numbers n, and n,. The equation of 
motion for the quantity (c,, ( r )di ,  (T)) ,  which is actually a 
constant independent of T, implies, if we allow for (30), the 
following: 

Since this is true for every m, we get 

This leads us to the following estimate: 
W 

In proceeding from ( 33) to ( 34) we have allowed for the fact 
that EAo+ geO, $, ( i )  - N  -lt2, and 1 - nA - nd 5 1. 

We can express a in terms of 6 via ( 5 ) , which yields 

We see that (c;, d,, ) is indeed determined mainly by the 
term with A = A, in (3 1 ) and that the states of the contin- 
uous spectrum provide a contribution that is small, of order 
( U/ W )  ( V/ed 1'. Ifwesubstitute (3 1 ) into the Hamiltonian 
(30) and keep only the term withilo, instead of Eq. ( 12) we 
arrive at a system of equations for the K Lm, in the A-repre- 
sentation: 

a 
-I+ Z$~OS+-~$OCJ'K,,'=~B,+~ (a), 
d a 

where J = ( T [ d z c z , , ~ ~ , , ~ d ; i ] ,  d:cnfir), B z  
= (d;:c,t,),andS+ = (Tdifcz,,dzcnfI,). 

In solving this system we wish to employ relations of the 
form ( 16), which link the occupation numbers and the order 
parameter with the values of the functions K and J at 
T = * 0. It must be borne in mind, however, that Eqs. (35) 
determine only the part of these functions that is T-depen- 
dent. In addition, when anomalous averages appear, the to- 
tal Green's function defined in (9)  contains a contribution 
from the decomposition into unconnected anomalous parts 
(of the form (cdd +c+) - (cd ) (d  + c + )  ), which are inde- 
pendent of T. If we denote such a constant contribution for 
the functions K and J, respectively, by x and f; the first 
equation in (35) yields 

From system (35) an expression for the complete function J 
then follows: 

Using the definition of function J ,  we arrive at the relation 

from which we get 

where 2 = [ + E,)' + 4$: 1 0 1 ~ 1  'I2. Now, using (36), 
we can determine K and, using (35) to calculate the value of 
the complete function K(T = + 0),  we obtain a formula for 
the occupation numbers: 

Since the transition to the superconducting state affects the 
occupation numbers only near the Fermi surface, Eqs. ( 18) 
and ( 19) remain valid when we determine nA0 to within (A/ 
EF12. Combining this with (39) yields 
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At E,,, + E, = 0 the occupation numbers n, are temperature 
independent. Now we can find the temperature dependence 
of the order parameter B ,t [see Eqs. (33), (40), and (41 ) ] : 

Thus, we have the following hierarchy of order parameters 
at T = 0, which is especially simple when E,~, + E, e 0 :  

U v 
~ ( 0 ) -  -[ - W (  - Ed In- k;o)I '(o)? 

Since A(0) is the gap in the spectrum of band electrons 
[see Eq. (4) 1, it determines the ratio 2A/Tc measured in 
experiments, which is found to be given by the following 
formula: 

Hence, in contrast to the BCS model, this ratio can assume 
any value depending on the energy parameters of our model. 

Before we compare the conclusions of the model with 
the experimental data on high-Tc superconductivity, one re- 
mark is in order. The hybridization parameter Vis assumed 
small in our model. However, an alternative approach to the 
Hamiltonian (2)  is possible if first diagonalization in the 
interaction Vis carried out and then new operators a and b 
are introduced: 

The respective change in the band structure is depicted by 
the dashed curves in Fig. 3. the operators a, correspond to 
the lower (light) branch of the spectrum and the b, to the 
upper (heavy) branch, and different terms appear in the pair 
interaction: 

The first term leads to the formation of a bound state of the 
excitonic type. In the previous discussion we assumed the 
mass of one of the particles, d, infinite; now we allow for the 
finiteness of the mass and a small variation in the attraction 
potential. The second term describes the transition of two 
electrons from the light band to the excitonic state with an 
effective transition constant UaiP, - UV/E, when V/ 
E, ( 1. The third term corresponds to induced effective at- 
traction in the light subband. If we ignore the double filling 
of d-states due to Hubbard repulsion, the other terms in (46) 
are actually corrections to the above three. On the whole, the 
idea of the role of intermediate exciton-like states with a zero 
total momentum remains valid, the states themselves being 
constructed more accurately. When E, lies considerably 

higher than the Fermi level, that is, V/E, 4 1, all the above 
formulas remain valid to within terms oforder ( V/E, )'. For 
instance, in the calculation of Tc (P-0), the exact expres- 
sion for F + that allows for hybridization is 

where El , ,  (k)  = J { ( E ~  + -&,I2 + ~ v ~ I ~ ' ' } .  
It can easily be verified that to within terms of order ( V/E, ) 
Eq. (47) corresponds to (4) and (5).  

5. In conclusion we will briefly discuss the agreement 
between the given model and some experimental data. Let us 
first see whether a reasonable choice of W, V, and E, can 
ensure that Tc - 100 K. It is known that the band width Win 
a high-Tc superconductor is about 4 eV. The estimates of 
Sec. 2 yield a value of about 0.25 W for the antiferromagnetic 
interaction energy U. The common value of the hybridiza- 
tion constant V lies within the range of several tenths of an 
electron volt, that is, V-0.1 W. Finally, knowing that Tc 
attains its maximum value at alloying levels of roughly 0.15 
(i.e., p = 0.15 W), from the condition that E," + E, = 0 we 
obtain E, = p  = 0.15 W. Such a choice of the parameter 
scales yields, via (24), the value T, = 100 K for a concentra- 
tion n, -0.05 (per cell). In order of magnitude this value of 
n, agrees with both formula (22) and constraint (26). For 
the same choice of parameters, the ratio 2A/Tc varies be- 
tween 5 and 10, which agrees with the experimental data.'.' 
These estimates, naturally, cannot serve as proof that the 
theory is correct; they only show that there are no contradi- 
cations in principal with the experimental data. The model 
contains a simple explanation of the dependence of Tc on the 
alloying degree (the filling of the conduction band) charac- 
teristic of all high-Tc superconductors.9 For low alloying 
degrees, when E,,, + E, 9 Tc holds, the bound state plays a 
very small role owing to (23) and the exponentially small Tc 
is defined by formula (28). Then Tc grows, attaining its 
maximum value (24) at E," + E, =O. A further increase in 
the alloying degree drives up n, (22) and condition (26) 
breaks down, which leads to a drop in Tc. An important 
corollary of Eq. (24) is the proportionality of Tc to the occu- 
pation number n,. This pattern was observed in photoemis- 
sion experiments involving different families of high-Tc su- 
perconductors. lo The model also explains on the qualitative 
level the similar behavior of the rate of spin relaxation of the 
copper and oxygen nuclei below Tc (see Ref. 1 I ) ,  since the 
appearance of the averages (c,, d,, ) in the initial picture in 
Sec. 2 means the emergence of rigid coupling between elec- 
tron spins on copper and oxygen. 

On the whole, notwithstanding the above-noted fea- 
tures, the properties of the superconducting state in the pro- 
posed model resemble the properties in the ordinary BCS 
model. It is this that distinguishes the present theory from 
the theories with local pairs,12 where local pairs exist at tem- 
peratures above Tc . Superconductivity sets in not as a result 
of Bose condensation of pairs but owing to strong renormal- 
ization of the effective interelectronic interaction, with 
allowance for processes where virtual bound states act as 
intermediate states. 

The author thanks B. A. Volkov for the numerous dis- 
cussions on the properties of models with two-electron 
centers and for drawing attention to this field of research. 
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