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A theory is constructed for nematic-smectic and smectic A-smectic C transitions in melts of 
linear macromolecules with mesogenic units in the main chain. It is shown that the nematic- 
smectic transition is a first-order transition, while the smectic A-smectic C transition is a 
continuous second-order transition. 

In the present paper we propose a molecular theory that 
makes it possible to describe smectic transitions and the 
structure of smectic phases in a melt of multiblock linear 
macromolecules containing rigid mesogenic units separated 
by flexible units (Fig. 1). A similar theory was previously 
developed for a melt of diblock polymers containing a rigid 
unit and a flexible unit.' 

We employ the following model of a macromolecule. 
The rigid blocks are rods of length L and diameter 
d(L /d) 1 ). The flexible blocks are modeled by ideal beads 
on a massless filament. A block contains N beads, each hav- 
ing volume v, and the mean-square distance between neigh- 
boring beads is equal to a2. A chain contains N *) 1 rigid 
blocks. The interaction between blocks is characterized by 
the Flory parameter x.' 

We make one more assumption about the degree of or- 
dering of the rigid units. We assume that in the region of the 
nematic-smectic transition and in the smectic phase the rig- 
id fragments are packed parallel to one another and orienta- 
tion fluctuations can be neglected. 

The following dimensionless parameters play an impor- 
tant role in the proposed theory:' 

h Nu ' Naz 
x=.- X 

'P=~+A, a=- y=- 
Lo? ' La ' S 

The quantity e, is the volume fraction of the flexible compo- 
nent, and the parameter Y is assumed to be much less than 
unity ( v 4  1 ). 

1. FREE ENERGY AND SPINODAL OF THE NEMATIC- 
SMECTIC TRANSITION 

the melt is in the smectic A-phase; if 8 #O, then the melt is in 
the smectic C-pha~e .~  We now specify the direction of pas- 
sage along the chain (Fig. 2). In this case we can talk about 
the starting and final points of a rod. We introduce the distri- 
bution functions fo(z) and (z) of the starting points of 
rods, which have, respectively, positive and negative projec- 
tions on the z-axis. It is obvious that the functions& and?' 
and the angle 8 completely characterize the equilibrium 
state of the system. 

In the subsequent analysis it is convenient to take the 
quantity Lcos8 as the unit of length and to scale the func- 
t i o n ~ ? ~  and?, and the free energy by the area d 2/cos8 in the 
xy plane, perpendicular to the z-axis. Then the volume per 
unit length remains constant as the angle 8 varies. 

The volume fraction of rods in a neighborhood of the 
point z can be written in the form 

where 

dZ 
fo(z)= -fo<z>, 

cos e 

If the volume fraction of beads in a neighborhood of the 
In order to investigate the structure and phase transi- 

point z is equal to c(z), then the condition of incompressibil- 
tions in a melt we must choose the parameters characterizing 
the state of the system and determine the free energy. The ity has the form 

most general position of a system in equilibrium corresponds 4 2 )  +q (z) = I .  
to the case when the concentration of blocks varies periodi- 

(1.2) 

cally along some axis z and the angle between the z-axis and The average volume fractions are equal to 
the axis of a rod is equal to 8 (Fig. 2). If we have 8 = 0, then 

FIG. 1 .  Model of a macromolecule with mesogenic units in the main FIG. 2. Chain with a fixed orientation (0  is the angle between the rigid 
chain. unit and the axis of the translational ordering). 
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We employ the mean-field approximation to determine 
the free energy. The range of applicability of the mean-field 
method is determined from the condition La2 < a3N3" .4 In 
this case the free energy has three parts (interaction, steric, 
and conformational) : 

The energy Fin, corresponds to the effective interaction be- 
tween blocks of the same type and can be written in the form 

wherex > 0 corresponds to attraction andx < 0 corresponds 
to repulsion between blocks of the same type. 

The steric energy is associated with the fact that the 
number of possible conformations of the rigid blocks in the 
melt is limited because the blocks are impenetrable. For F,,,, 
we employ the approximate expression1 

which is asymptotically exact for smectic A and is also appli- 
cable if the angle 8 is not too close to r / 2 .  

We now examine the conformational free energy. It 
cannot be expressed in a closed analytical form in terms of 
the functions f,(z) and f,(z), so that we proceed as follows. 
In order to calculate the spinodal of the nematic-smectic 
transition, it is sufficient to know the expansion of the con- 
formational energy in the perturbations Sj. (z), for i = 0 and 
1, and Sc(z) of the uniform state up to terms of quadratic 
order. This can be done by standard methods.596 

We now consider a system of noninteracting macromo- 
lecules and we introduce the weak fields U(z) and pi (z), 
i = 0 and 1, acting on the beads and rods, respectively. In the 
linear approximation they lead to the following change in 
the concentrations (in the Fourier representation): 

+cpo ( a )B (a)+cpI (a)e-'a-YB (a) ,  

2T -- GfI(a) =NK(a)U(a)B(a) ( I f  eia) 
1-9 

T -- GC (a) =S (a)  U(a)+ K(a)B(a) [cp,(a) (l+efa) 
I% 2N 

Here the following notation has been introduced: a 
= qLcos8 is the dimensionless wave vector, 

Expressing U(a) and pi ( a )  in terms of SJ;: (a) and 
&(a) and using the condition of incompressibility, we can 

write the conformational free energy in the form 

8~...,= J {AI(a) [Gf0(a)6f.(-a)+Gf, (a)6fI (-a) 1 
+Az(a)6fo(a)6fl (-a)+A2(-a)Gfo(-a)6fI(a))da, 

(1.9) 

where 

1 + 2KG sin a +. (1.10) 
(I-cp ) B ( ~ - ~ - z Y )  cpa(l+e-Y)' 

with 

The expansion of the total free energy can be written as 

where 

a,, (a) -QS0 (-a) 

1 s ina  1 I-cp 
=A. -I-[-?+(-- - sin2 (a/2) ] 

(a/2I2 cp 2 cp2 

The equation of the spinodal has the form 

min det IlQull-0, 
O.00. e 

or, after some transformations, 

X 
I-e-Y cos a 1 -+ 
l+e-v +G[ n ly(l+e-')tg(a/2) l e " a  I2 I . 

(1.15) 

Minimization gives the following results. For A ( 1, i.e., 
if the rigid component predominates, the system is unstable 
with respect to the formation of a smectic A structure at 

with modulation period (in units of L )  
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It is evident from the formula ( 1.16) that the transition into 
smectic A for A (  1 occurs for values of the parameter x < 0, 
which corresponds to effective repulsion of blocks of the 
same type. This behavior is caused by the strong steric inter- 
action of the rigid units, which itself enhances the tendency 
for a layered structure to form. 

In the opposite limiting case, A $1, the instability arises 
with respect to smectic C ( 0 - ~ / 2 )  at 

with modulation period 

In order to investigate the type of phase transition on 
the basis of the above approach it is necessary to know the 
expansion of the free energy up to terms of fourth order in 
Sf,, i = 0,l. This is not the best approach in this case. We use 
different methods below to examine the question of the type 
of transition. The answer is that the transition is first-order. 

2. STRUCTURE OF THE SMECTIC PHASE FOR hg 1 

We now study in greater detail the structure of the 
smectic phases. We consider the case when the rigid blocks 
fill most of the volume of the system (A 4 1 ). It is easy to 
verify that when in smectic A the rigid and flexible units are 
completely separated the period of the structure will be 
equal to exactly P = 1 + A, and in the case when the rigid 
and flexible units are not completely separated the period 
will be close to this value. We investigate the stability of the 
uniform state of the system with respect to the formation of a 
smectic structure with period P = 1 + A + E ,  where E (A. 
We assume that the distribution functions of the endsA (x),  
i = 0, 1, vary slowly in space. This latter condition-that the 
gradients are small-makes it possible to obtain an analytical 
expression for the conformational free energy. 

The conformational energy can be calculated by the Lif- 
shitz meth~d.'~' Let the distribution functions of the ends 
f, (x)  and the volume concentration of beads c(z), which can 
be expressed in terms off, (x) via the incompressibility con- 
dition ( 1.2), be given. The conformation of a flexible unit in 
the smectic phase is, in general, not Gaussian. This latter 
circumstance can be taken into account by introducing a 
field U(z) which acts on the beads and changes the confor- 
mation of the chain so that the condition of compressibility 
is satisfied. On the basis of the foregoing facts, the general 
expression for the conformational energy can be written in 
the form 

1 4 

The transition probability function is equal to 

The distribution functions f, (x) ,  i = 0, 1, are expressed in 
terms of the functions qi (x) ,  i = 0, 1, as follows: 

1 

where q0+ (x)  = $,(x + 1) and $, + (x)  = q0(x - 1). 
The formulas (2.3) can be simplified by expanding 

U(x) and $i (x)  in terms of the gradients and using the con- 
dition of periodicity: 

The volume fraction of beads c(z) can be written in the form 
of an expansion: 

It will be convenient to employ below as the independent 
variables the distribution function of the ends 

and the function 

P ( 2 )  =fa (2)-f, ( 2 ) .  

It is easy to obtain an equation for the potential U(z) 
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from the condition of incompressibility and using the nota- 
tion introduced above: 

On the basis of what we have said above and after ex- 
panding the free energy (2.1) the final expression for the 
conformational free energy can be written in the variables o 
and p in the f x m  

The expansions for the interaction and steric parts of 
the free energy were obtained in Ref. 1: 

Combining the expressions (2.7) and (2.8 ) and minimizing 
with respect to p the resulting sum, we obtain the final 
expression for the free energy as a function of o(x) :  

hZ 0' (x) 
F=T I { - o ( x ) ~ n [ ~ o ( z ) ~ + ( $ + - ) -  4 o(z )  

In order to determine the critical point of the nematic- 
smectic transition, x,*, , and the structure of the smectic, the 
free energy (2.9) must be minimized with respect to u(x)  
under the additional condition 

Analysis shows that the most favorable formation is a peri- 
odic structure with period P = l + A (Fig. 3). The free ener- 
gy has the form 

FIG. 3. Profile of the concentration of flexible units in the smectic for 
L < 1; P = 1 + A  is the period of the structure. 

where 

In order to minimize the free energy we make the substitu- 
tion a = rl/*. AS a result we obtain two branches of the in- 
verse function z = z ( r )  on a period: 

The maximum value r, of the function ~ ( z )  is determined 
form the condition 

The difference between the free energies of the inhomo- 
geneous and homogeneous states per period is equal to 

F (o) -F (a) =-In zm2-R ( T ~ ' -  1) + ~ Q ' Z , ~  

du [22,2 (1-u) -1n ~]'~-2jih+hGO. (2.14) 

Minimizing the free energy (2.14) with respect to cose we 
find that the transition into the smectic structure is a first- 
order transition and occurs at 

xcl'=-Ilk2, (2.15) 

and in addition forA < v3'" the smectic A phase is stabilized 
while for v/3'/' < A  the smectic C phase is stabilized. The 
slope angle in the smectic C phase at the point of the transi- 
tion is equal to 

cos 0= (v/3"h) ", (2.16) 

and 7, - 1. 
For x = 0 the profile of the bead density in the flexible 

domain has the form 

An increase in x in the region x >x, does not significantly 
affect the concentration profile of the flexible component up 
to values X-x,* - l/A, for which the contribution of the in- 
teraction part of the free energy becomes of the same order of 
magnitude as that of the steric part. For X)X: the smectic 
structure is completely determined by the interaction and 
conformational parts of the free energy. 

In the nematic phase the ends of the chain are uniformly 
distributed in space, while in the smectic phase with x >x:, 
they start to localize in space. As a result of this localization 
a flexible tie can have straight and loop conformations (Fig. 
4)  with different energies of stretching. It  is obvious that the 
energy of the straight chain is higher than the energy of the 
loop chain, and in addition the difference between these en- 
ergies increases as the ends become more localized, i.e., a sx  
increases. Thus the fraction of folds in the macromolecule 
increases with increasing X. 
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The energies F3, and F3, per unit length can be estimated 
using the formula (3.4) : 

FIG. 4. Conformation of flexible units in the smectic phase: a) straight 
chain; b) loop chain. 

3. STRUCTURE OFTHE SMECTIC PHASE FOR hg 1 

We now study the nematic-smectic transition in the 
case when the flexible component is the dominant compo- 
nent in the volume (A ) 1 ). As analysis shows, the homoge- 
neous phase is unstable with respect to the formation of a 
structure consisting of alternating rigid (Fig. 2) and flexible 
domains. The rigid blocks form domains of thickness 1 (in 
the scale Lcose) and the interval between the domains is 
equal to S, so that the period of the structure is P = 1 + S. 
The maximum density of the rigid component in the domain 
is vmax = ( 1 + S) /A (Ref. 1 ) . We assume S<A.  

For A )  1 the interaction and conformation parts of the 
free energy play the dominant role in the formation of the 
smectic structure, while the contribution of steric interac- 
tions will be small. Assuming narrow domain walls, the con- 
formational free energy can be represented as a sum of three 
terms: 

The first term is the ideal gas contribution, which is related 
with the localization of the ends of the rods in a small region 
A+: 

The second term results from the presence of the gradient of 
the bead concentration in the region of the domain wall, and 
for A 9 a it can be written in the form 

Fz= T ,' j (dq'dz)z dz. 
24h cos 0 1-q (z) 

The energy F3 is the energy of stretching of the flexible units. 
The configurations of a flexible chain which are shown in 
Fig. 6 should make the main contribution to F,. It is obvious 
that the contribution of the first configuration (straight 
chain) to the stretching energy per unit length is equal to 

For S) 1 the stretching energy in the second and third con- 
figurations (loop chains) is approximately the same, 
F3, -F,,. We employ the standard method to calculate this 
en erg^.^ The stretching of loop chains is governed by the 
difference between the distribution functions f,(z) and fl (z) 
of the ends of the chains and the distribution c(z)/Nof their 
centers of mass. Calculations lead to the following result for 
the stretching energy: 

div D (z) =fo (z) +f, (z) -c(z) 15. (3.4) 

It is easy to see that for S) 1 we have F3,zF3,. 
We now determine the energy of a domain wall. The 

attraction energy between blocks of the same type and the 
energy F, make the main contribution to the domain-wall 
energy. For our structure (see Fig. 5) the domain-wall ener- 
gy per unit length is equal to 

The energy of attraction per unit length is 

and the ideal-gas term is 

The total free energy consists of the energy of attrac- 
tion, the domain-wall energy, the energy of stretching of 
flexible units, and the ideal-gas term. In order to find the 
critical value of the parameterx, for which the smectic struc- 
ture becomes advantageous (see Fig. 5 ) ,  and the period of 
this structure, we minimize the total free energy with respect 
to S. The calculations show that the transition into the smec- 
tic C phase occurs at x:~ -A For x > x,*, the slope angle 
in smectic C and the period of the structure are equal to, 
respectively, 

It is obvious from Eq. (3.8) that a sx  increases the slope 
angle of the rigid units in the smectic increases and the peri- 
od of the structure increases. At the same time, the flexible 
component is expelled from the region of the rigid domain. 
When x reaches the value X-A ' I2 ,  complete separation of 
the rigid and flexible units occurs and the formulas (3.8) are 
no longer valid. Thus the calculations performed above and 
the formulas are valid in the region A 'I3 <X <A 'I2. 

4. NARROW-DOMAIN-WALL APPROXIMATION 

We now investigate the smectic phase with complete 
separation of the rigid and flexible units. In this case the 
period of the structure is equal to exactly P = L ( 1 + A)cose. 

FIG. 5. Profile of the concentration of rigid units in the smectic with A ,  1; 
P = 1 + S is the period of the structure. 
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the following results. Loop chains are expelled from the cen- 
ter of the domain by the straight chains, since the position of 
the points of return is limited to the region c<R * (see Fig. 
7).  The free energy as a function of the fraction of straight 
chains p is equal to 

FIG. 6. Conformations of a flexible chain which make the main contribu- 
tion to the stretching energy. where the ratio R */R is related top by the following relation: 

We begin by determining the structure of the flexible do- 
main. In the flexible domain the chains can be divided into 
two groups-loop and straight chains (Fig. 7). It is obvious 
that if the slope angle of the rigid units in the smectic is not 
very large andil> Y, the chains should be strongly stretched, 
so that their stretching energy can be found by the method 
proposed by Semen~v .~  The energy per unit area d 2/cos0 of 
one flexible domain has the form 

wherep is the probability that the chain is a straight chain, R 
is the distance from the domain wall to the center of the 
domain, El (x)  is the tension of a straight chain at the point 
x, f({) is the distribution function of the point of a loop 
chain farthest from the wall (point of return), and E2(x, 6) 
is the tension at the point x of a loop chain such that the 
coordinate of the point of return is c. In order to minimize 
the free energy (4.1 ) it is necessary to take into account the 
additional conditions that the number of beads in a chain is 
fixed and the density of the flexible domain is constant: 

Minimizing the free energy (4.3) with respect top gives the 
fraction of straight chains 

In the case A 4 Y we have p* - 1/2. 
Thus the most advantageous chain conformation in the 

region il 9 Y is the "folded" conformation (Fig. 8). The 
mean-square distance between the ends of a macromolecule, 
consisting of N * 9 1 blocks in the plane of the layer (R, ) and 
along the z-axis (R II ), is equal to 

In order to determine the period of the smectic struc- 
ture and the slope angle of the rigid units, in addition to the 
stretching energy of the flexible chains it is necessary to 
know the surface tension of the domain walls. This last prob- 
lem was solved in Ref. 1. The total free energy per period is 
equal to 

It  follows from Eq. (4.7) that the dependence of the slope 
angle of the rods in smectic Con x has the form 

Minimizing the energy (4.1 ) under the additional con- 
ditions (4.2) for a fixed fractionp of straight chains leads to 

(4'2) and the period is P=L(l+A)cosO. If 
x =xl = -&r4il 2/$, then a smectic C-smectic A second- 

FIG. 7. Distribution of straight and loop chains in the flexible domain 
when the flexible and rigid blocks are completely separated. FIG. 8. Folded structure of a macromolecule. 
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FIG. 9. Phase diagram of the melt in the variables ( x , l ) .  I-nematic 
phase; I1 and 111-smectic A and C phases. 

order transition occurs, so that for x (x, the smectic C is 
stable and for x >x, the smectic A is stable. 

The results obtained in this paper permit constructing a 
phase diagram of the states of an anisotropic melt of multi- 
block linear macromolecules in the variables x and il with a 
fixed geometry of the blocks (v  = const) (Fig. 9).  The re- 
gion I is the region of existence of the nematic phase, separat- 
ed from the smectic by the curve I with the asymptotes 
X- - 1/i12forR<1 andX-X1/3 forR)l;regionIIisthe 
region of existence of smectic A; and, region I11 is the region 
of existence of smectic C. The boundary between smectics A 
and Cpasses along the curves 2 and3, which are described by 
the equations R = v/3lI2 and X-R '/$, respectively. The 
transition to the curve 1 is a first-order transition and the 
transitions to the curves 2 and 3 are second-order transi- 
tions. 

Thus our calculations show that the steric interaction 
significantly affects the stability of the nematic phase in the 
case when the rigid component predominates in the system. 
As the length of the flexible units decreases (the fraction of 
the rigid component increases) the transition into the smec- 
tic phase will occur at lower values ofx. Since the parameter 
x is inversely proportional to the temperature, the transition 
into the smectic phase of polymers with shorter flexible units 
will occur at a higher temperature; this agrees qualitatively 
with experiment. 

Our analysis also shows that the most advantageous 
conformation of the chain is a folded structure. This is indi- 
cated also by the experiment described in Ref. 10. 
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