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A hierarchy of nonlinear equations is constructed for average Green’s functions describing the
transport of passive fields (a particle-concentration field, a magnetic field, or a temperature field)
in a given turbulent medium. It is not assumed that the ensemble of turbulence velocities is
Gaussian. In the case of an incompressible medium, these equations can be solved effectively by a
numerical method analogous to the method of successive iterations in the calculation of
continued fractions. Solutions are derived for the simplest nonlinear equation, with a quadratic
nonlinearity. These solutions are then used to calculate the turbulent diffusion coefficients for a
Kolmogorov turbulence spectrum and for a §-function spectrum. This method can be used to
calculate the diffusion coefficient for spectra with arbitrary values of the parameter & = uy7,/R,,
where u,, 7,, and R, are typical values of the velocity, the lifetime, and the size of the turbulent

fluctuations.

1.INTRODUCTION

The diffusion coefficients for (passive) impurity fields
(a particle concentration field, a magnetic field, or a tem-
perature field) must be calculated for various turbulent me-
dia in order to describe phenomena which occur in astro-
physics, meteorology, geophysics, hydrodynamics, and
other settings. An expression for the turbulent diffusion co-
efficient D, was derived in the Lagrangian representation in
the well-known paper by Taylor.! In most cases, however,
the turbulent velocity field u(r,#) of the host liquid or gas is
known in the Eulerian representation, and it becomes neces-
sary to calculate D in this representation specifically. Go-
ing over from the Eulerian representation to the Lagrangian
representation is known to be a difficult problem, which has
not been solved in its general form. The problem of calculat-
ing D has been taken up in many papers (e.g., Refs. 2-5).
The basic results which have been derived are given along
with a comprehensive bibliography in some monographs. *®

The turbulent diffusion coefficient D, depends strongly
on the parameter & = uyr,/Ry=7,/to, Where u,, 7o, and R,
are typical values of the velocity, the lifetime, and the size of
the turbulence fluctuations, with z, = Ry/u,. The diffusive
mixing length L is known to be related to D, and to the time ¢
by L?~D.t. On the other hand, turbulent diffusion stems
from the transport of a passive field by a fluid element, and
the quantity L must be proportional to the characteristic
velocity u, of the convective motion, if we take the time ¢ to
be the shorter of the time scales 7, #,. In this case, L becomes
the mean free path of a liquid particle. In the limit
To<Llo(£<€1) we have L=~uy7, and t~7, and we find
D, ~u}t, In the opposite case, To>%,(£>1), we have
L=~uyt,=R, and t~t, and we find D, ~u,R,. In other
words, the turbulent diffusion coefficient is independent of
7o- An additional possible combination of the parameters
R 2 /7, which has the dimensions of a diffusion coefficient is
not physical, since it does not include the scale velocity u,
which is the only dynamic parameter of the turbulent mo-
tion which determines the spatial transport of the impurity
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field. The ratio of the limiting values of the diffusion coeffi-
cients, u37/uoR =~ £, can be extremely large, so the problem
of deriving a theory which predicts the correct values of D
in both limiting cases would appear to be a rather difficult
one.

In most of the studies which have been carried out, the
numerical and analytic methods have been valid for calcula-
tion D, only in the case £ € 1. In Ref. 5, as well as Refs. 9 and
10, a procedure for renormalizing the equation for the fluc-
tuational part of the impurity field was proposed. That re-
normalization makes it possible to calculate D, up to £=1.
In this method, the new equation for the Green’s function
has as a free term not the molecular Green’s function

G.(R, t)=0(7) (4nD,,7v)~* exp(—R?*/4D 1)

but the function M (R,7), which gives a more direct descrip-
tion of the convective nature of the impurity transport. In
particular, for large values of R, this function is the same as

G. (R, ©)=0(7) (4nDs1)~* exp(—R*/4D77)
with the diffusion coefficient

Dr=us’1,/3

(we are assuming the case D,, € D).

In the present paper we generalize Ref. 5. Instead of the
function M(R,7) we use a solution of the nonlinear equation
for the average Green’s function (G(R,7) ). It thus becomes
possible to find D, for turbulence spectra with an arbitrary
value of the parameter £(0<£ < « ). For the case of an in-
compressible medium, finding a solution of the nonlinear
equation reduces to a rapidly converging procedure similar
to the method of successive iterations in the treatment of
continued fractions. The calculation becomes elementary in
the computational sense. In addition, the numerical solu-
tions found here as well as the analytic asymptotic form of
the nonlinear equations may prove useful for describing the
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time evolution of the fluctuations in impurity fields in a non-
diffusive approximation.

2. FORMULATION OF THE PROBLEM

For impurity fields of all types, the evolution of the im-
purity is described by the equation

(a—at - DmV‘) (o, ) =Pof=2 (v, )f (x, 1), (1

where D,, is the molecular diffusion coefficient, f (r,¢) is the
impurity field, and the operator .Z (r,t) describes the effect
of the background liquid or gas on the impurity transport
process. For the impurity concentration field n(r,¢) we have

ZPn=—div(un)=—(uV)n—ndivu.
For the temperature field 7'(r,?) in an ideal gas'® we have
PT=—(aV)T-T[(Cs—Cvy)[Cv]divu,

where C, and C,, are the specific heats of the gas at constant
pressure and at constant volume, respectively. For the diffu-
sion of a magnetic field B(r,t) we have .Z’B = curl[uB].
The theory derived below is completely valid for any of these
fields. For definiteness, we will restrict the discussion below
to the field of impurity particles with a concentration n(r,t)
in certain specific calculations, we will consider only the case
of incompressible turbulence ( div v=0):

/]
(E-—D,,.V’)n(r,t)=—u(r,t)Vn(r,t)'=".?n. (2)
We consider the diffusion of particles in an infinite, homoge-
neous, and isotropic turbulent medium. The two-point cor-
relation function for the velocities of the liquid or gas in such
a medium is!!

<ui(1)u;(2) >=By(R, 1) =0,B.(R, 7)

TRAR*(B\(R, ©)—B_(R, 7)) tesuR:C(R, 7). (3)

Here R=r, —r, and 7 = t, — t,. The angle brackets ( ... )
mean an average over the ensemble of realizations of the
turbulence velocity field u(r,?); and B|| and B, describe the
correlation of the velocity components respectively along
and perpendicular to R. The function C(R,7) describes the
possible helicity of the medium [(u(1) rotu(l))
= 6C(0,0) ]. For an incompressible medium we have

BJ_=B||+ (H/Z) 6B||/5R.

We also assume (u) = 0, i.e., that the medium as a whole is
at rest. The Fourier transform of B;, (R,7) in the variable R
has a simple form in the case of an incompressible medium:

By (p, v)=I1,, (P)f(p, ©)t+ieqp.D(p, 1), (4)
where '
: 2 3By(p,7)
) Y = Y L
HJ‘I (p) 6jq P ~DPiPay f(lh T) ? ap ’
1 aC(p,7) . (5)

D(pv T)=
p op

Below we will use the notation
dl=drdt, d2=drdt,, f(n)=f(ra, t.), .
F(4=2) =f(r,—r,, t,—t,;)

etc.
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Anintegral equation for the Green’s function of Eq. (2)
[orof Eq. (1)] is

0(1,2)=Gm(1—2)+5 d3G.(1-3)2(3)G(3,2), (6)

where
Gn(1-2)=Gn(R, v)=0(1) (4nD,v)~"* exp(—R*/4D, 1)

is the Green’s function of the operator ., and 6(7) = 1 for
7>0and 6(7) = 0 for 7 <0. Using the method of successive
approximations to find G(1,2) and thus the diffusion coeffi-
cient D from (6) is exceedingly inefficient, since the expan-
sion is carried out in terms of the molecular Green’s func-
tions G,,, which do not describe the convective nature of the
particle transport. It becomes necessary to go over to a new,
renormalized form of the equation for G(1,2). In this new
equation, the particle transport by the turbulence would be
taken into account even in the free term. Direct substitution
quickly verifies that Eq. (6) is equivalent to the following
two equations:

M(1-2)=G.(1-2)+ 5 d3j. d4Gn(1-3)K (3—4) M (4—2),
7

¢, 2)=M(1-2+] a3 1-3)| 2366,

f urG-06w2). (8)

Substitution of (7) into (8) leads to (6). The system of equa-
tions (7), (8) is useful in that Eq. (7) can be solved exactly,
and explicitly, by going over to Fourier transforms in R and
7. On the other hand, it is possible to choose a kernel K(3—4)
in such a way that the function M(R,7) would largely de-
scribe the convective nature of the particle transport. The
following average kernel was adopted as K(3—4) in Refs. 5,
9, and 10:

K(3—4) =<2 (3) G (3—4) Z (4)>. (9

Equation (7) in this case, for a turbulence with a “short
memory,”’

f(p, ©)=2f(p)exp(—7*/t*) /n"1,

becomes the exact equation for the average Green’s function
{(G(1,2)), and the function

as To—>0

M(R, ©)=<G(1, 2)>

becomes the diffusion Green’s function G (R,7), with the
limiting value of the diffusion coefficient:'*

Dr=u,’t,/3.

Equation (7) with kernel (9) is the same as the equation for
the average Green’s function (G(R,7)) if the parameter
£R,/1 is small, where [ is the length scale of the substantial
variations in the average quantities, in particular, the aver-
age Green’s function (G ) itself. The averaging is usually car-
ried out over scales much larger than the length scale of the
turbulence fluctuations, R, so the relation R,//<1 holds,
and the function M(R,7) gives a good idea of the average
Green’s function up to £~1. This circumstance makes it
possible, by taking successive iterations of (8), to calculate
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the turbulent diffusion coefficient D for turbulence spectra
with values of the parameter £ from zero to one.

3.EXPRESSION FOR THE TURBULENT DIFFUSION
COEFFICIENT

Let us derive an expression for D, in terms of the
Green’s function G(1,2). We write all quantities as the sum
of an average value and a fluctuating part: n = (n) + n,,
G=(G) + G,,etc. Here (n,) = 0and (G,) = 0. Taking the
average of (2), we find

Lony=—(aV)n>=Q(r, t)=<Zn,>, (10)
Lon=Ln>—<Ln>+Ln,. . (11)

The equation for n,(r,t) differs from the original equation,
(2), only in the presence of the term £ (n) — (ZLn,).
Treating this term as a source, and using the Green’s func-
tion G(1,2) of Eq. (2), we can therefore write

n(D)=§ 426(1,2)[2 (2)<n(2)>—Q(2)]. (12)

Applying the operator .Z (1) to (12), and taking an aver-
age, we find an equation for the quantity Q(1):

()= S d2[<Z (1)G(1,2)Z (2)><n(2)>
—~Z (161,20, (13)

Applying the operator .Z (1) to Eq. (6), written as an infi-
nite series of iterations, we easily find the identity

(@ NE(, 2= KL (1)E(1,3) L (3)7Gn(3-2). (14)

Using expression (14), we can write the equation for Q(1) in
its final form:

Q)= S a2(Z (1)G(1,2)Z (2)><n(2)>

- (15
~Jaf sz ye, 2 E)e3-2)002). )
By virtue of the homogeneity and steady-state nature of the
ensemble of turbulence velocities, the expressions inside the
averaging symbols depend on the differences between the
coordinates and the times. In other words, Eq. (15) can be
solved explicitly by going over to Fourier transforms:

Q(r, t)—-(—znj‘— jdpS dm@(p,m)exp(—zpr—zmt) (16)

For an incompressible medium, with .£f= — (uV) f, we
find

a(p — p‘PJHu(Py (I)) (ﬁ(py (l)))
" 14pp. R (p,0)Cn(p, 0)

= pp:Dy(p, @) <A(p, @), (17)

where R 7 (p,w) is the Fourier transform of the correlation
function

wi(1)G(1, 2)u;(2)>,

and

652 Sov. Phys. JETP 74 (4), April 1992

Gn(p, ©)=(io+D.p*) .

Taking the inverse Fourier transforms, we find the kernel
D;(R,7) from (17). As a result, Eq. (10) becomes

(a—i -D,V? )(n(r, t)>

= vJ R DR, ) Vine—R, 1. (18)

It is easy to see that the tensor b,-j (p,@) changes relatively
little in magnitude, since the function R ; appears in both the
numerator and the denominator of expression (17). This
circumstance means that, in contrast, the tensor D; (R,7) is
astrong function of R and 7 in the coordinate-time represen-
tation, with scale values ~ R, and scale times ~ 7, 0r ~ ¢, for
the case 7,> ¢, = Ry/u, Assuming that (n(r,?)) is a suffi-
ciently smooth function over these time and length scales,
we can take (n(r — R,z — 7)) out of the integral in (18) at
the points r = 0 and 7 = 0. As aresult, Eq. (18) becomes the
diffusion equation

a 2
(a—t—(D,,+D,)v ) <n(r, t)>=0, (19)

where the turbulent diffusion coefficient is

1
DT = ? de deD“ (R, T)a’—;—Ru (O, 0)
o

=;—j dRI deu(1)G (4, 2)u.(2)>. (20)

Making use of the sharpness of the functional dependence
D; (R,7), we have extended the integration over 7 to infinity.
Substituting some expression for G(1,2) into (20), we find
specific formula for D;.

The velocity field is usually assumed to be Gaussian. In
other words, the velocity correlation function of odd order
are assumed to be zero, and those of even order are assumed
to be equal to the sum of all possible products of binary cor-
relation functions. One can show by direct iterations of Eq.
(15) that for a Gaussian ensemble of the velocity field the
quantity Q(1) is equal to the irreducible part of the free term
in Eq. (15):

Q (1) = (%n,) = irreducible part of S d2{£(1)G (1,. 2)Z(2)

x<n(2)). (21)

We recall'“ that the reducible expressions (which are weakly
coupled) have a structure

112

[ aaf 43§ aaca1,3)>6.(3-4) B, 2)><n(2).

In other words, the average blocks are separated by a molec-
ular Green’s function. The kernels of such expressions are
not sharp functions of the time. The reducible expressions
describe a gradual establishment of an average concentra-
tion {(n). In the calculation of the source

Q(1)= —div <P,
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which is equal to the divergence of the average particle flux
(F(1)), the nearest space-time neighborhood of the obser-
vation point, described by correlation functions of an irredu-
cible (strongly coupled) type, is important. One can show
that the set of irreducible correlation functions describes an
elementary event in which the turbulence interacts with the
impurity field (with length scales ~ R, and time scales ~ 7,
or t,), while the reducible correlation functions incorporate
the temporal contribution of these interactions in the shap-
ing of the average concentration (). This inspection of the
Gaussian case clarifies the reason for the sharpness of the
kernel D; (R,r) and, in general, of non-Gaussian ensembles
of turbulent velocities. To go over from expression (21),
which is exact for a Gaussian ensemble, to an approximate,
diffusion expression involves taking {n(2)) out of the inte-
gral at point 1. As a result, we find expression (20) for D, in
which we can omit the words “irreducible part of,” since the
reducible terms disappear after an integration by parts.

4.HIERARCHY OF NONLINEAR EQUATIONS FOR (G(1,2))

Equations (10) and (11) show that the average concen-
tration (n) depends on the contribution of fluctuations,
which is determined in turn by the average concentration.
The meaning here is that an individual equation for (n)
should be nonlinear. Furthermore, incorporating contribu-
tions from all fluctuations—those which are remote and
those which are close in space-time—leads to equations with
progressively higher degrees of nonlinearity. In other words,
the result is a hierarchy of nonlinear equations. We will illus-
trate the method for deriving such a hierarchy of equations
for the average Green’s function (G(1,2)).

Equations analogous to (10)—(12) can be written for
(G(1,2)) and G,(1,2). In particular, the following expres-
sions hold:

G(1,2) )=G..,(1—2~)+‘S d3G.(1—3)<Z (3)G(3,2),(22)

6.(1,2)= | B36(1,3)[2(3)<6 (3,2)>—<2(3)6(3,2)>1.
(23)

Adding (23) to (G(1,2)), we find an equation for G(1,2)
which does not formally contain molecular Green’s func-
tions:

6(1,2)=<G(1,2)>+ [d36 (1, 3) (2 (3)<G (3, 2)>

—(&Z(3)G(3,2)>]. (24)

Equation (24) cannot, of course, be used to calculate the
Green’s function G(1,2) directly, since the average Green’s
function (G(1,2)) itself depends on G(1,2). Equation (24)
makes it an extremely simple matter to derive a hierarchy of
nonlinear equations for (G(1,2)).

Expanding G(1,2) in a power series in the operator .7,
and substituting the result into (24 ), we find a series of itera-
tions for G(1,2) in which the functions (G(1,2))=g(1 — 2)
are used:

G(1,2)=¢(1-2)+ | d3g(1-3)2 (3)g (3-2)
+ Ja3 [ aag(1-3) 12 3)g(3-1) 2 @)
(P (g (3-4) L (4))g(4—2)
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+ j d3 j d4 j d5g(1-3)[Z (3)g(3—4)Z (4)g(4—5)Z (5)
—(P(3)g (3—4) Z (4)>g(4—5)Z (5)—Z (3)g (3—4)
XL (4)g (4—5)Z (5)21g(5-2)+... . (25)

It is simple to show that each integral term in (25) vanishes
when the averaging is taken. If we apply the operator .£ (1)
to (25), and take an average, we find several approximations
for the quantity (.#(1)G(1,2)), which appears in the inte-
gral term of Eq. (22) for (G(1,2)). This series can be ex-
pressed as a power series in the average Green’s function
g(1-2) itself:

(F )G, 2)>"=§ d3<Z (1)g(1-3)Z (3)>g(3-2)
+Jasfasf sz e-n23)

xg(3-4)Z (4)g(4—5)Z (5))
—(Z (1) g(1-3)<Z (3)g(3—4)Z (4)>g(4—5) L (5)>
—(Z(1)eg(1-3)Z(3)>g(3—4)
X<(Z (4)g(4-5)Z (5)>1g(5-2)+... .
(26)

Substituting the terms of this series into Eq. (22), we find
approximate nonlinear equations for (G(1,2)) =g(1 —2).
Retaining only the first term from (26), we find an extreme-
ly simple nonlinear equation with a quadratic nonlinearity:

g(1-2)=Gn(1—2)+ | a3 [ d4G.(1-3)

X<Z (3)g(3—4) 2 (4)>g(4—2). 27
Substituting in the first and second terms from (26), we find
an equation for (G ) which also contains (G ) raised to the
fourth power, etc. For Gaussian ensembles of the velocity
field, the hierarchy of nonlinear equations simplifies slight-
ly. For example, the equation containing the second and
fourth powers of g(1-2) becomes

g(1-2)=Gn(1—-2)+ | a3 | as6,.(1-3)
X(Z (3)g(3—4) 2 (4)>g (4—2)

+ j d3 j d4 j dsf d6G,,(1—-3)2 (3)g(3—4)Z (4) g (4—5)
XZ (5)g(5—6)Z (6)g(6—2). (28)

In the second integral term, we have averaged .Z(3)
with.# (5), and .Z (4) with .Z (6).

The extremely simple nonlinear equation in (27) is
found directly from (22) and (23) by assuming, in the calcu-
lation of G,(1,2), that the average Green’s function is much
larger than the fluctuational part of G,(1,2). An estimate of
the term with the fourth-degree nonlinearity in (28) shows
that it generates corrections ~ (§Ry//)?in the case £ S 1 and
a correction ~ (R,/1)?in the case £> 1.

5.NUMERICAL SOLUTION OF THE SIMPLEST NONLINEAR
EQUATION

Equation (27) is the simplest nonlinear equation for the
average Green’s function

G(1,2)>=0(1)g(R, 7).
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The easiest way to solve this equation is to take Fourier
transforms in R=r, —r, and Laplace transforms in
T=1 —1,

oo

#(p.5)= | dR{ drg(R,Dexp(—ipR—s1).  (29)
0
In terms of these variables, Eq. (27) becomes

5 dqp:Bi;(p—q)

catlarr )"

Here we have also introduced the restriction

Bﬁ(R, 1:)=B{,-(R) exp (—|T|/To),

g(va)"'[ S+D"'p +— (2 )3

(30)

and we have used
Gn(p, 8)=(s+Dnp*)~".

Expression (30) is an equation of the continued fraction
type. For an incompressible medium, Eq. (30) simplifies:

2(p,5) = [s+Dupt + — L dag1=p1(0)

(2n)*
Xs’( Ip—ql,s+:—°)]_’ :
(31)

Here p*q = pqu. Since the quantity p*f (p) is proportional to
the energy spectrum of the turbulence fluctuations,
E(p) R0, the kernel in (31) is a positive function. In other
words, expression (31) is the analog of a continued fraction
with positive terms. Consequently, expression (31) can easi-
ly be solved numerically by the “fork” method, with
29 (p,s) =G,,(p,s) used as an initial approximation. All
the odd approximations then represent the exact value of
g(p,s) with a deficiency, while the even ones do the same
with an excess. Very quickly, the odd and even iterations
become more nearly the same; ~ 30 iterations are sufficient
for essentially perfect agreement. The first iteration of (31)
leads to the function M (p,s) which was used in Refs. 5, 9,
and 10. Note also that the (30) and (31) do not depend on
the helicity of the medium. Such a dependence does rise in
the case of a scalar impurity field with nonlinear equations
which are more complex, beginning with (28). For the case
of magnetic-field diffusion, even the simplest nonlinear
equation (more precisely, the simplest system of two equa-
tions), of the form (27), depends on the helicity.
For small values of p and s (i.e., for p<po,~R ' and
s79< 1) we find from (31)

#(p, ) = [s+(DntDs" )P~ =G sz (D, ). (32)

In other words, the function g(p,s) is the same as the Green’s
function of the diffusion equation (19) with a diffusion coef-
ficient D,, + D (an expression for D" is given in the
following section of this paper). In the opposite limit p> p,
we find

1 1\1
g(p,s) = [s+Dmp“ 3w (p. s +——)] . (33)
To
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At sufficiently large values of p((u,7q0)>>570,437e> D, )
we can ignore the first two terms in square brackets; we find

E(pv S) ~ (uthzg(pv s+1/10)/3) —l'
We then find an s-independent asymptotic expression

8" (p, s)=3%/up. (34)

Substituting this asymptotic expression into (33), we find
the more accurate expression

&V (p, 8)=(s+Dmp*+pu./3*)~". (35)

An expression which is even more accurate is found by sub-
stituting (35) into (33):

2” (.9)=[ s+Dop +?1“° s +"1‘ il +p3":) ]

(36)

At very large values of p, according to (34) and (35), the
term with gin (33) (this term is linear in p) becomes smaller
than the molecular term D,,p? and the function g(p,s) be-
comes the same as the molecular Green’s function

Gn=(s+D,.p*)"".

The condition D,, € D holds in essentially all cases, and we
can ignore the term with D,, in calculating D..

Let us compare the approximate expression (36) with
the results of accurate numerical calculations of expression
(31). Interestingly, expression (36) is independent of the
turbulence length scale Ry~ 1/p, and in practice depends
only weakly on 7,. In other words, g(p,s) effectively depends
on only the energy scale of the turbulent fluctuations, ~ uj.
Equations (34) and (35), which do not depend on 7, also
hold for an arbitrary time dependence of the velocity corre-
lation function. In numerical calculations it is convenient to
use the dimensionless variables x = p/p, and y = s7, and to
write g(p,s) in the form

E(p, 9)=7g(z, y). (37)
In this notation, expression (36) becomes (D,, —0)
-(2) (1' y) — Yy + 1 + .on )
y(y 4+ 1) + Loy + 2%,?
— —i— as £z —> o0 (38)
Eo ) ’
where

Eoz=uozfozpoz/3; a ul=<u*(r, t)>.

Tables I and II show the functions g(x,1) for the correlation
functions

f(p, ©) =nus*p,~*6 (p—po) exp (—|7|/70), (39

F(p, ©) =%sn*uo’po"p=*"*0 (p—po)exp(—|t|/70). (40)

These results correspond to a §-function spectrum

E (p)=u,*6(p—p,)

and a Kolmogorov spectrum
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E(p)=C(/s)u*p.®p~":.

It can be seen from these tables that expression (38) gives a
good picture of the exact values of g(x,1) at essentially all
values of x and £, At large values of the parameter &,
expression (38) is more accurate. For comparison, the val-
ues of g(x,1) in the diffusion approximation are

airr (@, y) = (v + E2DP 22)1,
where
D" =D, (uo*1,/3) .

It can be seen from these tables that g, gives a fairly good
representation of g(x,1) up to x~1 at £, S 1. With increas-
ing &,, the accuracy of g, suffers. To calculate D, for slow-
ly decreasing spectra of the form (40), we would also need to
know g(x,1) for x> 1, where the diffusion approximation is
totally inapplicable.

6.CALCULATION OF THE TURBULENT DIFFUSION
COEFFICIENTS

Equation (27) is a particular case of general equation
(7) with the kernel

K(3—-4)=<Z (3)g(3—4)Z (4)>
and
M(1-2)=g(1-2).

Once we have solved (27), we can take iterations of the re-
normalized version of Eq. (8) and find a series of approxi-
mations for the Green’s function G(1,2). Substituting this
series into (20), we find a series of approximations for the
turbulent diffusion coefficient D;. In the case of an incom-
pressible medium, the first two terms of this series are found
to be

1
D;“= _,'_5; de deBit(Ry 1)g(R, T)
0

. .
=3 Jap Jawra, 0E(p, 7). (41)

= _1.§j dR, j dR, j dR, _‘. d‘nj d‘tzj dvsg (R, 1,) By
°

(] 0
X (R+R,, 1, +12).
(42)
Vg(’)g (Rg, T.) B;((R3+R;, Tg+T.) V;(”g(R., T]).

Under our restriction B; (R,7) ~ exp( — |7]/7,), expres-
sions (41) and (42) simplify markedly:

r = 3—:, !dpp‘f(p)i( P, ;1;-) = —;—{ dpE(p)E( P, ;t—) '

(43)

o {0
D, "= '27&75 dp p* j dg q‘j du(1—p*) [ppef(p)f(q)

+0 (D@18 p) o 0.2) 8 r+e2panr 2 ).

(44)

Here E(p) = p*f (p)/#* is the turbulence spectrum, i.e., a
representation of the quantity (#?(r,t)) =u} as an integral
over all positive wave numbers, with a density E(p).
Tables III and IV show values of D, calculated from
the exact solution of the nonlinear equations (31) and the
asymptotic expression (38). Shown for comparison are val-
ues of D found by the so-called self-consistent method,? in
which the exact value of g(p,s) in (43) is replaced by

TABLE III. Values found for the diffusion coefficient D, = D (4)u37,) ~'in the case of corre-
lation function (39) with & = £,3 = uyrqpo/3%2. The values of D and D {* were calculated

from (45) and (38).

T 5;}) _~(1%) 55?) 5(;) 3(113)
0 1 0 1 1

0,1 0,9581 0,0001 0,0201 0,9233 0,9623
0,2 0,8598 0,0011 0,0603 0,7806 0,8783
03 0,7496 0,0033 0,0938 0,6538 0,7817
04 0,6505 0,0057 0,137 0,5555 0,6896
05 0,5684 0,0078 0,1227 0,4805 0,6087
v,6 0,5010 0,0094 0,4250 0,4223 0,5398
0,7 0,4463 0,0105 0,1236 0,3761 0,4818
0,8 0,4014 0,0112 0,1201 0,3388 0,4331
0,9 0,3642 0,0117 0,1158 0,3081 0,3920

t 5(1}) - '5(12) oW 5L 3:(!9)

1 0,3329 0,0119 0,4110 0,2824 0,3571
1,2 0,2834 0,0120 0,1015 0,2419 0,3017
1,4 0,2464 0,0117 0,0928 0,2114 0,2604
1,6 0,2176 0,0413 0,0851 0,1877 0,2279
18 0,1947 0,0109 0,0784 0,1688 0,2024%
2 0,1760 0,0104 0,0725 0,1533 0,1818
3 0,1187 0,0084 0,0523 0,1051 0,1195
4 0,0893 0,0070 0,0407 0,0799 0,0886
5 0,0715 0,0059 0,0332 0,0645 0,0702
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TABLE IV. Values of the turbulent diffusion coefficient D, = D,. (-}u0 To) ~ ! for the Kolmo-
gorov spectrum (40). The values of D (> and D { were calculated from (45) and (38).

% by P 5 % br By b1
0 1 1 1 1 0,389 0,317 0,370
0,1 0,869 0,765 0,829 1,2 0,346 0,281 0,324
0,2 0,754 0,654 0 734 1,4 0,310 0,253 0,288
0,3 0,674 0,575 0 660 1,6 0, 282 0,230 0,258
0,4 0,610 0,514 0, 598 18 0,257 0,210 0,233
0,5 0,557 0,465 0, ,546 2 0,237 0,194 0,212
0,6 0,514 0,425 0 501 3 0,169 0,140 0 144
0,7 0,476 0,392 0, 464 4 0,130 0,109 0 108
0,8 0,443 0,363 0, ,427 5 0 105 0,090 0 086
0,9 0, 414 0,339 C 397

&air (0,8) [see (32)], but with an unknown coefficient Dy.
Expression (43) then becomes an equation for finding D.

Dr‘”——j dpE (p) (1+tD;” p*)-*. (45)

In calculations of D, the correlation functions in (39) and
(40) were chosen as examples of an extremely narrow turbu-
lence spectrum and of a broad spectrum.

Table III shows values of D" and D calculated
through the use of the exact solution of (31) for the correla-
tion function (39), which represents turbulence with an ex-
tremely narrow spectrum. Here we allowed for the helicity
of the medium, which we chose in the form

D(p)=1pf(p),

where |7|<1 is a measure of the degree of helicity. The diffu-
sion coefficient in this case can be written

-1
5,Enr(i3 uo’u) =D +D; D" + ..., (46)
where D (¥ = g(1,1), and the corrections D {*» and D {’ are

9n_ 3 . =
DP =t (1. 1) \ dup (1 — ) 2 (@ (1 + )%, 2), (47)

o = 2o, 1) A =B D). (4D

Ie/'a"' Le—~

The case |¥| = 1 corresponds to the maximum possible heli-
city [according to the Khinchin-Bochner theorem,’ the in-
equality pf (p) >|D(p)| holds]. It can be seen from Table ITI
that the contribution of the helicity increases with increasing
&, Using the asymptotic expression in (34), we find the fol-
lowing results in the limit £,— oo :

r —~&~', Dy ——2/(35&), Dj —0,4/.

These results show the relative contributions of the quanti-
ties DV, D$®, and D to the turbulent diffusion coeffi-
cient fairly accurately at values £,> 1. Table III shows that
in the absence of helicity we can use the simple expression
(43) to calculate Dy in the limit £,— o, to within an error
~8%. This error falls off monotonically with decreasing &,
approaching zero as £,—0. If several iterations of the origi-
nal equation, (6), are used in calculating D, we obtain the
series
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1

1 1 9
D,=-—3-u.,21:., (1 ——2§o’+z-'y’§o’+§6—§.,‘+.. .), (49)

which can be used to calculate D, under the condition
£6 =uaops/3<1.

What does the method described above lead to in the
case of turbulent media with a broad energy spectrum? For
specific calculations, we adopt a Kolmogorov spectrum as in
(40). Table IV shows the results of an accurate numerical
calculation based on Eqgs. (31) and (41), along with results
calculated by the self-consistent method [see (45)] and
through the use of approximate expression (36). Interest-
ingly, when we use iterations of Eq. (6) to obtain a series of
the form (49) in the case of a broad spectrum, we obtain only
the first finite term, u27/3. The other terms of the series,
beginning with the second, diverge. It can be seen from Table
IV that the approximate expression (36) leads to results
more accurate than those found by the self-consistent meth-
od. It can be seen from (44) that in the limit £,—0 we have
D P ~£% 0. We therefore restrict the discussion to an esti-
mate of the contribution D {? to the diffusion coefficient in
the limit £,— 0, in which this contribution is at a maximum
with respect to the contribution of the leading term, D {’. In
the limit £,> 1, the asymptotic expression @ = (£,x) ~'is
a good approximation of g(x,1). It follows from the numeri-
cal calculations that this asymptotic expression becomes val-
id in practice at values x = 1. In other words, the expressions
found for D {¥’ are quite accurate. The substitution

g(o) (P, 1/To)=3lh/uop

in (44) leads to the result (£3 = u3p3/3):

D (2) 1 —
= w't —(0 012+0,104y%) = (0 012+0,104y2).

(50)

As before, we have assumed D(p) = ypf (p). We recall that
in the limit £,— o« the leading term has the behavior
D’ -0.4uy/3"*p,. In other words, in the absence of heli-
city, we can ignore the contribution D (. The maximum
helicity contribution is about 25% of D {’. A comparison
with the previous example shows that the contribution from
D is smaller for broad spectra than for narrow spectra.

If the requirements on the accuracy with which D} is
calculated are not too stringent, it is quite sufficient to use
the approximate analytic expression
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2+U«oTop/3|/’

51
2+uofqp/3llx+ (uoToP/3lh)z ' ( )

T ;
D=2 apEp)
3 0

which is found from (43) by replacing the exact function
g(p,1/7,) by the simple approximation (36). This expres-
sion has an error ~10% for spectra with £;>1 and a far
smaller error for spectra with £, < 1. An expression like (51)
can easily be written for an arbitrary time dependence of the
correlation function f (p,7) if we replace the asymptotic
expression (36) by '

~(2) 5 P j' ‘j ,
& (p,s)=| stDnp +§ dqq* )dtf(q, )
0 0

xexp| (40w +22)<]] " . )

The values of the turbulent diffusion coefficient D, are
determined by the joint dependence of the correlation func-
tion f (p,7) on p and 7. In other words, both the spatial dis-
tribution of the turbulent motions among various scales and
the average lifetime of these motions are important. For tur-
bulent motions with &, = 7,/t,<€1 (short-lived jets), mo-
tions of all scales can be realized (particles are transported
over distances ~ u7,in a time ~7,, and we have D ~u37,).
In this limit we have g(R,7) =6(R), and the following
expression holds [see (41)]:

1 . 1
Dr=-—j d1B;:(0, t)=—2~5dp5d1p‘f(p, T). (53)
30 3“ 0 0

In other words, the contribution of a scale is proportional to
the fraction of the energy of the turbulent motions which
corresponds to this scale.

For turbulence with &, = 7,/1,>1 (“frozen” turbu-
lence), the largest-scale motions, with typical values
~uyto=~R,, are most important. These motions cause trans-
port of impurity particles over the greatest distances. In this
case we have

g(p, ©) =g (p, T)=exp(—uo.pt/3")

and

Dr=—— J ap  aep't(p, yexp(—uopr/3n). (54)
3n* T,

It can be seen from this expression that small-scale turbulent

motions (larger than p) make a contribution to D, which is

much smaller than that of large-scale motions.

The spectrum which is actually observed in many cases
of turbulence!? has a maximum at small p (a region of large-
scale mixing, which brings energy into the turbulent mo-
tion). Later, at intermediate scales (this is the inertial inter-
val), the Kolmogorov mechanism operates to transfer
energy to vortices of progressively smaller scale, down to
scales at which the energy of turbulent motions is converted
into heat by viscous dissipation. The “frozen” nature of tur-
bulent motions which is observed experimentally at scales in
the inertial interval means that the condition £,> 1 holds for
motions in this interval, although the velocity correlations of
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large-scale motions can have an arbitrary dependence on the
time difference 7 = ¢, — ¢,. The evolution of the correlation
function B; (R,7) asa function of R and 7 has received essen-
tially no study before now. It is customary to examine only
the evolution of the energy spectrum, i.e., to examine simul-
taneous correlations. That approach is clearly inadequate
for calculating turbulent diffusion coefficients.

The contribution to the turbulent diffusion coefficient
D, from the non-Kolmogorov part of the spectrum may
turn out to be comparable to or even greater than the contri-
bution of the Kolmogorov part. For example, if we adopt the
spectrum

p<p° ’
p=po

po_sp‘!

pop=s, (55)

10,4

E(p)= 17 Uo
and if we assume that all the turbulence is “frozen” (i.e.,
To— ), then by using (54) we obtain Dy = 0.5u,/p,3"?,
where the contribution of the non-Kolmogorov part of the
spectrum is =~ 30%. It is thus not possible to select any single
diffusion coefficient D, for a Kolmogorov spectrum, since
large-scale motions make an important contribution to the
diffusion in the region in which energy is “pumped” into the
turbulence. Such motions may be quite diverse.

Equation (27), the simplest nonlinear equation, de-
pends only on the binary correlation function of the turbu-
lent velocities, so it is the same for Gaussian and non-Gaus-
sian ensembles of velocities. The non-Gaussian nature of an
ensemble could thus affect only the correction terms
DP, D, etc. The values calculated for D { in the Gaus-
sian approximation can be apparently serve, to some extent,
as estimates of the contribution of the non-Gaussian nature
of the ensemble to D .

In the case of magnetic-field diffusion, the general
method presented above leads to two coupled nonlinear
equations, instead of Eq. (31). In the absence of a helicity,
this system of equations degenerates to (31). In this case the
diffusion coefficients for a magnetic field and for a scalar
impurity are the same.

I wish to thank G. A. Alekseeva and V. V. Novikov for
assistance in debugging the codes and in the calculations.
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