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A hierarchy of nonlinear equations is constructed for average Green's functions describing the 
transport of passive fields (a  particle-concentration field, a magnetic field, or a temperature field) 
in a given turbulent medium. It is not assumed that the ensemble of turbulence velocities is 
Gaussian. In the case of an incompressible medium, these equations can be solved effectively by a 
numerical method analogous to the method of successive iterations in the calculation of 
continued fractions. Solutions are derived for the simplest nonlinear equation, with a quadratic 
nonlinearity. These solutions are then used to calculate the turbulent diffusion coefficients for a 
Kolmogorov turbulence spectrum and for a 8-function spectrum. This method can be used to 
calculate the diffusion coefficient for spectra with arbitrary values of the parameter 6 = u,T,/R,, 
where u,, T,, and R, are typical values of the velocity, the lifetime, and the size of the turbulent 
fluctuations. 

1. INTRODUCTION 

The diffusion coefficients for (passive) impurity fields 
( a  particle concentration field, a magnetic field, or a tem- 
perature field) must be calculated for various turbulent me- 
dia in order to describe phenomena which occur in astro- 
physics, meteorology, geophysics, hydrodynamics, and 
other settings. An expression for the turbulent diffusion co- 
efficient D, was derived in the Lagrangian representation in 
the well-known paper by Taylor.' In most cases, however, 
the turbulent velocity field u(r,t) of the host liquid or gas is 
known in the Eulerian representation, and it becomes neces- 
sary to calculate D, in this representation specifically. Go- 
ing over from the Eulerian representation to the Lagrangian 
representation is known to be a difficult problem, which has 
not been solved in its general form. The problem of calculat- 
ing D, has been taken up in many papers (e.g., Refs. 2-5). 
The basic results which have been derived are given along 
with a comprehensive bibliography in some m o n ~ g r a ~ h s . " ~  

The turbulent diffusion coefficient D, depends strongly 
on the parameter { = u ~ T ~ / R ~ = T ~ ~ ~ ,  where u,, T,, and R, 
are typical values of the velocity, the lifetime, and the size of 
the turbulence fluctuations, with to = R,/u,. The diffusive 
mixing length L is known to be related to D, and to the time t 
by L z D,t. On the other hand, turbulent diffusion stems 
from the transport of a passive field by a fluid element, and 
the quantity L must be proportional to the characteristic 
velocity u, of the convective motion, if we take the time t to 
be the shorter of the time scales T,, to. In this case, L becomes 
the mean free path of a liquid particle. In the limit 
r09 tO(g<1)  we have LzuOrO and tzr , ,  and we find 
DT =:u;r0. In the opposite case, ro)t0({> 1 ), we have 
L =: uotozRo, and t- to, and we find D, ~ u , $ , .  In other 
words, the turbulent diffusion coefficient is independent of 
T,. An additional possible combination of the parameters 
R ;/rO which has the dimensions of a diffusion coefficient is 
not physical, since it does not include the scale velocity u,, 
which is the only dynamic parameter of the turbulent mo- 
tion which determines the spatial transport of the impurity 

field. The ratio of the limiting values of the diffusion coeffi- 
cients, u;r,,/u,$ zc, can be extremely large, so the problem 
of deriving a theory which predicts the correct values of DT 
in both limiting cases would appear to be a rather difficult 
one. 

In most of the studies which have been carried out, the 
numerical and analytic methods have been valid for calcula- 
tion D, only in the case 64 1. In Ref. 5, as well as Refs. 9 and 
10, a procedure for renormalizing the equation for the fluc- 
tuational part of the impurity field was proposed. That re- 
normalization makes it possible to calculate D, up to g=: 1. 
In this method, the new equation for the Green's function 
has as a free term not the molecular Green's function 

but the function M(R,r) ,  which gives a more direct descrip- 
tion of the convective nature of the impurity transport. In 
particular, for large values of R, this function is the same as 

with the diffusion coefficient 

(we are assuming the case Dm <D,). 
In the present paper we generalize Ref. 5. Instead of the 

function M(R,r)  we use a solution of the nonlinear equation 
for the average Green's function (G(R,r) ). It thus becomes 
possible to find DT for turbulence spectra with an arbitrary 
value of the parameter g(O<{< oo ). For the case of an in- 
compressible medium, finding a solution of the nonlinear 
equation reduces to a rapidly converging procedure similar 
to the method of successive iterations in the treatment of 
continued fractions. The calculation becomes elementary in 
the computational sense. In addition, the numerical solu- 
tions found here as well as the analytic asymptotic form of 
the nonlinear equations may prove useful for describing the 
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time evolution of the fluctuations in impurity fields in a non- 
diffusive approximation. 

2. FORMULATION OFTHE PROBLEM 

For impurity fields of all types, the evolution of the im- 
purity is described by the equation 

where Dm is the molecular diffusion coefficient, f (r,t) is the 
impurity field, and the operator 04P(r,t) describes the effect 
of the background liquid or gas on the impurity transport 
process. For the impurity concentration field n(r,t) we have 

For the temperature field T(r,t) in an ideal gas1' we have 

BT=- (uV) T-T [ (C,-C,)/C,]div U, 

where C, and C, are the specific heats of the gas at constant 
pressure and at constant volume, respectively. For the diffu- 
sion of a magnetic field B(r,t) we have Y B  = curl[uB]. 
The theory derived below is completely valid for any of these 
fields. For definiteness, we will restrict the discussion below 
to the field of impurity particles with a concentration n (r,t) 
in certain specific calculations, we will consider only the case 
of incompressible turbulence ( div v = 0) : 

We consider the diffusion of particles in an infinite, homoge- 
neous, and isotropic turbulent medium. The two-point cor- 
relation function for the velocities of the liquid or gas in such 
a medium is 

+RJ#jH-'(Bll(R, z)-BL(H, TI) +eij$?pC(R, TI. (3 

Here R = r1 - r, and r = tl - t,. The angle brackets ( ... ) 
mean an average over the ensemble of realizations of the 
turbulence velocity field u(r,t); and B ,, and B, describe the 
correlation of the velocity components respectively along 
and perpendicular to R. The function C(R,r) describes the 
possible helicity of the medium [ (u( 1 ) rot u( 1 ) ) 
= 6C(0,0) 1 .  For an incompressible medium we have 

We also assume (u) = 0, i.e., that the medium as a whole is 
at rest. The Fourier transform of Bjq (R,r) in the variable R 
has a simple form in the case of an incompressible medium: 

where 

Below we will use the notation 

dl=dr,dt,,  d2=dr,dta, f ( n )  = f  (r., t , ) ,  

f (i-2) =f(rc-rz, t1-t') 
etc. 

An integral equation for the Green's function of Eq. (2)  
[orofEq. ( I ) ]  is 

where 

is the Green's function of the operator Y o ,  and 8(r) = 1 for 
7 > 0 and 8( r) = 0 for T < 0. Using the method of successive 
approximations to find G( 1,2) and thus the diffusion coeffi- 
cient D, from (6) is exceedingly inefficient, since the expan- 
sion is carried out in terms of the molecular Green's func- 
tions Gm , which do not describe the convective nature of the 
particle transport. It becomes necessary to go over to a new, 
renormalized form of the equation for G( 1,2). In this new 
equation, the particle transport by the turbulence would be 
taken into account even in the free term. Direct substitution 
quickly verifies that Eq. (6) is equivalent to the following 
two equations: 

Substitution of (7)  into (8)  leads to (6). The system of equa- 
tions (7) ,  ( 8) is useful in that Eq. (7)  can be solved exactly, 
and explicitly, by going over to Fourier transforms in R and 
r .  On the other hand, it is possible to choose a kernel K(3-4) 
in such a way that the function M(R,r)  would largely de- 
scribe the convective nature of the particle transport. The 
following average kernel was adopted as K(3-4) in Refs. 5, 
9, and 10: 

Equation (7)  in this case, for a turbulence with a "short 
memory," 

becomes the exact equation for the average Green's function 
(G( 1,2) ), and the function 

becomes the diffusion Green's function G,(R,r), with the 
limiting value of the diffusion coefficient:13 

Equation (7)  with kernel (9) is the same as the equation for 
the average Green's function (G(R,r)) if the parameter 
CRdl is small, where 1 is the length scale of the substantial 
variations in the average quantities, in particular, the aver- 
age Green's function (G ) itself. The averaging is usually car- 
ried out over scales much larger than the length scale of the 
turbulence fluctuations, R,, so the relation R,/l< 1 holds, 
and the function M(R,r)  gives a good idea of the average 
Green's function up to g-- 1. This circumstance makes it 
possible, by taking successive iterations of (8) ,  to calculate 
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the turbulent diffusion coefficient D ,  for turbulence spectra 
with values of the parameter from zero to one. 

3. EXPRESSION FOR THE TURBULENT DIFFUSION 
COEFFICIENT 

Let us derive an expression for D ,  in terms of the 
Green's function G( 1,2). We write all quantities as the sum 
of an average value and a fluctuating part: n = (n) + n,, 
G = ( G )  + G,,etc. Here (n,) = Oand (G,) = 0.Takingthe 
average of (2),  we find 

The equation for n, (r,t) differs from the original equation, 
(2), only in the presence of the term Y ( n )  - ( Y n , ) .  
Treating this term as a source, and using the Green's func- 
tion G( 1,2) of Eq. (2) ,  we can therefore write 

n,( l )= jd2~(1,2)[9(2)<n(2))-~(2)1. (12) 

Applying the operator Y ( 1 ) to ( 12), and taking an aver- 
age, we find an equation for the quantity Q( 1 ) : 

Q(I)=  1 d 2 [ ( 9 ( 1 ) ~ ( ~ , 2 ) ~ ( 2 ) ) ( n ( 2 ) )  

Applying the operator 2 ( 1 ) to Eq. (6),  written as an infi- 
nite series of iterations, we easily find the identity 

(P( I )G(I .2) )=  j b?tS?(1)~(1,3)9(3))~.(3-2). (14) 

Using expression ( 14), we can write the equation for Q( 1 ) in 
its final form: 

By virtue of the homogeneity and steady-state nature of the 
ensemble of turbulence velocities, the expressions inside the 
averaging symbols depend on the differences between the 
coordinates and the times. In other words, Eq. ( 15) can be 
solved explicitly by going over to Fourier transforms: 

OD 

For an incompressible medium, with Yf = - (uV) f; we 
find 

where zii (p,w) is the Fourier transform of the correlation 
function 

Taking the inverse Fourier transforms, we find the kernel 
Dii (R,r) from ( 17). As a result, Eq. ( 10) becomes 

It is easy to see that the tensor 3ij (p,w) changes relatively 
little in magnitude, since the function X u  appears in both the 
numerator and the denominator of expression ( 17). This 
circumstance means that, in contrast, the tensor Dii (R,T) is 
a strong function of R and r in the coordinate-time represen- 
tation, with scale values - R, and scale times - T, or - t, for 
the case ro>)t0 = R,/u,. Assuming that (n (r,t) ) is a suffi- 
ciently smooth function over these time and length scales, 
we can take (n(r  - R,t - T))  out of the integral in (18) at 
the points r = 0 and T = 0. As a result, Eq. ( 18) becomes the 
diffusion equation 

where the turbulent diffusion coefficient is 

Making use of the sharpness of the functional dependence 
Dv (R,T), we have extended the integration over T to infinity. 
Substituting some expression for G(1,2) into (20), we find 
specific formula for D,. 

The velocity field is usually assumed to be Gaussian. In 
other words, the velocity correlation function of odd order 
are assumed to be zero, and those of even order are assumed 
to be equal to the sum of all possible products of binary cor- 
relation functions. One can show by direct iterations of Eq. 
(15) that for a Gaussian ensemble of the velocity field the 
quantity Q( 1 ) is equal to the irreducible part of the free term 
in Eq. (15): 

Q (1) = (en,) = irreducible part of d2 <% (1) G (1,2) 3 (2)) S 

We recall12 that the reducible expressions (which are weakly 
coupled) have a structure 

J d25 d3j d4(A(I,3))Gm(3-4)(8(4,2))<n(2)). 

In other words, the average blocks are separated by a molec- 
ular Green's function. The kernels of such expressions are 
not sharp functions of the time. The reducible expressions 
describe a gradual establishment of an average concentra- 
tion (n). In the calculation of the source 

and Q(1) = -div <F>, 
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which is equal to the divergence of the average particle flux 
(F( 1 ) ), the nearest space-time neighborhood of the obser- 
vation point, described by correlation functions of an irredu- 
cible (strongly coupled) type, is important. One can show 
that the set of irreducible correlation functions describes an 
elementary event in which the turbulence interacts with the 
impurity field (with length scales - R, and time scales - 7, 
or to), while the reducible correlation functions incorporate 
the temporal contribution of these interactions in the shap- 
ing of the average concentration (n). This inspection of the 
Gaussian case clarifies the reason for the sharpness of the 
kernel Du ( R , r )  and, in general, of non-Gaussian ensembles 
of turbulent velocities. To go over from expression (21), 
which is exact for a Gaussian ensemble, to an approximate, 
diffusion expression involves taking (n(2))  out of the inte- 
gral at point 1. As a result, we find expression (20) for D,, in 
which we can omit the words "irreducible part of," since the 
reducible terms disappear after an integration by parts. 

4. HIERARCHY OF NONLINEAR EQUATIONS FOR (G(1,2)) 

Equations ( 10) and ( 1 1 ) show that the average concen- 
tration (n) depends on the contribution of fluctuations, 
which is determined in turn by the average concentration. 
The meaning here is that an individual equation for (n) 
should be nonlinear. Furthermore, incorporating contribu- 
tions from all fluctuations-those which are remote and 
those which are close in space-time-leads to equations with 
progressively higher degrees of nonlinearity. In other words, 
the result is a hierarchy of nonlinear equations. We will illus- 
trate the method for deriving such a hierarchy of equations 
for the average Green's function (G( 1,2) ) . 

Equations analogous to (10)-(12) can be written for 
(G(1,2)) and G,(1,2). In particular, the following expres- 
sions hold: 

Adding (23) to (G( 1,2)), we find an equation for G( 1,2) 
which does not formally contain molecular Green's func- 
tions: 

Equation (24) cannot, of course, be used to calculate the 
Green's function G( 1,2) directly, since the average Green's 
function (G( 1,2)) itself depends on G( 1,2). Equation (24) 
makes it an extremely simple matter to derive a hierarchy of 
nonlinear equations for (G( 1,2) ) . 

Expanding G( 1,2) in a power series in the operator 3 ,  
and substituting the result into (24), we find a series of itera- 
tionsfor G( 1,2) in which the functions (G( 1,2)) =g( 1 - 2) 
are used: 

It is simple to show that each integral term in (25) vanishes 
when the averaging is taken. If we apply the operator 3 ( 1 ) 
to (25), and take an average, we find several approximations 
for the quantity ( 3  ( 1 )G( 1,2)), which appears in the inte- 
gral term of Eq. (22) for (G(1,2)). This series can be ex- 
pressed as a power series in the average Green's function 
g(  1-2) itself: 

Substituting the terms of this series into Eq. (22), we find 
approximate nonlinear equations for (G( 1,2) ) = g( 1 - 2). 
Retaining only the first term from (26), we find an extreme- 
ly simple nonlinear equation with a quadratic nonlinearity: 

Substituting in the first and second terms from (26), we find 
an equation for (G ) which also contains (G ) raised to the 
fourth power, etc. For Gaussian ensembles of the velocity 
field, the hierarchy of nonlinear equations simplifies slight- 
ly. For example, the equation containing the second and 
fourth powers of g (  1-2) becomes 

In the second integral term, we have averaged Y ( 3 )  
w i t h 2  (5) ,  and Y (4)  with Y (6). 

The extremely simple nonlinear equation in (27) is 
found directly from (22) and (23) by assuming, in the calcu- 
lation of G, ( 1,2), that the average Green's function is much 
larger than the fluctuational part of G, ( 1,2). An estimate of 
the term with the fourth-degree nonlinearity in (28) shows 
that it generates corrections - ( 6 R d 0 2  in the case6 5 1 and 
a correction - (R0/O2 in the case 6% 1. 

5. NUMERICAL SOLUTION OF THE SIMPLEST NONLINEAR 
EQUATION 

Equation (27) is the simplest nonlinear equation for the 
average Green's function 
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The easiest way to solve this equation is to take Fourier 
transforms in R = r l  - r, and Laplace transforms in 
7 = tl - t2:  

m 

In terms of these variables, Eq. (27) becomes 

Here we have also introduced the restriction 

B,(R, T)  =Bij(R) exp (- (T~ /TO) ,  

and we have used 

G, (p, s) = (s+Dmp2)-I. 

Expression (30) is an equation of the continued fraction 
type. For an incompressible medium, Eq. (30) simplifies: 

Here p0q = pqp. Since the quantityp4f (p) is proportional to 
the energy spectrum of the turbulence fluctuations, 
E(p) 2 0, the kernel in (31 ) is a positive function. In other 
words, expression (31 ) is the analog of a continued fraction 
with positive terms. Consequently, expression (3 1 ) can easi- 
ly be solved numerically by the "fork" method, with 
g y )  (p,s) = 8, (p,s) used as an initial approximation. All 
the odd approximations then represent the exact value of 
g(p,s) with a deficiency, while the even ones do the same 
with an excess. Very quickly, the odd and even iterations 
become more nearly the same; - 30 iterations are sufficient 
for essentially perfect agreement. The first iteration of (31 ) 
leads to the function &(p,s) which was used in Refs. 5, 9, 
and 10. Note also that the (30) and (31) do not depend on 
the helicity of the medium. Such a dependence does rise in 
the case of a scalar impurity field with nonlinear equations 
which are more complex, beginning with (28). For the case 
of magnetic-field diffusion, even the simplest nonlinear 
equation (more precisely, the simplest system of two equa- 
tions), of the form (27), depends on the helicity. 

For small values of p and s (i.e., for p (pow R ; ' and 
s ro( l )  we find from (31) 

In other words, the functiong(p,s) is the same as the Green's 
function of the diffusion equation ( 19) with a diffusion coef- 
ficient Dm + D &" (an expression for D p' is given in the 
following section of this paper). In the opposite limit p)p, 
we find 

At sufficiently large values of p (  ( U , ~ ~ ) ~ ~ S T ~ , U ~ ~ ~ %  Dm 
we can ignore the first two terms in square brackets; we find 

We then find an s-independent asymptotic expression 

giO) (p, S) =3'h/~op. (34) 

Substituting this asymptotic expression into (33), we find 
the more accurate expression 

3') (p, s) = (~+D,p~+pu~/3")-~. (35) 

An expression which is even more accurate is found by sub- 
stituting (35) into (33): 

(36) 

At very large values ofp, according to (34) and (35), the 
term with2 in (33) (this term is linear inp) becomes smaller 
than the molecular term Dmp2, and the function g(p,s) be- 
comes the same as the molecular Green's function 

The condition Dm ( D ,  holds in essentially all cases, and we 
can ignore the term with Dm in calculating D,. 

Let us compare the approximate expression (36) with 
the results of accurate numerical calculations of expression 
(3 1 ). Interestingly, expression (36) is independent of the 
turbulence length scale Ro- l/po and in practice depends 
only weakly on 7,. In other words, g(p,s) effectively depends 
on only the energy scale of the turbulent fluctuations, - u:. 
Equations (34) and (35), which do not depend on To, also 
hold for an arbitrary time dependence of the velocity corre- 
lation function. In numerical calculations it is convenient to 
use the dimensionless variables x = p/p, and y = sro and to 
write g(p,s) in the form 

B(P, S ) = T ~ ~ ( X ,  y). (37) 

In this notation, expression (36) becomes (Dm - 0 )  

where 

Tables I and I1 show the functionsg(x, 1 ) for the correlation 
functions 

f (P, T) = n Z ~ 0 2 ~ o - ' G ( ~ - ~ o )  exp (- (z(/zo), (39) 

f (p, T) =2/snz~oZpoYJp-1"a0 (p-pO )exp (- I TI  IT^ 1. ( 40) 

These results correspond to a 8-function spectrum 

E ( p )  =uo26 (p-po) 

and a Kolmogorov spectrum 
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E ( p )  = ('1,) ~o~po'p-''~. S ~ R  L r B i i ( R , r ) g ( R , r )  
It can be seen from these tables that expression (38) gives a 

D : " = ~  o 

good picture of the exact values of g(x, 1) at essentially all OD OD 

values of x and 5,. At large values of the parameter lo ,  1 
= - Jdp .ldTp4f(p7 r ) g ( p ,  r ) .  

3112 0  0  

(41 
expression (38) is more accurate. For comparison, the val- 
ues of g(x, 1 ) in the diffusion approximation are O D ( D r n  

- - D:"=IS w , S f i 2 J r n G  J d r l  J d rgJ  d w ( R 1 , ~ ) B 1 j  
gait, (x, Y) = (Y + ~,~lJ(,l) $9)-l. 3 0 0 0  . . 

where 

D:')=D~(*) (haz J3)-I. 

It can be seen from these tables that idiff gives a fairly good Under our restriction BV (R,T) - exp( - lrl/rO), expres- 
representation of f (x , l )  up to x~ 1 at 6, 5 1. With increas- sions (41 ) and (42) simplify markedly: 
ing lo, the accuracy ofidiff suffers. To calculate DT for slow- 

m OD 

ly decreasing spectra of the form (40), we would also need to 1 
know i ( x ,  1) for x s  1, where the diffusion approximation is Di1' = - ~ d P P 4 f @ ) ~ ( P 7 $ )  = $ I  d P ~ ( P ) d  P V L ) .  

3n2 0 To 
totally inapplicable. 

6. CALCULATION OF THE TURBULENT DIFFUSION 
(43) 

COEFFICIENTS m OD 1 

1  
Equation (27) is a particular case of general equation D."'= --I 24n4 , dp P' S dq qkJ ~ 1 - P z )  [ P p q f ( p ) f ( q )  

(7)  with the kernel 0 - 1  

and 
(44) 

M(1-2) = g ( l - 2 ) .  

Once we have solved (27 ) , we can take iterations of the re- 
normalized version of Eq. (8)  and find a series of approxi- 
mations for the Green's function G(  1,2). Substituting this 
series into (20), we find a series of approximations for the 
turbulent diffusion coefficient D,. In the case of an incom- 
pressible medium, the first two terms of this series are found 
to be 

Here E(p)  =p4f(p)/* is the turbulence spectrum, i.e., a 
representation of the quantity (u2(r,t)) = ug as an integral 
over all positive wave numbers, with a density E(p). 

Tables I11 and IV show values of D, calculated from 
the exact solution of the nonlinear equations (3 1 ) and the 
asymptotic expression (38). Shown for comparison are val- 
ues of D ,  found by the so-called self-consistent m e t h ~ d , ~  in 
which the exact value of g(p,s) in (43) is replaced by 

TABLE 111. Values found for the diffusion coefficient 5, = D,  (4) ui 7,) -' in the case of corre- 
lation function (39)  with 6 = 4,3 = u , T & ~ ~ ' ~ .  The values of 5 F' and 5 g' were calculated 
from (45) and ( 3 8 ) .  
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TABLE IV. Values of the turbulent diffusion coefficient b, = D, (f u ; ~ , )  - ' for the Kolmo- 
gorov spectrum (40). The values of b F' and b p' were calculated from (45) and (38 ) .  

gdiR ( p , ~ )  [see ( 3 2 )  1, but with an unknown coefficient Dr. 
Expression ( 4 3 )  then becomes an equation for finding D 

T' 
OD 

In calculations of D,, the correlation functions in ( 3 9 )  and 
( 4 0 )  were chosen as examples of an extremely narrow turbu- 
lence spectrum and of a broad spectrum. 

Table I11 shows values of D g' and D g' calculated 
through the use of the exact solution of ( 3  1 ) for the correla- 
tion function ( 3 9 ) ,  which represents turbulence with an ex- 
tremely narrow spectrum. Here we allowed for the helicity 
of the medium, which we chose in the form 

where I yl( 1 is a measure of the degree of helicity. The diffu- 
sion coefficient in this case can be written 

where b $' = g(  1 , 1 ) ,  and the corrections b g' and b $.' are 

The case 1 yl = 1 corresponds to the maximum possible heli- 
city [according to the Khinchin-Bochner theorem,' the in- 
equality pf ( p )  ) ID(p) I holds]. It can be seen from Table I11 
that the contribution of the helicity increases with increasing 
lo. Using the asymptotic expression in ( 3 4 ) ,  we find the fol- 
lowing results in the limit lo- co : 

These results show the relative contributions of the quanti- 
ties b ',", b g',  and iY' to the turbulent diffusion coeffi- 
cient fairly accurately at values lo ',9 1. Table I11 shows that 
in the absence of helicity we can use the simple expression 
(43 ) to calculate DT in the limit lo - co , to within an error 
z 8%. This error falls off monotonically with decreasing lo, 
approaching zero as fo - 0. If several iterations of the origi- 
nal equation, ( 6 ) ,  are used in calculating DT, we obtain the 
series 

which can be used to calculate DT under the condition 
l: = ug7j'jpi/34 1. 

What does the method described above lead to in the 
case of turbulent media with a broad energy spectrum? For 
specific calculations, we adopt a Kolmogorov spectrum as in 
( 4 0 ) .  Table IV shows the results of an accurate numerical 
calculation based on Eqs. ( 3  1 ) and (41 ), along with results 
calculated by the self-consistent method [see ( 4 5 )  1 and 
through the use of approximate expression ( 36) .  Interest- 
ingly, when we use iterations of Eq. ( 6 )  to obtain a series of 
the form ( 4 9 )  in the case of a broad spectrum, we obtain only 
the first finite term, u;7/3. The other terms of the series, 
beginning with the second, diverge. It can be seen from Table 
IV that the approximate expression ( 3 6 )  leads to results 
more accurate than those found by the self-consistent meth- 
od. It can be seen from ( 4 4 )  that in the limit go-0 we have 
D p' -6; -0. We therefore restrict the discussion to an esti- 
mate of the contribution D g' to the diffusion coefficient in 
the limit lo- 0,  in which this contribution is at a maximum 
with respect to the contribution of the leading term, D $!'. In 
the limit go& 1,  the asymptotic expression g"' = ( 6 ~ )  - ' is 
a good approximation ofg(x, 1 ) . It  follows from the numeri- 
cal calculations that this asymptotic expression becomes val- 
id in practice at values x z 1. In other words, the expressions 
found for D g' are quite accurate. The substitution 

2 ' O )  ( p ,  l /zo) =3"luop 

in ( 4 4 )  leads to the result ( l  : = u:p:/3 ) : 

As before, we have assumed D ( p )  = ypf ( p )  . We recall that 
in the limit lo- co the leading term has the behavior 
D &"-0 .4~ , , /3~ '~p~ .  In other words, in the absence of heli- 
city, we can ignore the contribution D p'. The maximum 
helicity contribution is about 25% of D &". A comparison 
with the previous example shows that the contribution from 
D y' is smaller for broad spectra than for narrow spectra. 

If the requirements on the accuracy with which DT is 
calculated are not too stringent, it is quite sufficient to use 
the approximate analytic expression 
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which is found from (43) by replacing the exact function 
g(p, l /ro) by the simple approximation (36). This expres- 
sion has an error z 10% for spectra with go) 1 and a far 
smaller error for spectra with go 5 1. An expression like (5 1 ) 
can easily be written for an arbitrary time dependence of the 
correlation function f (p,r) if we replace the asymptotic 
expression ( 36 ) by 

I 

The values of the turbulent diffusion coefficient D,  are 
determined by the joint dependence of the correlation func- 
tion f (p,r) onp  and r. In other words, both the spatial dis- 
tribution of the turbulent motions among various scales and 
the average lifetime of these motions are important. For tur- 
bulent motions with go = ro/to< 1 (short-lived jets), mo- 
tions of all scales can be realized (particles are transported 
over distances - m0 in a time -To, and we have D, -- ui ro) . 
In this limit we have g ( R , r ) z S ( R ) ,  and the following 
expression holds [see (4 1 ) 1 : 

In other words, the contribution of a scale is proportional to 
the fraction of the energy of the turbulent motions which 
corresponds to this scale. 

For turbulence with go = ro/to) 1 ("frozen" turbu- 
lence), the largest-scale motions, with typical values - uoto--,Ro, are most important. These motions cause trans- 
port of impurity particles over the greatest distances. In this 
case we have 

2 (p, T) =2a("(p, z)=exp (-uopr/3") 

and 
m - 

D T  = j dp 1 dzp'f (p, r)exp (-u.p~/3'~). (54) 
3n2 0 0 

It can be seen from this expression that small-scale turbulent 
motions (larger thanp) make a contribution to DT which is 
much smaller than that of large-scale motions. 

The spectrum which is actually observed in many cases 
of turbulen~e'~ has a maximum at smallp (a  region of large- 
scale mixing, which brings energy into the turbulent mo- 
tion). Later, at intermediate scales (this is the inertial inter- 
val), the Kolmogorov mechanism operates to transfer 
energy to vortices of progressively smaller scale, down to 
scales at which the energy of turbulent motions is converted 
into heat by viscous dissipation. The "frozen" nature of tur- 
bulent motions which is observed experimentally at scales in 
the inertial interval means that the condition go$ 1 holds for 
motions in this interval, although the velocity correlations of 

large-scale motions can have an arbitrary dependence on the 
time difference r = t, - t2. The evolution of the correlation 
function Bv (R,r) as a function of R and r has received essen- 
tially no study before now. It is customary to examine only 
the evolution of the energy spectrum, i.e., to examine simul- 
taneous correlations. That approach is clearly inadequate 
for calculating turbulent diffusion coefficients. 

The contribution to the turbulent diffusion coefficient 
D, from the non-Kolmogorov part of the spectrum may 
turn out to be comparable to or even greater than the contri- 
bution of the Kolmogorov part. For example, if we adopt the 
spectrum 

and if we assume that all the turbulence is "frozen" (i.e., 
To-' co ), then by using (54) we obtain DT = 0.5~,Jp,3~'~, 
where the contribution of the non-Kolmogorov part of the 
spectrum is z 30%. It is thus not possible to select any single 
diffusion coefficient D, for a Kolmogorov spectrum, since 
large-scale motions make an important contribution to the 
diffusion in the region in which energy is "pumped" into the 
turbulence. Such motions may be quite diverse. 

Equation (27),  the simplest nonlinear equation, de- 
pends only on the binary correlation function of the turbu- 
lent velocities, so it is the same for Gaussian and non-Gaus- 
sian ensembles of velocities. The non-Gaussian nature of an 
ensemble could thus affect only the correction terms 
D y ' ,  D F', etc. The values calculated for D g' in the Gaus- 
sian approximation can be apparently serve, to some extent, 
as estimates of the contribution of the non-Gaussian nature 
of the ensemble to D,. 

In the case of magnetic-field diffusion, the general 
method presented above leads to two coupled nonlinear 
equations, instead of Eq. (3 1 ) . In the absence of a helicity, 
this system of equations degenerates to (3  1 ) . In this case the 
diffusion coefficients for a magnetic field and for a scalar 
impurity are the same. 

I wish to thank G. A. Alekseeva and V. V. Novikov for 
assistance in debugging the codes and in the calculations. 
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