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Experiments have been carried out on the nonlinear dynamics of a cw CO, laser with acoustooptic 
loss switching. The results are reported. The resonance structure in the nonlinear response was 
studied for various relations between the switching frequency and the frequency of relaxation 
vibrations. The correlation dimension and the entropy are calculated for chaotic regimes on the 
basis of the experimental data. These calculations are carried out for the one-mode and 
multimode (in terms of the transverse index) laser regimes. The dynamics of the laser near a 
period-doubling bifurcation is studied with an additional 8-function Q switching of the resonator 
by means of an optically controllable absorption in semiconducting elements of the laser. There is 
a small-signal gain near frequencies which are multiples of half the switching frequency. It is 
demonstrated that a CO, laser with periodic switching can operate as a binary phase flip-flop, a 
quadratic phase flip-flop, or an amplitude optical flip-flop. 

INTRODUCTION 

Because of their high stability and relative simplicity, 
lasers with actively modulated parameters are the most con- 
venient choices for experiments on fundamental aspects of 
nonlinear dynamics in quantum optics. 

The kinetics of single-mode lasers with a wide variety of 
active media, including most solid state lasers, semiconduc- 
tor lasers, and certain molecular lasers (e.g., CO,), obeys 
two rate equations, for the field and the population inversion 
of the gain medium. The response of such lasers to a brief and 
small perturbation is a train of damped relaxation oscilla- 
tions. This circumstance suggests an analogy with the be- 
havior of a weakly damped oscillator. This fact has been 
utilized in several previous experimental studies to deter- 
mine the constants of the rate equations, which are in turn 
combinations of various physical ~arameters. '-~ In order to 
observe complex processes such as dynamic chaos and ac- 
companying effects, it is necessary to increase the dimen- 
sionality of the two-dimensional phase space of the system 
by at least one. This can be done easily through an active 
modulation of one parameter of the laser. With a suitable 
change of variables, the rate equations can be rewritten in a 
form which is the same as that of the equation of motion of a 
nonlinear oscillator with a Toda potential, in which the 
time-dependent part of the modulated parameter serves as a 
periodic external force. In this modified formulation of the 
problem, there would necessarily be additional resonances 
in the system at subharmonics and ultraharmonics of the 
external force. Consequently, the generation of subharmon- 
ics would require the attainment of a threshold. This thresh- 
old effect was established in the early theoretical papers on 
laser dynamics."7 The nonlinear-oscillator model along 
with the familiar Lorenz model8 presently occupy central 
positions in the theory of dynamic chaos. The circumstance 
that both these models have analogs in laser theory has re- 
cently intensified interest in laser  dynamic^.^,'^ 

One of the first experimental results to be offered as 
evidence for dynamic chaos in lasers that reported by Arec- 
chi et al.," who used a CO, laser with electrooptic Q switch- 
ing. They also reported some numerical calculations based 

on balance equations. They pointed out that the results of 
these calculations agreed qualitatively with the experimen- 
tal data. In parallel and independently, chaotic regimes were 
found in a numerical simulation of the equations of a single- 
mode solid-state laser with resonator Q switching.', Slightly 
later, regimes of this sort were found experimentally in a 
traveling-wave Nd:YAG ring laserI3 and also in a mode- 
locked linear ND:YAG laser with additional low-frequency 
Q switching.14 

Further theoretical analysis,'5-'7 numerical simula- 
t i~n ," -~ '  and analog modeling22 have drawn a more detailed 
picture of the onset of nonlinear resonances as a function of 
the amplitude and frequency of the control signal. They have 
also drawn a more detailed picture of regions in which var- 
ious regimes overlap (multistability), of collisions of period- 
ic attractors, and of crises of strange attractors. Comparative 
analysis of the effectiveness of the switching of various pa- 
rameters was carried out in Ref. 16,23, and 24. It was shown 
in particular that such lasers are considerably more sensitive 
to switching of the loss coefficient (or the gain) than to mod- 
ulation of the pump. Many of these results were confirmed 
experimentally, primarily in CO, lasers. This is true in par- 
ticular in the cases of a modulation of the loss,25,26 of the 
resonator length,27 and of the discharge current." These 
results have also been confirmed in semiconductor lasersz9 
and solid-state lasers with modulated optical pumping based 
on NdP5014 crystals3' and CoMgF, crystals3' and optical 
fibers containing rare earth  ion^.^,^, 

Several circumstances steer investigators toward CO, 
lasers as objects for studying nonlinear dynamics, as can be 
seen from the large number of experimental studies using 
these lasers. One reason is that it is a simple matter to achieve 
single-mode operation. Another is that the relaxation fre- 
quencies lie in the range 50-300 kHz, which is easily realized 
in modulation. Furthermore, the spontaneous emission of 
CO, lasers is weaker by several orders of magnitude than 
that in solid-state or semiconductor lasers. When the signifi- 
cant incoherence of the pump is incorporated in the rate 
equations, the chaos is usually s ~ p p r e s s e d . ~ ~  In terms of a 
nonlinear oscillation, the explanation for this result is that 
the pump increases both the linear and nonlinear parts of the 
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dissipation coefficient, and it also reduces the pronounced 
asymmetry of the Toda potential. Both factors lead to an 
increase in the instability thresholds in the system.34 

Our purpose in the present study was to pursue experi- 
ments on nonlinear dynamic effects in a CO, laser with mod- 
ulated parameters. In contrast with the earlier studies, we 
used a refractive acoustooptic modulator. We carried out a 
more detailed study of the resonance structure in the nonlin- 
ear response of the laser to a periodic modulation for various 
relations between the modulation frequency and the fre- 
quency of relaxation vibrations. We report results on deter- 
mining the correlation dimension and the entropy from a 
chaotic experimental realization in one-mode and multi- 
mode regimes. We suggest a combination of sinusoidal mod- 
ulation and a pulsed modulation of the resonator Q. Such a 
combination would make it possible to determine the re- 
sponse of the laser to a perturbation near a period-doubling 
bifurcation. Because of the parametric nature of the period 
doubling, the laser "amplifies" the spectral components of 
the perturbation which lie near half the modulation frequen- 
cy. This amplification can be exploited to increase the sensi- 
tivity in in-resonator modulation laser spectroscopy.35 Al- 
though this effect had been predicted p r e v i o ~ s l y , ' ~ , ~ ~  it has 
been observed experimentally only in an rf NMR laser.37 

In general, the presence of several attractors for a given 
set of parameter values was demonstrated in Refs. 3 and 25- 
27 by slowly sweeping the control parameter in a sawtooth 
fashion. The application of a brief pulsed perturbation to the 
system can in principle cause a rapid switching from one 
attractor to another- during the pulse itself. Furthermore, 
by choosing the appropriate amplitude and duration of the 
pulsed perturbation, one can prepare a system in one of the 
unstable states. If there is a good signal-to-noise ratio, the 
system can stay in this state for a fairly long time. In a similar 
way, it has been demonstrated that it is possible to experi- 
mentally determine the unstable part of the S-shaped curve 
in the region of optical b i ~ t a b i l i t y . ~ ~ , ~ ~  In this paper we are 
reporting the first experimental study of processes of this 
sort in a modulated laser. 

1. EXPERIMENTAL APPARATUS AND MEASUREMENT 
PROCEDURE 

The experimental apparatus used for this study of dy- 
namics of the lasing in a cw CO, laser under Q-switching 
conditions is shown schematically in Fig. 1. 

We used a frequency-stabilized cw CO, laser operating 
on the lOP(22) line. The long-term instability of the power 
was less than 2%. The resonator was formed by a spherical 
total-reflection mirror with a radius of curvature of 1 m and 
by a diffraction grating (with a reflection coefficient of 0.9 in 
first order). The grating was set up in an autocollimation 
regime. The baseline of the resonator was 0.95 m, the length 
of the active medium was 0.35 m, and the diameter of the 
discharge tube was 8 mm. The active medium consisted of a 
CO,:N,:He = 1:1:5 gas mixture at a pressure of 27 torr. For 
the Q switching we used a refractive acoustooptic modulator 
with a KRS-5 crystal, positioned in the resonator at the 
Brewster angle. The modulator made it possible to produce a 
sinusoidal loss modulation in the frequency range 10-300 
kHz at steps -- 10 kHz (Ref. 40). Additional studies of the 
characteristics of this modulator outside the resonator re- 

FIG. 1 .  Experimentallayout. 1.5.11-Mirrors; D l ,D 2--diaphragms;2- 
modulator; 3-GaAs plate; 4--discharge tube; DG-diffraction grating; 
6,12,13-beam splitters; 7-attenuator; 8-CdHgTe photodetector; 9- 
neutral filters; l&G4-153 oscillator; 14-Nd:YAG laser; 15,I 7-IMO- 
2 energy and power meters; 1 6 F K - 1 5  photodetector; 18-S9-8 oscillo- 
scope; 19-1BM PC/AT microcomputer. 

vealed that the modulation depth for this particular modula- 
tor was a linear function of the amplitude of the control vol- 
tage and reached 30% at a control signal of 50 V at a 
modulation frequency of 180 kHz. 

The temporal characteristics of the output were studied 
with a CdHgTe photodetector with a time resolution of 50 ns 
and also an S9-8 storage oscilloscope. An output signal from 
the S9-8 was fed through an interface to an IBM PC/AT 
computer for analysis and storage. The signal discretization 
frequency was chosen to suit the frequency resolution re- 
quired and the frequency of the control signal. This discreti- 
zation frequency could be varied up to 20 MHz. The total 
number of points was limited to 2048 by the amount of mem- 
ory in the oscilloscope which we used. In finding the spectra 
of the signals of interest from these points, we eliminated the 
constant components and the slowly varying components 
which were unrelated to the useful signal. 

In-resonator amplitude modulation of the light intensi- 
ty of a cw CO, laser was proposed in Refs. 41 and 42 and 
implemented here. The modulation in that case resulted 
from an optically controllable absorption at nonequilibrium 
charge carriers in semiconductors excited in an intrinsic or 
extrinsic absorption band. The duration of the pulsed loss 
which was introduced was set by the length of the excitation 
pulse and by the lifetime of the nonequilibrium carriers in 
the semiconductors. For example, when a ZnSe plate was 
used as a modulator, and the beam from a ruby laser was 
applied to it, the duration of the loss which was introduced 
was 950 ns, no greater than the duration of the excitation 
pulse. 

This method was used to shape short loss pulses in ex- 
periments on the small-signal gain near the threshold for 
period doubling and to study the possibility of switching be- 
tween modulation regimes. For this purpose, we also in- 
stalled a GaAs plate 2.8 mm thick in the resonator, at the 
Brewster angle, and we applied 15-11s pulses from a neodymi- 
um laser to it. The pulse energy was varied by means of a set 
of calibrated neutral filters. The decay time of the induced 
loss was estimated from the duration of the response by the 
method proposed in Refs. 43-45. It turned out to be about 
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300-400 ns and thus considerably shorter than the loss mod- 
ulation period. 

The same method for introducing a pulsed loss was used 
to determine the relaxation frequency a,,, of the intensity 
oscillations of the output from the cw CO, laser and the 
dissipation coefficient y. From these measurements we 
found w,, = 855 f 30 kHz and y = 790 f 30 kHz. 

2. MULTIRESONANCE STRUCTURE IN THE NONLINEAR 
RESPONSE; TRANSITION TO CHAOS 

The rate equations for a Q-switched laser can be written 
in the two-level model 

= (qm/e,)sin mt- (qs,le,)cos mt, (1) 

where x is the intensity on a logarithmic scale, q is the rela- 
tive depth of the loss modulation m = u,/w,, a, is the 
modulation frequency, w, = (w,,, ), f 4 /4 )  1'2z900 f 30 
kHz, and E, and E, are determined by the lifetime of photons 
in the resonator, by the relaxation of the population differ- 
ence, and by the relative extent to which the pump exceeded 
the threshold. More complex models for the CO, laser, in 
particular, models which incorporate relaxation within the 
vibrational-rotational band, can also be put in the form of 
( 1 ), through the use of the central-manifold theorem.46 The 
physical interpretation of the results on experiments on 
modulation of the parameters thus reduces to an examina- 
tion of forced oscillations of a nonlinear oscillator of the 
form ( 1  ). 

The Toda potential U(x) = exp(x) - x is a "soft" po- 
tential, by which we mean that the frequency w , ( ~ )  of the 
free oscillations decreases with increasing oscillation ampli- 
tude a. Correspondingly, the peak on the resonance curves 
shifts to the left. In addition to the main resonance at 
w, zw,(u), a nonlinear system can have secondary reso- 
nances at w, = w,(u)k/l, where k and I are relatively 
prime numbers. Corresponding to each of these resonances 
on the amplitude-frequency characteristic is a separate 

branch with a period of 2~/w,. The resonances at ultrahar- 
rnonics (w, = w,(a)/l) appear in a process which does not 
involve a threshold, while the other resonances, in particu- 
lar, those at subharmonics (w, = kw,(a) ), are excited in a 
"hard" fashion. The height of the threshold is proportional 
to the dissipation coefficient E ,  + E, (Refs. 16 and 17). The 
overall picture of the sequence of appearance of resonances 
in the (q,m) plane is rather complicated. The results of nu- 
merica120 and analog2, modeling indicate that this sequence 
can be described by appealing to mathematical concepts 
from graph theory, in particular, the Farey tree. 

The natural resonances of the modulator crystal at fre- 
quencies which are multiples of v/2L, where u is the velocity 
of sound and L is the length of the crystal, introduce difficul- 
ties in efforts to continuously tune the frequency with a fixed 
effective modulation amplitude. It is thus not possible to use 
direct methods to determine the experimental amplitude- 
frequency characteristic. Since the Toda potential is soft, 
however, various resonances can be observed by fixing the 
modulation frequency and increasing the modulation ampli- 
tude, as is illustrated in Figs. 2 and 3, respectively, for fre- 
quencies below and above the relaxation frequency. Figure 2 
shows a sequence of regimes which starts from a sinusoidal 
regime and runs to regimes near resonances at the ultrahar- 
rnonics 1/4,1/3,1/2, and 1/1. Characteristic features of the 
l/n resonance are a fine structure in the trailing edges of the 
generation pulses, with a period of about 2~/w,  n and a non- 
monotonic behavior of the envelope signal near ultrahar- 
monic the n which is more prominent than the neighboring 
harmonics, by virtue of the resonance. 

Note that the shortest period among all the regimes in 
Fig. 2 is TM = 2?r/wM. There is no chaos even at fairly high 
values of the control voltage on the modulator. This result 
agrees well with the theoretical results of Refs. 16 and 17 and 
with the bifurcation diagrams shown there. Nevertheless, at 
fixed values of w, < w,(u) and sufficiently large values of q 
we observed some narrow period-doubling zones as we 
smoothly varied one of the parameters (the discharge cur- 
rent or the unperturbed loss). Analysis of the intensity spec- 
tra in these regions indicates 2/3 and 2/5 resonances. 

FIG. 2. a: Time evolution of the intensity of the laser output, I( t )  . 
b: Corresponding spectra of the signals S o  at the modulation 
frequency f ,  = f d 4  for various values of the control voltage on 
the modulator. 1-7 V; 2-50; 3-70; 4-75; 5-97; 6 1 4 7  V .  

I I.. , . 1 '  

0 1 2 3 Y  
f i 1 0 5 ,  HZ 

630 Sov. Phys. JETP 74 (4), April 1992 Samson et a/. 630 



The minimum thresholds for the appearance of a chain 
of period doublings, chaos, and resonance subharmonics oc- 
cur near modulation frequencies m -- 1.7, as predicted by the 
theory of Ref. 17. Figure 3 shows one example of a sequence 
of regimes observed in this case. The first period-doubling 
bifurcation arises as early as V  = 1.7 V (for clarity, the re- 
gime of a well-developed period doubling at V  = 2.25 V is 
shown on line 2). This regime then becomes a resonance 
regime (line 3) .  The subharmonic wM/2 dominates the 
spectrum. The shape of the spectrum and the shape of the 
intensity oscillations are essentially the same as in the case of 
the main resonance (line 6 in Fig. 2). With a further increase 
in modulation depth, we find a cascade of period doublings, 
which terminates in chaos (line 5 in Fig. 3).  The high signal- 
to-noise ratio in our experimental apparatus made it possible 
to stably observe regimes with periods up to 16TM and to 
find an experimental estimate of the universal Feigenbaum 
scaling constant,S, ~ 4 . 4 .  One reason for the deviations of 
this estimate from the exact value SF = 4.669 is the nonlin- 
earity of the function q( V ) .  

Chaos of the type shown on line 5 in Fig. 3 exists in the 
interval V  = 6.2-7.0 V. The strange attractor undergoes sev- 
eral internal restructurings in this interval, as a consequence 
of successive collisions with unstable cycles. This "inverse" 
cascade of internal bifurcations is typical of systems which 
exhibit a transition to chaos through period doubling.26s27 
We observed the last stage of this process. A characteristic 
feature of the spectra averaged over many realizations in this 
case is the presence, against the continuous background, of 
discrete components at the frequencies nm/4, n = 1,2,3, ... . 
In this case the dynamic chaos is reminiscent of a "noisy" 
periodic regime with a period of 4TM. At V  = 7.0 V, the last 
event of the chain of internal crises occurs. It is caused by a 
collision (in phase space) of a strange attractor and an un- 

stable cycle with a period of 2TM (Ref. 19). The topological 
structure and the spectrum (Fig. 3, b and c, line 6) change 
sharply. In particular, the discrete components of the fre- 
quencies nm/4, n = 1,2,3, ... , disappear from the spectrum. 
In this sense the signal becomes more chaotic. 

At V =  7.25 V, this strange attractor disappears 
through a crisis of boundaries upon a collision with an unsta- 
ble saddle cycle with a period of 3TM, which gives way to a 
stable subharmonic regime with a period of 3TM (line 7 in 
Fig. 3). We wish to stress that the latter regime is the subhar- 
monic 3/1 branch, not the usual periodic window within a 
chaos, as has been seen p r e v i o ~ s l y . ' ~ , ' ~ ~ ~ ~ ~ ~ ~  When the con- 
trol voltage on the modulator is scanned in the opposite di- 
rection, a hop from this branch is observed at V =  5.5 V. 
This result implies generalized bistability (in the sense of 
Ref. 25) in this interval of the control parameter. In other 
words, the implication is that modulation regimes coexist 
which differ in not only the amplitude but also the period 
and the nature of the modulation (chaotic or regular). 

At control voltages up to values corresponding to the 
regime with a period of 3TM, the average laser output power 
remains essentially constant (at ~ 0 . 2 4  W).  The implication 
is that the pulsed power increases by a factor of 5-15, de- 
pending on the modulation regime. With a further increase 
in the control voltage, the average power decreases, and at 
sufficiently high voltages ( Vz45 V) the lasing is cut off. 

3. STATISTICAL PROPERTIES OF THE CHAOS 

The results in Sec. 2 are sufficient but still indirect proof 
that the chaos is of a dynamic nature. There are direct diag- 
nostic methods which can work from a single experimental 
realization. These methods are based on ergodic theory.47 In 
particular, these methods can provide estimates of the frac- 

FIG. 3 .  a: Time evolution of  the laser output intensity, Z( t ) .  b: Reconstructed phase portraits[Z(n + 9 ) , I ( n ) ] .  c:  Signal spectra at the modulation 
frequency f, -- 1.4& for several values o f  the control voltage on the modulator. 1-1 V ;  2-2.25; 3 4 ;  4-5.7; 5-6.5; 6 7 ;  7-8 V .  
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tal dimension of the strange attractor and the Kolmogorov 
entropy.48 A positive and finite value of this entropy means 
that there is at least one positive Lyapunov exponent. A posi- 
tive and finite Kolmogorov entropy is also the strongest cri- 
terion for a dynamic stochastic nature and the criterion most 
frequently used. 

Low-dimension strange attractors were found in the 
very first experimental studies of quantitative characteris- 
tics. These were studies of an He-Xe laser with an inhomo- 
geneously broadened line4' and of a CO, laser with an elec- 
trooptic loss mod~lator . '~  The fractal dimension of a 
strange attractor in a He-Ne ring laser with oppositely di- 
rected waves, with a periodic modulation of the frequency 
"support," was recently measured experimentally. A foun- 
dation was thus laid for a phenomenological model for such 
lasers, with a phase space smaller than that for the Lamb 
system of  equation^.^' 

There is heuristic value in finding such invariants of 
strange attractors as their dimension: The effective number 
of degrees of freedom which are involved in the dynamics 
can be determined directly, so it becomes possible to con- 
struct or refine a theoretical model of the system. 

Our purpose in the present section of the paper is to 
study the quantitative characteristics of the dynamic chaos 
in a CO, laser with an acoustooptic loss modulator in both 
the single-mode regime (Sec. 2) and the multimode regime 
(in terms of the transverse index). In contrast with previous 
studies, we also examine the effect of preliminary filtering of 
the signal. Here is an overall outline of studies of this sort. 

The first step is to reconstruct a phase portrait in an M- 
dimensional imbedding space on the basis of one discrete 
experimental realization I(iAt, ), where At, is the sampling 
interval, and i = 1,2,3, ..., n. Here we use the rule proposed 
by T a k e n ~ : ~ ~  

{ ~ j } = { ~ h  zj+19 - . - 9 l j + ~ - I } ~  (2) 

where & ) is a state vector in the M-dimensional space, and r 
is the distance between points in this space. 

Figure 3b shows examples of such a reconstruction for 
M = 2. The next step is to calculate the generalized correla- 
tion sum5' 

18-1) * / ( # - I )  

c:.) @I={' N M  C[L i N M  & ( r - l l ~ ~ - y ~ l l )  , ] } , 

(3) 

where NM is the number of points in the reconstructed at- 
tractor, H( r )  = ( 1 + sgn r)/2 is the unit step function, and 
lly, - yJ 1 1  is any of the known norms. Particularly conve- 
nient in practice is the norm 

~~y,-y,~~=rnax ~ I , + h - I j + k ~ ,  k=O, 1, . . . , M-4.  

In this case the numerical algorithm for calculating the 
quantity in (3) simplifies dramatically. In the important 
particular case of a correlation dimension (s = 2), which is 
the one used most frequently in practical calculations, the 
algorithm can be implemented in integer  number^.'^ In ad- 
dition, the following relation holds in this case:54 

where D, and K, are the generalized dimension and general- 
ized entropy, respectively, of order s. As can be seen from 
(4),  the slope of the linear part of the plot of CjM'(r) in 
double logarithmic scale is D,, and the quantity proportional 
to the entropy is 

where r* is chosen in the region of linear scaling. The spec- 
trum of generalized dimensions of uniform fractals such as 
the von Koch curve and the Serpinskii carpet is uniform: 
D, + , ED, = Do, where the dimension Do, the capacity, is 
determined exclusively by the metric of the fractal.47 Actu- 
ally, we are dealing with multifractals, with different values 
of D, and with D, + , < D,. It follows that the correlation 
dimension D,, the simplest to calculate, is a lower estimate of 
the capacity Do of a strange attractor and of the dimension 
Dl, called the "information d imen~ion ."~~ The estimate be- 
comes more accurate as the strange attractor becomes more 
uniform. Correspondingly, the correlation entropy is a low- 
er estimate of the Kolmogorov entropy K,: K2<K,. For 
moderately nonuniform fractals, the differences between D, 
and K, (on the one hand) and Do and K, (on the other) are 
usually no more than a few percent. 

The specific calculations had to be restricted to finite 
values of r, NM, and M. The arbitrariness in the choice of 
discretization interval At,, the noise, the low accuracy of the 
analog-to-digital conversion, and the preliminary filtering 
may lead to systematic errors in the estimates of D, and K, 
(particularly for Is1 ) 1 ). The effects of these factors are dis- 
cussed in detail in Ref. 55. 

Our experimental apparatus was capable of storing a 
signal sample 2048 points long at a resolution of 8 bits (this 
resolution introduces an error of less than 5%; Ref. 55). The 
optimum delay At, was chosen on the order of the first zero 
of the autocorrelation function and then corrected, in the 
direction of decreasing value, on the basis of the empirical 
condition that the final result remain unchanged. In this 
fashion we found the interval of optimum values to be 
At, = TM/(8-16), in agreement with the results found on 
other systems with modulated  parameter^.^^.^',^^ 

A distinctive feature of loss-modulated lasers is that the 
reconstruction of the phase portrait from the temporal real- 
ization of the intensity, which is clearly of a peak nature, 
serves as a source of errors. Because of the large regions in 
which the intensity is essentially zero, most of the points of 
the reconstructed attractor also are bunched near zero. The 
nonuniformity of such an attractor is of course very high 
(D, (Do). In particular, for a random signal of a quasi-two- 
level nature we would have D,zO. In this case the value of 
D, essentially does not reflect the geometric structure of the 
attractor. 

To get around this obstacle, we used preliminary filter- 
ing of the signal. Causal filtering (in real time, for example) 
introduces an extra degree of freedom and introduces a bias 
in the estimate of the fractal d i m e n s i ~ n . ~ " ~ ~  We accordingly 
used a code implementation of a noncausal filter with the 
real transfer characteristic 

l im In c ! ~ )  ( r )  = D8 In r - MAt ,K ,  + const, 
r-, NM-m,  H ( ~ ) = l l ( l + ~ ~ l o l ~ ) ,  (6)  

M-a? 

(4) where a andp are chosen in such a way that the fine structure 
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in the signal is retained. By varying a at a given p, we can 
determine the optimum value a,,,, i.e.., that which maxi- 
mizes D,. 

Figure 4a shows the correlation sum CiM'(r) for the 
chaotic regime shown on line 5 in Fig. 3. We can distinguish 
three basic regions on these plots: 6.5<log2r < 8, 
5<10g2r< 6.5, and log2r<5. Only the central interval, the 
"scaling region," is informative. The slope of the first region 
is determined by boundary effects, and that of the third by 
noise and the inadequate statistical base. 

Figure 4b shows D,(M) found by linear regression in 
the scaling zone for various conditions in the preliminary 
processing of the data. In the case of curve 2 there was no 
filtering; curve 3 corresponds to the case of the optimum 
filter withp = 1, we have a,,, = lo-'); curve 4 shows the 
logarithm of the signal; and curve 5 shows a combination of 
the preceding operations. We see from this figure that curves 
2-5 all have saturation regions for M> 17, where D, =: 2.2 (if 
we ignore the slight increase due to the noise). An optimum 
filtering improves the estimate by about 5%. It is also useful 
to take the logarithm of the filtered signal. In this case we 
find a satisfactory estimate of the dimension even for M>7. 
This result agrees with the Maiii theorem, that it is possible 
to adequately reconstruct an attractor of dimension D, in an 
embedding space with M)2D2 + 1 (Ref. 59). 

The random error in the determination of D, by linear 
regression in the scaling region is extremely small. Conse- 
quently, the overall error in the measurements of D, is deter- 
mined primarily by the systematic errors caused by the finite 
precision of the analog-to-digital conversion and by the 
noise;55 these components of the error are opposite in sign. 
On the basis of the discussion above we can assume 
D, = 2.2 + 0.1 in the single-mode regime. 

Also shown in Fig. 4b are results calculated on D,(M) 
for a periodic regime (curve 1 ) and for a multimode regime 
(curve 6), in terms of the transverse index. In the former 
case we are dealing with a limit cycle-a closed line in phase 
space-so we have D, =: 1.0 even for M) 3. In the multimode 
case (the number of modes was not monitored), the D,(M) 
curve does not reach saturation. It instead rises monotoni- 

'Jog, 

cally with increasing M. There are several possible reasons 
here. First, the sample length (NM = 2048) is generally too 
short for successful reconstruction of a high-dimension at- 
tractor (according to estimates in Refs. 60 and 61, the mini- 
mum number sufficient is N,>42"). Second, multimode 
generation may be time-varying because (in particular) the 
loss modulation depths are sharply different for the different 
modes in the acoustooptic modulator. This circumstance 
may lead to a complex picture of switching between attrac- 
tors with different dimensions, disruptions of the signal 
phase, and smearing of a reconstructed attractor in the phase 
space. 

Figure 4 shows the quantity F, = K,At,/ln 2 as a func- 
tion of the dimension M of the embedding space for regular 
and chaotic single-mode regimes. For the periodic regime we 
have K, = K= 0. In the chaotic regime we have K, z 76 + 5 
kHz. The error was found as the deviation from the mean 
value for r* from the scaling zone. 

Similar calculations carried out for a strange attractor 
after an internal crisis (line 6 in Fig. 3) showed that the 
dimension D, remains essentially the same, while K,  in- 
creases slightly. 

Here is a physical interpretation of the results. The 
chaotic oscillations observed in the laser intensity are actual- 
ly of a dynamic nature (K, > 0). The processes which occur 
in a single-mode laser can be described by using nonautono- 
mous rate equations with a three-dimensional phase space 
(02 < 3). 

In a three-dimensional phase space, a dynamic system 
has three Lyapunov exponents. The leading exponents are 
A,>K,, A, = 0, and A, = - y - A,, where y is the dissipa- 
tion coefficient in the system. Independent measurements of 
y from the damping of small free oscillations in the laser 
output intensity yield y = 790 + 30 kHz. We thus find 
A,( - 860 kHz. On the basis of these results we can estimate 
the Lyapunov dimension of the attractor: 
DL = 2 + A,/lA,I ~ 2 . 1  + 0.05. Within the errors, this re- 
sult is the same as the correlation result. A similar relation 
between these quantities was observed in Ref. 18 in a numeri- 
cal simulation of the rate equations ( 1 ) . 

FIG. 4. a: The correlation integral CiM' versus r in 
double logarithmic scale for the chaotic regime 
(line 5 in Fig. 3) and for imbedding spaces with 
M =  2, 4, ..., 12. b: Slope of the curve of 
1 0 ~ , C ' ~ ' ( r )  versus log,r in the scaling zone as a 
function of M. I-Regular regime (line 1 in Fig. 3 ); 
2-5--chaos (line 5 in Fig. 3) for various types of 
preliminary analysis of the data (see the text proper 
for an explanation). c: Normalized correlation en- 
tropy F, = K,At,/ln 2 as a function of M for the 
regular regime (dashed line, delay time At, = 200 
ns) and for the chaotic regime (solid lines, 
At, = 500 ns). 
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4. SMALL-SIGNALGAIN NEAR A PERIOD-DOUBLING 
BIFURCATION 

We consider a composite perturbation of the loss in the 
laser resonator, consisting of a harmonic part and a brief 
pulsed part, at the time to. Equation ( 1 ) is modified in the 
following way: 

5-l- [e,+ez exp ( x )  ] k + ( l + q  cos mt)  

X exp ( x )  -1 = (qmle2) sin mt 

- (qe1/e2)cos mt- (qo/ez)  8 ( r  - to) - (qo/e2) { e l  
+ E~ exp (xO(to) 116 (t-to), ( 7 )  

where 6 ( t  - to) is the Dirac 6-function. In the limit go 49,  
we have the following equation for the case of a small devi- 
ation off ( t )  from a steady-state periodic solution xo(t)  : 

The function f ( t )  is zero except at t > to. It is the response to 
a 6( t )  perturbation of a linear system with coefficients which 
are periodic in time. The physical interpretation of the am- 
plification effect is based on a parametric mechanism for a 
period-doubling bifurcation.16 System (8)  is a parametric 
amplifier with a self-pumping period 2?r/w; which is equal 
to the period of the function xo(t). From the continuous 
spectrum of the 6-function, the parametric amplifier selec- 
tively passes only those frequencies which lie near 
lw;/2, I = 1, 3, 5, ... . In particular, in the case of a mono- 
chromatic pump with an amplitude A the transmission coef- 
ficient H, averaged over the period 2n-/a;, is62 

where A = w - lwo/2, Iis odd, a = (E, + ~ , ) / 2 ,  and the pa- 
rameter E = l - / A  I/I Athr characterizes the distance of the 
system from the period-doubling threshold. 

The same result can be found by a more formal method. 
Specifically, the nonautonomous equation ( 8) is equivalent 
to an equation with initial conditions: 

where we have made the substitution t+  to + t. The effect of 
a brief change in the loss thus reduces to an instantaneous 
decrease in the intensity by a factor of exp( - go/&,). Ac- 
cording to the Floquet theorem, a general solution of Eq. 
(10) is 

E=Et+E2=C1 exp [ -a (1 -p la )  t I q ( t ,  ol)+Cz exp [-a (1 

where the constants C, and C2 are determined by the initial 
conditions. The function p( t ,a )  has a period 4n-/a;. Its 
spectrum has no components at frequencies which are multi- 
ples of w,. This function, along with the growth rate p and 
the parameters a,,, , can be calculated analytically to arbi- 
trary accuracy in the form of converging series, provided 
that we know the coefficients in the Fourier-series expansion 
of the function xo(t).  The reason is that in this case Eq. (9)  
can be reduced to the canonical form of the generalized Hill 
equation. l7 

Near the bifurcation (E = 1 - p/a 4 1 ) the first of the 
particular solutions, f ,  ( t ) ,  dominates the general solution. 
At the time, the short-lived solution f2( t )  is damped even 
more rapidly than in the case without modulation (p = 0).  

On the other hand, it is clear that this effect depends on 
the phase, i.e., on the time to at which the S-function pertur- 
bation is applied, through the parameters o,,2. There exist t 6 
and t 6, which are determined by 

cP (0 ,  02 (to) ) - ( a + p )  cp  ( 0 ,  oz (to) ) =O, (12) 

(~(0 ,  01 (to) ) - (a-p)cp(O, o,  ( t o )  ) =0, 

such that we have C, -0 or C2 -0. In other words, there are 
directions in phase space along which there are fast and slow 
relaxations of perturbations from a given periodic regime. 
These directions depend on to. If t = t; (C2 = 0) holds, a 
deviation with an amplitude go/&, lies entirely on the slow 
"central manifold,"63 and the gain is a maximum. At 

FIG. 5. Small-signal gain near a period-doubling bifurcation 
( V,,, = 1.67 V ,  fM z 2 0 0  kHz, excitation energy Wz0 .25  
mJ/cmZ) . a: Response of a laser to a brief perturbation of the loss 
at the time t, (marked, here and below, by the circle) at several 
values of the control voltage. I-V= 0; 2-0.45V,,,; 3- 3 , Hrnn3c 0.66V,,, ; 4 4 . 9  V,,, ; 5 4 . 9 8  V,,, . &Steady-state regime with 

,, 

a period of 2TM for V> V,,, . b: Transmission frequency band 
near f M / 2  for cases 2-5 in frame a of this figure. c: Maximum 

2 gain H,,, as a function of a subcriticality parameter V/V , , ,  . 

'1 2 . * . *  

1 
0 

'45 44 46  4 8 I 
t.1OP4, s V/V* 
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t = t ( C ,  = O), the perturbation acts in a direction ortho- 
gonal to the central manifold, and the response of the laser is 
rapidly damped. If noise is applied to the system, the fluctu- 
ations will naturally stretch out in one direction and con- 
tract in another. 

Experiments with a composite pulsed-plus-periodic 
modulation of the Q of the resonator of a CO, laser com- 
pletely confirm the behavior described above. Figure 5a 
shows the response of a laser to a brief and small perturba- 
tion of the loss, as a function of the distance from the control 
voltage to the first period-doubling threshold. The energy of 
the pulse exciting the Nd:YAG laser was chosen to keep the 
response in the linear regime. Shown for comparison here 
are the response of the laser to a similar perturbation of the 
loss in the absence of modulation (line 1 ) and the time evolu- 
tion of the intensity after period doubling (line 6).  The fact 
that the intensity relaxes with a high accuracy (the error is 
less than 0.1%) to its steady-state value before a pulsed per- 
turbation is evidence that aftereffects (the heating of the 
GaAs plate, the thermal expansion associated with this heat- 
ing, the shift of the lasing frequency, etc.) are negligible. 

We should add that the damping of the relaxation oscil- 
lations ( y  = 790 f 30 kHz) is slightly more rapid than pre- 
dicted by calculations based on independent experimental 
data, within the framework of the two-level model. Similar 
results were found in Ref. 64, in a study of the linear response 
of a CO, laser to a weak, periodic modulation of the resona- 
tor length. As was shown in Ref. 64, this contradiction can 
be resolved on the basis of more complex multilevel models 
for the CO, laser, in particular, with the help of the vibra- 
tional-rotational model which we mentioned in Sec. 2. Since 
any of these models can be thought of as an equation of mo- 
tion for some effective nonlinear oscillation of the type in 
( 1 ), with corresponding "friction" coefficients, these mod- 
els would not alter the qualitative conclusions, and this cir- 
cumstance is of no fundamental importance for the ques- 
tions with which we are concerned here. 

In Fig. 5a we see that as the period-doubling threshold 
is approached the laser becomes more sensitive to a pulsed 
perturbation. Figure 5b and c, shows the spectra of the re- 

sponse near half the modulation frequency and a plot of the 
maximum gain H,,, versus the subcriticality parameter, re- 
spectively. In a first approximation, the gain line can be as- 
sumed to be approximately Lorentzian [see expression 
(9)  1. As the critical value V,,, = 1.67 V is approached, the 
gain increases, and the effective gain band Aw, shrinks. The 
product of H g;, and hug remains approximately constant. 
A similar picture is observed at frequencies w = la, /2, with 
1 odd, and also near the thresholds for other doubling bifur- 
cations. 

The results above were obtained at a fixed value of the 
time to of the pulsed perturbation with respect to the phase of 
the periodic-modulation signal. Figure 6 shows the phase 
dependence of the gain. All four cases here (a-d) corre- 
spond to the same experimental conditions, except the time 
to at which the pulsed perturbation is applied (this time is 
marked by the circle). In case a we see the maximum re- 
sponse of the laser [the long-lived particular solution f ( t )  
dominates the general solution]. In contrast, when the ap- 
plication time to is shifted by about r/w, (Fig. 6b), the laser 
goes back to its original state essentially instantaneously 
(the particular solution f ,is dominant). Intermediate cases 
are shown in frames c and d in Fig. 6.  

No phase dependence of the small-signal gain near a 
period doubling was noted in previous It is 
shown here for the first time. When a random train of 8- 
function pulses ( a  fairly realistic model) is applied to a laser, 
we should evidently observe a classical compression of the 
noise. 

The function f(t,to) described by expression ( 11 )is the 
instrumental function of the system. In other words, by us- 
ing this function one can calculate the response of a laser to 
an arbitrary perturbation of the loss f( t ) ,  and one can also 
solve the inverse problem. 

Near a period-doubling bifurcation, the amplitude of 
the response (with appropriate phase relations) may be larg- 
er by a factor of E - ' than in conventional in-resonator mea- 
surement layouts.35 Accordingly, this effect is extremely 
promising for use in increasing the sensitivity of such mea- 
surements. 

I, arb un~ts 

0 1 2 3 4  0 1 2 3 FIG. 6. Phase dependence of the response of a laser to a brief and 
small perturbation of the loss near a period-doubling bifurca- 
tion. The other parameters are the same for all of frames a-d: 
f ,  ~ 2 0 0  kHz, V =  2 V, and W~0.55 mJ/cmZ. 
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5. OPTICAL SWITCHING OF MODULATION REGIME; THE 
LASER AS AN AMPLITUDE VERSION OR PHASE VERSION OF 
AN OPTICAL FLIP-FLOP 

In this section of the paper we report the results of an 
experimental study of optical switching of the modulation 
regime in a CO, laser. We find these results interesting pri- 
marily in connection with the effort to control the output 
characteristics of CO, lasers. From the standpoint of optical 
information processing, these results should of course be re- 
garded as a possible exploitation of nonlinear dynamic ef- 
fects. 

In the preceding sections of this paper, and also in sever- 
al papers by other  investigator^,^'-^' it has been demonstrat- 
ed that the phase space of a laser with a modulated param- 
eter is rather complex. Over wide ranges of the control 
parameters there may exist various modulation regimes 
(generalized multistability). Whether one regime or an- 
other is reached is determined by the initial conditions. Ex- 
perimentally, this situation is usually reflected in hysteresis 
in the change in regime upon a smooth sweep of the control 
parameter. 

An additional optically controllable pulsed perturba- 
tion of the resonator loss may be thought of as an equivalent 
change in the initial conditions when the pulse is applied. 
The imaging point jumps into a different region of the phase 
space. By the time the pulse ends the system may be in a basin 
of attraction to another attractor, so there will be an optical 
switching from one region to another. If the state of the sys- 
tem at the end of a pulse corresponds to a separatrix (a  
boundary separating the attraction of different attractors) 
or to an unstable cycle, then the system may spend a fairly 
long time in this unstable state before it switches to a new 
state or reverts to its old state, depending on the precision of 
the moves and also depending on the noise level. It is thus 
possible to experimentally determine the amplitude of an 
unstable cycle and-from a broader standpoint-to experi- 
mentally study the global phase portrait of the system. 

We carried out some experiments on an apparatus with 
a composite periodic and pulsed modulation of the param- 
eters, as described in Sec. 2. As the source of the optically 
controllable pulsed loss we used a GaAs plate, which was 
periodically exposed to pulses from a Q-switched Nd:YAG 
laser (the pulse length was =: 15 ns, and the repetition fre- 
quency 12.5 Hz). In contrast with the preceding section of 
this paper, where we were concerned with critical slowing 
regimes near a doubling bifurcation, the working range of 
the control voltage on the modulator was chosen at a fair 
distance from bifurcation points. In addition, since we do 
not need to require that the response be linear in this case 
(i.e., we do not need to require that the perturbation be 
small), we varied the energy of the pulses from the Nd:YAG 
laser over a broader range. The frequency of the voltage ap- 
plied to the modulator was 200 kHz and was chosen in such a 
way that we achieved the richest bifurcation diagram (Sec. 
2) .  By choosing the time at which the pulsed perturbation 
was applied-it is actually this time which determines the 
direction in which the imaging point moves in the Poincart 
section with respect to the separatrices-we can easily con- 
trol the switching regime. If the time at which the perturba- 
tion is applied is fixed, switching can be observed as the am- 
plitude of the perturbation increases, i.e., as the energy of the 

pulse from the Nd laser increases. 
Before we move on to a discussion of these results, we 

would like to point out that the concept of a generalized 
multistability includes not only an amplitude multistability 
(i.e., the case in which two coexisting modulation regimes 
belong to different resonant branches of the nonlinear re- 
sponse of the laser; these regimes may differ in modulation 
period) but also phase multistability. Let us explain. If a 
response with a period NTM to an external modulation of 
frequency wM = 2n-/TM is observed in a laser, then it follows 
automatically that there are another N - 1 regimes which 
are of exactly the same amplitude but which are shifted in 
phase by 2n-/N with respect to each other. The reason is that 
these regimes are physically indistinguishable with respect 
to the modulation signal. The situation here is extremely 
similar to the processes which operate in parametric subhar- 
monic generators in the rf range (parametrons), which were 
studied intensely in the late 1950s and the early 1960s as 
devices exhibiting discrete values of the phase of stable oscil- 
l a t i o n ~ . ~ ~  

It follows that after the first period doubling two re- 
gimes coexist with a relative phase shift of n- and a period of 
2TM. Moreover, there is an unstable regime with a period of 
TM . After the second doubling, there are four regimes, with 
a phase shift 1~/4  (and so forth). 

We have observed this behavior experimentally. Figure 
7 shows examples of phase switching with an intermediate 
excursion to an unstable cycle. In cases a and b, the laser was 
initially operating in a regime with a period of 2TM. In the 
first case, the laser spent more than 50 ,us ( 10TM ) on an 
unstable TM cycle after the application of the pulsed pertur- 
bation. It then returned to its original state (the phase shift 
between the final and initial states is zero, as is easily verified 
with the help of the 2TM -periodic reference signal shown by 
the dashed line). 

In case b, in contrast, after a few briefer interludes on an 
unstable TM cycle (the fact that these interludes are briefer 
is evidence that the separatrix has not been reached as pre- 
cisely), the laser switches to a 2TM periodic regime with a 
phase shift of IT with respect to the original regime. 

Figure 7, c and d, shows corresponding results in the 
case in which the initial state of the laser is a 4TM -periodic 
regime. The number of stable phase states doubles in this 
case: We observe switching with phase shifts of 3n-/2, n-, and 
77/2 (the particular examples shown in Fig. 7, c and d, corre- 
spond to a phase shift of n-/2). Moreover, at the modulation 
depths corresponding to Fig. 7d an amplitude bistability ap- 
pears, as can be seen from the transition regime with a period 
of 3TM, which indicates proximity of an unstable cycle with 
the same period. 

We wish to stress that the results in Fig. 7 are primarily 
a demonstration that it is possible to experimentally observe 
unstable cycles. From the standpoint of the switching times 
between regimes with a discrete phase state, it is clear that 
these results are quite the opposite of optimum results. Spe- 
cifically, by varying the amplitude or time of application of 
the perturbation (Fig. 7, a and b),  we observe switching 
times which are limited essentially by the duration of one 
modulation period. It is also pertinent to note here that the 
phase dependence of the time of the transitional period indi- 
cates that aftereffects of the pulsed perturbation of the loss 
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FIG. 7. Optical discrete switching of the phase of the 
modulation of a laser with an intermediate excursion 
to an unstable cycle. The dashed line shows a 
2 TM -periodic reference signal (in frames a and b )  or 
a 4TM -periodic reference signal (in frames c and d)  . 
Here fM -200 kHz and Wz0.25 mJ/cm2. a- 
V =  2.03 V; b--3.1 t; C-5.04; d-5.57 V. 

are not playing an important role (at least at these energies 
of the exciting pulses). 

Figure 8 shows the results of optical switching in which 
the final regime differs from the initial regime in both period 
and amplitude of the modulation. Frame a corresponds to a 
region of bistability between the 2/1 and 3/1 resonant 
branches. In contrast with Fig. 7d stable switching is 
achieved here; it is observed for hundreds of milliseconds. In 
addition, by repeating the pulsed perturbation we observe 
the opposite switching of regime, 3TM +4TM.  

Slightly more difficult to interpret are the results in Fig. 
8b. The 4TM periodic regime does not differ in amplitude 
from the original 2TM -periodic regime to the extent that we 
could say that there was a stable switching to a different 
resonant branch. At this energy of the excitation pulse 
(which was higher than that in the preceding cases by a fac- 
tor =. loo), the effect of this pulse apparently does not re- 
duce simply to a corresponding change in initial conditions. 
Instead, it also causes a brief change in the parameters, as 

can be seen in a shift of deformation of the entire bifurcation 
diagram. Further evidence for this interpretation comes 
from the fact that, after the brief perturbation of the loss, a 
phase with essentially no generation appears in the laser out- 
put and lasts for a fairly long time ( - 4TM ). 

We wish to stress that these results do not exhaust all 
possibilities in terms of a switching between regimes in a 
modulated laser. In particular, we observed stable switching 
between TM -periodic generation regimes of different ampli- 
tude in the region of the main resonance. 

In reviewing the results of this section of the paper, we 
note that we have demonstrated the rich possibilities for op- 
tical control of the output characteristics of CO, lasers with 
modulated parameters. In particular, we have demonstrated 
the operation of a modulated CO, laser as a binary phase 
flip-flop, a quadratic phase flip-flop, and an amplitude flip- 
flop (all of these being optical devices). These results may 
find applications in laser apparatus which requires rapid, 
reliable, and controllable switching of the repetition period 

I ,  arb. units 

a 1 

0 '45 50 55 5 0  55 3,o 3,s' 
FIG. 8. Optical amplitude switching of modulation re- 
gime. a 4 T M  -3TM CfM z 2 0 0  kHz, Wz0.25 
mJ/cm2, V = 5.5 V);  b--2TM -4TM CfM z 2 0 0  kHz, 

150 W z 2 5  mJ/cm2. V =  3.5 V ) .  
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of the output pulses, the energy of these pulses, etc. 
An extension of this idea (of combining a sinusoidal 

periodic modulation) of parameters with a pulsed modula- 
tion to the realm of semiconductor lasers and their applica- 
tions may also be extremely promising for developing new 
instruments and apparatus. Finally, this method would be 
extremely useful for phase-space diagnostics in experiments 
on nonlinear dynamics in lasers. 

CONCLUSION 

We have carried out a detailed study of the resonance 
structure in the nonlinear response of a laser to a periodic 
modulation of the loss for various relations between the 
modulation frequency and the frequency of the relaxation 
oscillations. We have observed diverse temporal regimes in 
the lasing: from periodic trains of pulses which are greatly 
distorted by the presence of resonant ultraharmonics to ran- 
dom spiky lasing. In addition to the main resonance there are 
resonances at the relaxation frequencies 1/4, 1/3, 1/2, 2/3, 
2/5,2/1, and 3/1. 

Working from experimental data on chaotic regimes, 
we have calculated the correlation dimension and the en- 
tropy for lasing regimes which are single-mode and multi- 
mode in terms of the transverse index. These results confirm 
that the chaos which is observed is of a dynamic nature. 
They also confirm that it is legitimate to use low-dimension 
theoretical models of the rate-equation type to describe such 
lasers. We have identified optimum conditions for a prelimi- 
nary analysis of a peak signal on the basis of a suitable subse- 
quent reconstruction of a phase portrait. 

We have carried out a detailed study of the dynamics of 
a laser near a period-doubling bifurcation in the case of a 
combination of a sinusoidal modulation and a 6-function 
pulsed modulation of the resonator Q. We have demonstrat- 
ed that there is a small-signal gain near frequencies which 
are multiples of half the modulation frequency. We have 
measured the gain and the frequency band as a function of a 
bifurcation parameter. 

Experimentally, stable discrete switching of the phase 
and amplitude of the modulation has been achieved by 
means of a brief pulsed loss produced by means of an optical- 
ly controllable in-resonator absorption of light in the semi- 
conductor elements of a laser. We have observed that the 
initial phase of the modulating signal with respect to the 
pulsed loss affects the small-signal gain and the stability of 
the optical switching. 

In summary, these experiments have demonstrated sev- 
eral new effects in lasers with modulated parameters. These 
new effects hold great promise for applications, in particu- 
lar, in in-resonator kinetic measurements and in systems for 
optical information processing. 
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