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The self-channeling of an intense ultrashort laser pulse in a plasma as the result of a change in the 
refractive index due to the relativistic increase in the mass of the electrons and also due to the 
expulsion of electrons from the strong-field region by the ponderomotive force is analyzed. The 
process is described by the nonlinear Schrodinger equation. A two-dimensional, axisymmetric, 
and otherwise arbitrary solution of this nonlinear Schrodinger equation tends asymptotically 
toward the lowest spatially localized mode. The critical power for self-channeling is the same as 
the minimum power in the corresponding mode, PC, = 2PC,, . In other words, it is twice the 
critical power for a medium with a quadratic nonlinearity. The practical realization of self- 
channeling of a laser pulse would make it possible to produce long, narrow regions with multiply 
charged ions and an ultrastrong electromagnetic field at I=: 10'9-1020 W/cm2, in the absence of 
free electrons. This capability would open the door to research on matter in ultrastrong 
electromagnetic fields. It would also be pertinent to the effort to develop an x-ray laser. 

INTRODUCTION 

The interaction of ultrashort (subpicosecond) laser 
pulses of high intensity ( 10" <I< lo2' W/cm2) with gase- 
ous media has been a field of active research over the past few 
years. At intensities I>I* = 1016 W/cm2, the atoms at the 
front of such a pulse undergo a rapid nonlinear photoioniza- 
tion. The external light strips 10-15 electrons off each 
atom.'s2 This process leads to the production of a plasma, 
along which the main part of the pulse propagates. A study 
of the interaction of the light with the matter in this case may 
be pertinent to two problems: ( 1) the physics of elementary 
processes in an ultraintense optical field and (2)  the nonlin- 
ear refraction of a pulse in a material. The second of these 
questions is the topic of the present study. 

The possibility of a self-focusing of an intense optical- 
range electromagnetic beam in a material medium, resulting 
in waveguide propagation of the beam, was first pointed out 
back in 1962, in Ref. 3. Thermal and ponderomotive mecha- 
nisms for the self-focusing were proposed in the same paper. 
The problem of a self-consistent transverse distribution of 
the field and the plasma in a light beam was solved in 1964, in 
Ref. 4. It was shown that the field could undergo self-local- 
ization, creating for itself a channel which would oppose a 
transverse divergence of the beam. The concept of a critical 
power for self-focusing was introduced in Ref. 5. Self-focus- 
ing was observed experimentally in Refs. 6 and 7. The basic 
equation for describing a steady-state self-focusing of a light 
beam-the nonlinear Schrodinger equation-was derived in 
Ref. 8. This equation was subsequently generalized to the 
time-varying case in dispersive media.9 An approximate 
expression for the self-focusing length of a collimated beam 
(i.e., the distance to the first focus) was derived in Refs. 10 
and 11 as a function of the beam aperture and power. The 
filamentation of a beam with a power well above the critical 
value was explained in Ref. 12. 

Several ideas have grown up about possible regimes of 
the self-focusing of a steady-state electromagnetic beam at 

power levels above the critical value, Po > PC,, on the basis of 
analysis of two-dimensional steady-state solutions of the 
nonlinear Schrodinger equation with nonlinearities of var- 
ious types. The possible formation of a waveguide from a 
focus was suggested in Ref. 10. The nonlinear Schrodinger 
equation with a quadratic nonlinearity ( a  Kerr nonlinear- 
ity) was analyzed in Ref. 13 for a beam with an initially 
Gaussian transverse intensity profile. A solution corre- 
sponding to a multiple-focus structure was found. The num- 
ber of foci was finite, roughly equal to Po /PC,. The thin fila- 
ments were interpreted as wakes of moving foci. A nonlinear 
Schrodinger equation with a nondissipative, saturable non- 
linearity of a simple algebraic type was examined in Ref. 14. 
At low intensities, that nonlinearity converted into a qua- 
dratic (Kerr) nonlinearity. Numerical calculations yielded 
waveguide solutions which converged asymptotically over 
large propagation distances to normal modes of the nonlin- 
ear Schrodinger equation. The possible existence of pulsat- 
ing waveguide solutions has also been conjectured. Single- 
focus propagation regimes were found in Ref. 15 for a 
dissipative Kerr medium, for beams with a hyper-Gaussian 
transverse intensity profile under the condition Po >PC,. 

Efforts to analyze the nonlinear Schrodinger equation 
run into the difficulty that for a nonlinear equation there are 
no general theorems which would make it possible to narrow 
the range of possible solutions of the equation on the basis of 
the type of nonlinearity. For this reason, analysis of a nonlin- 
ear Schrodinger equation becomes a complex independent 
problem for each type of nonlinearity. 

Time-dependent self-focusing (for a long laser pulse 
with a time-varying intensity) can be interpreted as the pic- 
ture found for a steady-state beam which is moving through 
space in accordance with a change in the initial intensity. 
Experiments carried out to observe a spatially moving multi- 
focus structure in a nonlinear medium were described in Ref. 
16. Studies of the self-focusing of light beams and pulses in 
various nonlinear media are reviewed in Refs. 17 and 18. 

In this paper we examine a particular propagation re- 

604 Sov. Phys. JETP 74 (4), April 1992 0038-5646/92/040604-12$05.00 @ 1992 American Institute of Physics 604 



gime for an intense, ultrashort laser pulse. We assume that 
the inequality L, > Lpu,,, holds, where L,,,,, = ct ,,,,, is the 
spatial length of the laser pulse, tp,,,, is the duration of the 
pulse, and L, = r :/A is the diffraction length correspond- 
ing to the pulse aperture r,. The particular nature of the 
propagation of the pulse is determined by the nonlinear 
change in the dielectric properties of the medium over the 
length of the pulse. Nevertheless, the pulse propagates in a 
nonlinear fashion at distances L,,, 9 L ,  > L,,,,, . We will 
call this propagation regime of an ultrashort pulse "self- 
channeling." 

Below we discuss a possible picture for the self-channel- 
ing of an intense ultrashort laser pulse. As it propagates, a 
pulse with a temporal length of a few hundred femtoseconds 
which extends spatially over distances on the order of a few 
tens of microns because of the nonlinear variation of the 
refractive index, causes a change in its own structure, losing 
some of its energy as a result of refraction. The pulse con- 
tracts toward the axis, with the result that its intensity in- 
creases manyfold. The self-consistent system which arises- 
the system consisting of the electromagnetic field plus a me- 
dium with altered dielectric properties-propagates without 
a refraction loss over substantial distances, many times as 
large as the spatial length of the pulse itself. (The propaga- 
tion regime of an intense ultrashort pulse could apparently 
be linked with a three-dimensional soliton.) 

One could imagine that an ultrashort laser pulse 
stretching out in the longitudinal direction is cut up into a set 
of layers oriented perpendicular to the light propagation di- 
rection. We assume that the medium responds instanta- 
neously and the complex amplitude of the electromagnetic 
field varies slowly over distances on the order of the wave- 
length A along the propagation direction and over times on 
the order of the period w - ' of the rf oscillations. The prob- 
lem of the nonlinear dynamics of the light concentrated in 
each of these layers can then be reduced to that of solving the 
nonlinear Schrodinger equation for a complex field ampli- 
tude. The effect of the medium on the light propagation is 
reduced along this approach to the specification of some 
type of nonlinearity in the equation. For an analysis of ultra- 
short laser pulses, the two-dimensional beam solutions of the 
nonlinear Schrodinger equation should be interpreted as tra- 
jectories described by thin transverse sections of the pulse. 

For intense short pulses with a temporal length T < 1, 
the inertial mechanisms for the formation of a nonlinearity 
of the medium are inconsequential. Falling in the category of 
these inconsequential mechanisms are the thermal self-fo- 
cusing and the mechanisms involving the onset of turbulence 
in the plasma. On the other hand, noninertial mechanisms 
may operate. One example is the relativistic nonlinearity 
which stems from the change in the rest mass of the electrons 
which are gyrating in the intense field at velocities approach- 
ing the velocity of light. '' With certain reservations (spelled 
out in the text below), we could also include here the ponder- 
omotive nonlinearity for electrons associated with their ex- 
pulsion from the strong-field region by the force associated 
with the rf pressure.20 Another noninertial mechanism is the 
Kerr nonlinearity which stems from the nonlinearity polar- 
ization of the electron shells of ions in an intense field.2' For 
light substances (H, He, N, 0 ,  etc.), atoms can be stripped 
to a state of complete ionization at the pulse front. In this 
situation, the Kerr nonlinearity should be inconsequential. 

The dynamics of the pulse may also be affected by the quasi- 
static magnetic fields (with a corresponding scale time w - ') 
which arise as the plasma electrons move. 

In this paper we present a theory for the self-channeling 
of intense, ultrashort, circularly polarized laser pulses in an 
initially homogeneous, cold, subcritical plasma and also in 
plasma formations ( "plasmoids" 1 of finite dimensions. The 
diffraction of the light and its refraction by transverse varia- 
tions in the refractive-index profile of the medium are taken 
into account. These variations arise because of relativistic 
and ponderomotive nonlinearities. The ponderomotive ef- 
fect involving electrons is assumed to be instantaneous, 
while the motion of the ions is ignored. The pulse is assumed 
to be stretched out along its propagation direction. The theo- 
ry includes a simpler derivation of the nonlinear Schro- 
dinger equation with a relativistic-ponderomotive nonlin- 
earity, which was first established in Ref. 22. This 
nonlinearity falls in the category of dissipationless nonlin- 
earities which are saturable. The theory includes the case of 
an initially inhomogeneous plasma, which was not discussed 
in Ref. 22. 

We report the results of a detailed numerical simulation 
of the two-dimensional problem in an (r,z) geometry for the 
cases of a single relativistic nonlinearity and of a combined 
relativistic-ponderomotive nonlinearity. In each of these 
two cases, we analyze the normal modes of the nonlinear 
Schrodinger equation in the basic regimes of two-dim.ension- 
a1 propagation. A new result found here is that two-dimen- 
sional solutions of the nonlinear Schrodinger equation for 
this nonlinearity asymptotically approach the lowest-lying 
normal mode of the nonlinear Schrodinger equation. The 
squared absolute value of this mode depends only on a single 
transverse coordinate and is localized in the axial region of 
the space. The relativistic nonlinearity dominates the initial 
concentration of the light, while the ponderomotive effect, 
which begins to operate at the first focus, predominantly 
forms a cavitation channel of the electron density, in which 
light concentrates and stabilizes the solution. 

1. GENERALQUESTIONS 

We begin with a brief review of research on the electro- 
dynamics of light in matter with relativistic effects in the 
motion of electrons. The many studies in which the motion 
of the electrons has been assumed to be nonrelativistic will of 
course remain outside our discussion. 

The propagation of plane electromagnetic waves of rel- 
ativistic intensity in a plasma was apparently first studied in 
Ref. 19. Equations derived there describe the propagation of 
the waves as a function of the single argument wt  - kz. The 
problem was reduced to Lagrange form with two integrals of 
motion. Certain exact and approximate solutions were 
found. 

Later, several s t ~ d i e s ~ ~ - ~ ~  were carried out on the accel- 
eration of charged particles by beats of two optical waves 
with relativistic intensities or by the plasma wake field which 
arises behind a single intense laser pulse. All these studies 
were carried out in plane geometry. We believe that a num- 
ber of extremely important problems were left unresolved. 

The motion of electrons in the electromagnetic field of a 
given pulse has also been studied. A solution for the case of 
motion in the field of a monochromatic plane wave was given 
in Ref. 27, for example. A further analysis of these solutions 
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was offered in Refs. 28 and 29. An attempt was undertaken 
in Ref. 30 to study the motion of electrons in a field of a pulse 
with a given shape (the intensity was a bell-shaped function 
of the time), but inexact equations of motion were used for 
the analysis there. 

The threshold for the filamentation of a monochromat- 
ic plane wave of relativistic intensity was derived in Ref. 3 1 
from the well-known linear theory for the stability for the 
nonlinear Schrodinger equation. It was also derived in Ref. 
32 on the basis of analytic calculations. 

A nonlinear Schrodinger equation describing the self- 
focusing of an axisymmetric laser pulse in an initially homo- 
geneous plasma due to two effects-the relativistic nonlin- 
earity and the transverse ponderomotive effect-was 
derived in Ref. 22. The lowest normal mode of the nonlinear 
Schrodinger equation was found in the same study; the mini- 
mum power corresponding to this mode was calculated. 
Two-dimensional axisymmetric solutions of the nonlinear 
Schrodinger equation over short propagation distances were 
reported. These solutions were found for the case of small 
deviations of the initial conditions from the normal mode 
which was found and in the absence of a cavitation in the 
profile of the electron component. Analyzing the lowest nor- 
mal mode of the nonlinear Schrodinger equation, Sun et 
showed that the rf-pressure force can expel all the electrons 
from a certain spatial region (we recall that this effect is 
known in the literature as "electron cavitation"). On the 
other hand, those investigators were unable to describe elec- 
tron cavitation in the derivation of two-dimensional solu- 
tions of the nonlinear Schrodinger equation. The problem 
was apparently a matter of mathematical difficulties and the 
complexity of choosing a stable difference scheme to de- 
scribe the solutions of the nonlinear Schrodinger equation 
with a nonlinearity which has a discontinuity in its first de- 
rivative. (These difficulties have been overcome in the pres- 
ent study, and we will discuss arbitrary two-dimensional so- 
lutions of the nonlinear Schrodinger equation, taking 
electron cavitation into account.) 

The normal mode of the nonlinear Schrodinger equa- 
tion with a relativistic ponderomotive nonlinearity was 
found in Ref. 33 for the planar problem. In some previous 

we took up the case of two-dimensional axisym- 
metric self-focusing when the relativistic mechanism domi- 
nates (without the ponderomotive effect). We reported re- 
sults on the stabilization of self-focusing in plasmoids. 
Analytic estimates on the propagation of picosecond pulses 
in cavitation channels of the electron-density profile with 
walls with a supercritical electron density were carried out in 
Ref. 37. In Refs. 38 and 39 we reported preliminary calcula- 
tions on relativistic-ponderomotive self-focusing, and we re- 
ported stabilization of the solution and the formation of a 
cavitation channel. The threshold conditions for the onset of 
the relativistic-ponderomotive self-channeling of an ultra- 
short laser pulse were analyzed in Ref. 40. 

1.1. Physical model 

According to the present understanding, the following 
factors influence the nonlinear dynamics of an intense ultra- 
short laser pulse in the medium. 

1 ) First, there is the shaping of the leading edge of the 
plasmoid pulse. 

2) Second, there is the nonlinear variation of the dielec- 
tric constant of the medium. At least three mechanisms 
which lead to nonlinear changes of this sort are associated 
with the plasma electrons. These are the relativistic increase 
in the masses of electrons oscillating at velocities compara- 
ble to the velocity of light in the intense optical field19 and 
the expulsion of free electrons by the ponderomotive force 
from the volume occupied by the intense field.20 Since the 
laser pulse is short, the heavy ions are unable to undergo any 
substantial change in position during the pulse. The expelled 
electrons are partially confined by electrostatic forces result- 
ing from the charge separation in the plasma. In the case of 
pulses which are stretched out, this expulsion of electrons 
occurs primarily in the direction transverse to the pulse 
propagation direction. Let us estimate the time scales of this 
process. The time over which an electron moves off a dis- 
tance r, is t z r, /c. Taking r, = 3.10 cm, for example, we 
find t = 10- l4 s. The theory derived in this paper is thus 
valid under the condition t < t,,,,, . 

Yet another mechanism for nonlinear variation in the 
refractive index of the medium involves the ion dipole mo- 
ments which are induced by the rf field. 

It is possible that the decrease in the carrier frequency 
of the pulse due to the loss of energy by photons in the course 
of nonlinear interactions with plasma waves is important.25 

3) Defocusing mechanisms have important effects on 
the pulse propagation dynamics. One defocusing mecha- 
nism is the diffraction of the light by the transverse aperture 
of the pulse, and another is the refraction by irregularities in 
the profile of the electron density. 

4) Dissipation of pulse energy can also play an impor- 
tant role. The loss due to ionization of the gas, the conversion 
of electromagnetic-field energy into kinetic energy of the po- 
tential motion of electrons, the generation of harmonics, 
nonlinear scattering, and multiphoton inverse bremsstrah- 
lung are examples of such dissipation mechanisms. 

These considerations give an idea of just how complex 
this problem is. The analysis below is based on the following 
physical phenomena: ( 1) the nonlinear variation in the re- 
fractive index of the medium as a result of the relativistic 
increase in the mass of the electrons; (2)  the nonlinear vari- 
ation of the refractive index due to the transverse relativistic 
ponderomotive effect; (3)  the initial bell-shaped profile of 
the electron density, which serves as a model for the nonlin- 
ear ionization of atoms at the pulse front; (4)  the diffraction 
of the pulse by the transverse aperture; and (5)  the refrac- 
tion of the light by transverse irregularities in the refractive 
index of the medium which are caused by the first three of 
these factors. The interaction of the laser light with the plas- 
ma is examined in this paper over distances much shorter 
than the characteristic dissipation lengths for the pulse ener- 
gy. The length scales for ionization dissipation are tens of 
centimeters. We can write the length scale for the ioniza- 
tional loss at Lion E,/m 2N~,,n. If the energy of the laser 
pulse is EL ~ 0 . 1  J (Refs. 1 and 2 ) ,  if the channel radius is 
r ~ 3 .  l o p 4  cm, if the density of gas particles is N=: lo2' 
~ m - ~ ,  and if the ionization energy is E,,, = 1.486. lo3 eV 
(nitrogen), then this length is L z  14.5 cm. 

The efficiency of collisional dissipation falls off with 
increasing field intensity and is of minor importance.32 The 
efficiency with which pulse energy is converted into plasma 
waves is low if the pulse length does not coincide with the 
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period of the plasma wave.25 We will assume that this reso- 
nance does not occur. 

Light waves of relativistic intensities can presently be 
generated experimentally only through sharp focusing of the 
beam from an excimer laser. The typical parameter values 
in this case might be as follows: a peak intensity 1~ 1018-1019 
W/cm2, a pulse length r <  1 ps, a pulse aperture (i.e., the 
transverse dimension of the pulse in the focal region) of 1-3 
pm, a wavelength A =  0.248 p m  (an excimer laser), and an 
initial gas pressure 9, ~0.01-10 atm in the chamber in 
which the interaction with the light occurs. The density of 
free electrons in such a system might be Ne=:1018-1021 
cm-3. Under these conditions we could use the estimate 
(up/@) 4 1, where w = 2.rrc/A is the frequency of the laser 
light, and wp = (4.rre2Ne/m, ) is the electron plasma fre- 
quency. For the parameter values listed above, for lengths 
L z ( 100-1000)A and for pulse apertures r, z (4-12);1, the 
dominant role will be played by effects associated with the 
transverse nonuniformity of the pulse. 

1.2. Basic equations 

Let us consider the propagation of an intense, ultra- 
short, laser pulse in a plasma with an initial electron density 
distribution which is spatially nonuniform: Ne = Ne,,f(r), 
max f(r)  = 1. As usual, we denote the vector and scalar po- 
tentials of the electromagnetic field by A and p, respectively. 
We denote by p, the electron momentum. We assume that 
the ions are immobile. We can then write 

Equations ( 1 ) and (2)  are Maxwell's equations; Eq. (3)  is 
the Coulomb gauge of the vector potential; Eq. (4) is the 
equation of motion of the electrons; Eq. (5)  determines the 
current density and the charge density; Eq. (6) is the relativ- 
istic relationship between the momentum and velocity of an 
electron; me,, is the rest mass of the electron; and 

= A - c - 2a 2/at is the d'Alembertian. 
It is convenient to normalize the variables in these equa- 

tions as follows: 
- - - 
A=(e/me, ,,c?A, @= (elm,, oc2) cp, pe=pe/me, OC, vc=ve/c, 

i?,=N,/N ,,,, r=ct. 
(7 )  

[We immediately drop the tilde (7. ] Equation (4)  can be 
rewritten in the equivalent form 

Following Ref. 22, we ignore the potential motion of the 
electrons; as a result we have pe = A. We assume that the 
vector potential is circularly polarized: 

The path traced out by an electron in the field of a linearly 
polarized plane wave, along the x axis, for example, is a fig- 
ure-eight in the xz plane.27 In this case of course, we need to 
take the electron momentum component p, into account. In 
a circularly polarized plane wave, an electron traces out a 
circular orbit in the xy plane. This plane is perpendicular to 
the wave propagation dire~tion.~'  In this case we do not 
need to consider the componentp, . In the field of a circularly 
polarized wave which is nonuniform in the transverse direc- 
tion, the vector potential nevertheless acquires a z compo- 
nent. From the condition V.A = 0 we find 

This component is small ( la, I < la1 ) if the field in the trans- 
verse direction varies slowly over distances on the order of 
the wavelength. The A, component leads to the appearance 
of a componentp, <p, . In this case the theory can be derived 
without consideration of the small components A, and p,. 

We assume that the length of the pulse is much greater 
than the lengths of the electromagnetic and plasma waves. In 
this case the following inequalities hold: 

a a 
-a, -a< ka. k,a, 
at a2 

where kp =w,,/c, k 2 = k i  - k i ,  and k, =w/c. We use 
the notation mi,, = 4.rre2Ne,,/me,, for the unperturbed plas- 
ma frequency. On the other hand, we assume that the pulse is 
ultrashort in the sense that the ions are assumed immobile. 
Under the assumptions which we have made, Eqs. (1)-(8) 
become 

We have omitted a term a p / a t  from (10) since y and 
(therefore) p do not contain an rf dependence for a circular- 
ly polarized wave. From ( 11) and ( 12) we find an expres- 
sion for the electron density: 

N,= max (0, /(r) +k,-'Ay}. (14) 

The logical expression max(0, ...) imposes the condition 
N, )O. Equation ( 12) is the condition under which the pon- 
deromotive and electrostatic forces are balanced. Combin- 
ing (9 ) ,  ( lo) ,  and ( 14), we find an equation for the slowly 
varying complex amplitude of the vector potential: 

i + -[A,a+kp2(l-y-' 2k max{O, f (r) +k,-2 A l l )  )a ]  = 0. 

(15) 

In the spirit of the assumptions made in the derivation of 
( IS), we have ignored the second derivatives with respect to 
zand t. Here v, = CE;'~ is the group velocity of the light in the 
unperturbed plasma, and E, = [ 1 - (ap,  / w )  2 ]  is the di- 
electric constant of the plasma. In the case at hand, of fairly 
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long pulses, the relationship between the vector potential 
and the electric vector takes a particularly simple form: 

Ex-l/ziko(e,+ie,) a exp [i(ot-kz) ] + c.c. 

We consider the dynamics of a thin cross section of the 
pulse, examining solutions of Eq. ( 15) along the characteris- 
tics. For this purpose we switch from the variable t to 
q = t - z/v,. Equation ( 15) becomes 

a i 
-a + -[A,a+k,2 (I-y-' max(0, f (r) f k,-' A,y) )u]=O. 
az 2k 

(16) 

We examine the solutions of this equation for the case 
q = const below (q is not included in the list of arguments of 
the function a ) .  Equation ( 16) describes the spatially two- 
dimensional (r,z) dynamics of an ultrashort, circularly po- 
larized, relativistic laser pulse in a cold, subcritical plasma. 
The following factors are taken into account: the relativistic 
nonlinearity (the factor y),  the relativistic transverse pon- 
deromotive force (the factor A, y), the inhomogeneous ini- 
tial profile of the plasma electron density [the function 
f ( r )  1, diffraction (the factor A,a), and refraction by irregu- 
larities in the refractive index of the medium (the term add- 
ed to A,a inside the square brackets). The possibility of 
complete electron cavitation is also taken into account (the 
logical expression). 

2. NORMAL MODES OF THE NONLINEAR S C H R ~ N G E R  
EQUATION 

For an initially homogeneous plasma ( f = 1 ), Eq. ( 16) 
has axisymmetric particular solutions of the type 

where the real function Us,, satisfies the ordinary differential 
equation 

In this section of the paper, A, means the Laplacian in terms 
of the argumentp. The nonlinear term in the last equation is 

The boundary conditions on Eq. (18) are 
(dU,, /dr) (0) = 0, Us,, ( ) = 0. The first of these condi- 
tions means smoothness at the origin; the second keeps the 
solution spatially localized. The importance of such solu- 
tions, which are called "normal modes" of the nonlinear 
Schrodinger equation, ( 16), will be demonstrated in the fol- 
lowing sections of this paper. 

We first consider the normal modes of Eq. (16) when 
we retain only one nonrelativistic nonlinearity; we discard 
the ponderomotive term A, y, and we set f = 1. In this case 
the equation for the function Us,, becomes 

d i d  1 d 
-{-(-ua,n )' +v(u+t9 .I}= 
dP 2 dp 

120, 

The second boundary condition can be satisfied only if the 
dynamic system described by the last two expressions has 
three points of rest. Since one of these points is the origin, 
this situation is possible for values 0 < s  < 1. In precisely the 

FIG. 1 .  Axisymmetric normal modes of the nonlinear Schrodinger equa- 
tion for relativistic self-focusing with s = 0.95. 

same way as in the classical theory of a medium with a qua- 
dratic nonlinearity,5v41 the normal modes form a countable 
series which is ordered in terms of the number of zeros (n) 
for each value of the parameter s in the specified interval. 
Figure 1 shows the real amplitudes of the first four modes for 
the cases = 0.95. 

For general problem ( 18 ) , ( 19), the situation is similar 
to that for the particular case described above. The normal 
modes for the problem with a composite relativistic-ponder- 
omotive nonlinearity for each 0 < s < 1 also form a countable 
series in terms of the number of zeros. The amplitudes (and 
the corresponding transverse distributions of the electron 
density) for the zeroth, first, and second normal modes for 
the value s = 0.95 are shown in Fig. 2. The higher modes, 
found for the first time in the present paper, have the follow- 
ing features: Cavitation can occur in the profile of the elec- 
tron density for the higher modes even if there is no such 
cavitation for the zeroth mode. The higher modes may be 
unstable with respect to small radial perturbations of the 
amplitude. However, this question requires further study. 

3. TWO-DIMENSIONAL MODEL 

To analyze the two-dimensional problem, we renormal- 
ize the variables in Eq. ( 16) : 

where a, = maxla(r,O) I for the given value of q. As a result, 
the following reduced mathematical problem arises [here 
fl  ( r l  = f(r) ,  and we omit the subscript 1 from r, and z, ] : 

a u - + iA,u+iF[fl (r), lu1 2 ] ~ = 0 ,  ~ > 0 ,  
az 

(21 

The nonlinear term is a real-valued operator 
F[fl, E l  =al[l-(l+azE)-'" max (0, ft(r)+ai-'Al(l+azE)"}1. 

(24) 
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FIG. 2. Zeroth (a, b),  first (c, d ) ,  and second (e, f)  
axisymmetric normal modes of the nonlinear Schro- 
dinger equation for the case of relativistic-ponderomo- 
tive self-focusing, with s = 0.95, a, c, -Distribution 
of the normalized amplitude; b, d, f--distribution of 
the normalized electron density. 

The numerical parameters a ,  and a, are given by The value of the numerical parameter a, in (25), which 
corresponds to the instantaneous intensity I, (t)  of the input 

(25) pulse at the beam axis is 
The "relativistic intensity" I, = m:,,w;c3/4?re2 depends 
only on the frequency of the laser light.19 &=-=- z"(t) I, "exp[-(f)N'].  I, (28) 

3.1. Initial conditions The transverse profile of the plasmoid, which models a 
In this Paper we analyze the nonlinear propagation of nonlinear ionization of the gas at the pulse front, is specified 

laser light for pulses which enter the medium with an intensi- to be 
ty which is a Gaussian or super-Gaussian function of the 
time and the radius: f ( r )=  exp (-(rlr.)Np), N 8 3 2  (29) 

Il,=o=Io(r, t) =Im exp { - ( t lz )  N~-(r/ro)N~), N132, N232. ( r  is a dimensional coordinate). The aperture of the plas- 
moid, r, , is found from the relation 

(26) Io(r., to) =Io ( to)exp [ - (r./ro) N z ]  =I.. (30) 
We assume that the peak intensity is I,,, z I , ) I *  = 1016 
W/cm2 ( r  and t are dimensional here). We write the initial In the case of a Gaussian transverse intensity profile 

(N2 = 2), for example, the aperture of the plasmoid for transverse distribution of the pulse amplitude, at the en- 
I *  = 1016 W/cm2, Ir=:3-lo2' W/cm2, andI,(t,) = 0.11, is trance to the medium, as follows for problem (21 )-(25): 
r, = 2.59,. It  is then reasonable to adopt the homoge- 

uo (r) = exp (-Fa/2), N,> 2. (27) neous-plasma approximation, f ( r )  - 1, as was shown by cal- 
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FIG. 3. Relativistic self-focusing ( I ,  = 3. 1019 W/cmZ, r, = 3 
pm, A = 248 nm, N,, = 7.5.1OZ0 cm-'). a: Intensity distribu- 
tion during the propagation of a thin cross section of a pulse with 
a planar initial phase front [a Gaussian initial transverse distri- 
bution of the intensity, with Nz = 2 in ( 30) 1, for a homogeneous 
plasma. b: The same, but for N, = 8. c: Regime of a single focus, 
for an initially focused phase front, with R, = Rxo /2 in (351, 
with Nz = 2 in (30), for a homogeneous plasma. d: Formation 
of a quasistabilized regime along the plasmoid, with N, = 8, 
r, =r,,andN, = g i n  (30). 

6 
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culations in Refs. 34-36. If the profile has a plateau 
(N, = 8), however, we find r, z 1.28ro. In this case, the 
defocusing of the beam due to the coincidence of the aper- 
tures is important. 

3.2. Relativistic self-focusing 

Let us consider the solution of the problem (21)-(25) 
for the case in which the ponderomotive term A, y is omitted 
from (24): 

The relativistic nonlinearity outweighs the ponderomotive 
nonlinearity outside focal regions, i.e., under the conditions 
a ,  ) 1, and a, =: 1. Equations (21 )-(23), with the nonlinear 
term written above, govern the self-focusing with a dissipa- 
tionless saturation of the nonlinearity. The general features 
of the solution depend strongly on the values of two con- 
served integrals: 

m 

Figure 3, a-d, shows the results of two-dimensional numeri- 
cal solutions of the problem of relativistic self-focusing. The 
parameters of the beam and the plasma in the cases shown 
here were as follows: il = 0.248 pm, I, = 1.34. 1020 W/cm2, 
I, = +I, ~ 2 . 9 8 .  lot9 W/cm2, ro = 3 pm, and 
N,,, = 7.5. loZ0 cm-3. The corresponding values of the nu- 
merical parameters are a ,  ~ 2 . 4 8 6 .  lo2 and a, = 2/3. 

Figure 3a illustrates the propagation of the cross section 
of the pulse corresponding to that value o f t  for which the 
relation I, ( t )  = +I, holds, along the z axis in a homoge- 
neous plasma, for a Gaussian initial transverse intensity pro- 
file (N, = 2) and for a plane phase front. 

Figure 3b is the corresponding diagram for the case in 
which the initial transverse intensity distribution has a pla- 
teau ( N ,  = 8). 

For the values of the parameters a ,  and a, under consi- 
deration here, and for the initial distributions which we are 
considering, the relation Q, < 0 holds. In this case the fol- 
lowing estimate is valid: 

In other words, the solution cannot approach zero asymp- 
totically. This fact can be proved by analogy with Ref. 12. 
We see that the relativistic self-focusing of intense light in a 
dissipationless medium under the condition Q, < 0 leads to a 
sequence of foci and intensity rings, which trade places with 
each other. Figure 3, a and b, illustrates the formation of this 
regime. In the particular cases shown in Fig. 3, a and b, 
respectively 50% and 90% of the initial power is captured. 

Estimates like that in (34) cannot be found in the case 
Q,>O. Let us model the case Q2 20, considering beams 

which are initially focused by a lens as they enter the medi- 
um. The focal length of the lens is then R = kor Rf. The 
corresponding initial condition for the entrance amplitude 
of the problem then takes the form 

uo ( r )  = exp(-Fz/2+ir+/2R,), N2 > 2, Rf>O. (35) 

We assume Q, = 0 for Rf = RJo . The case Q, > 0 cor- 
responds to a high degree of initial focusing of the beam: 
Rxo > Rf > 0. If RJo < Rfg m, then Q2 < 0. Below, the mod- 
eling of focused beams is carried out only for a Gaussian 
transverse distribution of the initial intensity. 

Figure 3, a and b, shows two-dimensional intensity dis- 
tributions for the relativistic self-focusing of beams in a ho- 
mogeneous plasma with Rf = + UJ and Rf = RJ0/2, re- 
spectively. The dynamics of the transition to the single-focus 
regime is studied in more detail in Ref. 36. Calculations 
show that the value Q2 = 0 is not a threshold that strictly 
separates these two regimes of relativistic self-focusing. The 
transition from a sequence of foci and intensity rings to a 
single focus with decreasing focal length of the lens occurs 
gradually, through an increase in the intensity of the first 
focus, a shift of this first focus toward the entrance to the 
medium, shifts of the other foci in the opposite direction, and 
a diffusive spreading of these other foci. 

Figure 3d shows the distribution of the wavefront with 
N2 = 8 along a plasmoid with N, = 8 and r, = ro. Com- 
parison with Fig. 3, b and d, leads to the conclusion that 
defocusing has a substantial effect on the dynamics of the 
wavefront along a plasmoid whose aperture is the same as 
that of the pulse. Part of the beam is torn off and scattered at 
the periphery. For the rest of the beam, a balance is struck 
between self-focusing and defocusing. The power captured 
in the quasistabilized propagation regime is about 25% of 
the initial beam power. 

3.3. Relatlvlstlc-ponderomotive self-focusing 

Two-dimensional numerical calculations on the overall 
problem, (21 )-(25), show that when a beam with an initial- 
ly Gaussian transverse intensity distribution and a plane 
phase front propagates into the interior of a homogeneous 
plasma with il = 0.248 pm, I, = $I, = 2.98. 1019 W/cm2, 
ro = 3 pm, and No = 7.5. loZ0 cm-3 (Fig. 4) ,  cavitation 
arises as soon as the first focus appears at the axis. In other 
words, the plasma electrons are completely expelled from 
the region occupied by the strong field (Fig. 4b). The cavita- 
tion channel then undergoes gradual stabilization along the 
propagation axis. About 45% of the total power of the prop- 
agating beam is in the first focus. Part of the beam power is 
dissipated at the periphery, while the rest is captured in a 
pulsating annular structure (Fig. 4a). The power of the par- 
axial and annular structures ranges up to 67%. Beyond the 
first focus, we observe an exchange of energy between the 
paraxial and annular structures, until the annular structure 
is dissipated at the periphery in the course of the pulsations. 
A significant fraction of the power of the annular structure is 
also ultimately captured in the paraxial region. Thereafter, 
in the course of the stabilization of the solution, some of the 
power gradually drains to the periphery, and the value of the 
captured power approaches an asymptotic value of 46%. 

In the transitional stage we see some interesting fea- 
tures in the profile of the electron density. The appearance of 
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FIG. 4. Relativistic-ponderomotive self-focusing. These results corre- 
spond to the nonlinear propagation of a thin cross section of a pulse with 
an initially Gaussian transverse intensity profile and a plane wavefront in 
an initially homogeneous plasma (Io = 3.1019 W/cm2, ro = 3 pm, 
A =  248 nm, No EN,, = 7.5. 1020cm-3). a-Distribution ofthe normal- 
ized intensity; b-distribution of the normalized electron density; c-ra- 
dial profile of the asymptotic solution for the normalized amplitude, 
71/2 = (I, (r)/I,, )'I2 ( 1 ), and of the normalized electron density, 
J1/^ = N, (r)/No (2) ,  for s = 0.554. 

an intensity ring beyond the first focus leads to a second, 
annular, dip on the profile of the electron density (Fig. 4b). 
The refraction of the light at the outer wall of this dip sends 
the intensity ring back into the paraxial region. The ponder- 
omotive force thus acts as an additional mechanism to cause 
self-focusing of the pulse. It leads to the formation of a par- 

axial focal structure which is stabilized along the propaga- 
tion axis. 

An important fact, reported here for the first time, is 
that the amplitude distribution u (r,z) tends asymptotically 
at large z toward the lowest normal mode Us ( r )  of the non- 
linear Schrodinger equation. In the case at hand, we have 
~ ~ 0 . 5 5 4 .  Figure 4c shows normalized asymptotic ampli- 
tudes Us ( r )  and a profile of the plasma electron density, 
N, (r)/No. These profiles were found on the basis of two- 
dimensional calculations at distances up to zz900pm;  they 
differ from the exact normal modes by less than 1%. 

Note that for the ranges of parameter values studied 
here the displacement of the charges (the ponderomotive 
effect) has a strong influence on the nature of the nonlinear 
propagation of the light in the plasma beyond the first focus. 
The nonlinear regime consisting of a sequence of foci and 
intensity rings characteristic of relative self-focusing with- 
out a ponderomotive effect (Fig. 3, a and b),  gives way in 
this case to a stabilized focal structure of the intensity. A 
cavitation channel forms simultaneously. 

We have also carried out some two-dimensional calcu- 
lations on the propagation of beams with initially plateau- 
shaped transverse intensity distributions and a plane or fo- 
cused phase front in a homogeneous plasma and along 
plasmoids. In all cases, we again observed that the solutions 
approach an asymptotic form coresponding to the lowest 
normal modes of the nonlinear Schrodinger equation. The 
effect of the displacement of the charges (the ponderomotive 
effect) on the propagation of the light is so strong that self- 
channeling arises even in the case of extremely focused 
beams. Figure 5 shows the results of corresponding calcula- 
tions for Rf = RL0/2 in (35) with a Gaussian profile 
[ N ,  = 2 in (30) 1. For this version, a single-focus regime 
arises in the case without a ponderomotive effect (Fig. 3c). 

3.4. Critical power for relativistic-ponderomotive self- 
focusing 

Our basic purpose in this subsection of the paper is to 
determine the conditions for the occurrence of relativistic- 
ponderomotive self-focusing. A study shows that these con- 
ditions include a threshold in the power and that they are 
different for (in particular) beams with an initially plane 
phase front and for initially focused (or defocused) beams. 

We define the threshold for the relativistic-ponderomo- 
tive self-focusing of a beam as the threshold for the change in 
the large-z asymptotic behavior, from a zero profile (the 
subcritical case) to the profile determined by the lowest nor- 
mal mode of the nonlinear Schrodinger equation. 

A characteristic feature of this problem is that the pow- 
er of the zeroth normal mode, 

depends on the value of the parameter z; more precisely, it 
decreases with increasing s in the interval 0 < s < 1. In this 
regard, the problem at hand differs from the classical case of 
a medium with a quadratic nonlinearity. Since our problem 
is conservative, a necessary condition for the occurrence of 
self-focusing is that the initial power Po be above the point of 
the lower bound (P, ) in terms of s: 
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Po > inf P, = lim P.. 
o<s<1 a+*-0 

We can determine the value of this exact lower bound, which 
we will call the "critical power": 

PC, = inf P.  = lim P.. 
O<1<1 *+1-0 

(37) 

Using 

U,,o(p) = Uo(p), 
**I-0 

(38) 

where Uo (p) is a positive, monotonically decreasing solu- 
tion (it has no zeros at finitep) of the boundary-value prob- 
lem 

FIG. 5. Relativistic-ponderomotive self-focusing. These re- 
sults correspond to the nonlinear propagation of a thin cross 
section of apnlse with a Gaussian (N, = 2) initial transverse 
intensity profile and a focused phase front [Rf = RL0/2 in 
(35) 1 in an initially homogeneous plasma (Io = 3 .  1019 
W/cmZ, ro = 3 pm, A =  248 nm, N,EN,,~ = 7.5. loz0 
c m  '). a-Distribution of the normalized intensity; M i s -  
tribution of the normalized electron density; c-radial pro- 
file of the asymptotic solution for the normalized amplitude 
7 ~ / z  = (Is  (r)/Io ) "' ( 1 ) and of the normalized electron 

density = N, (r)/N, (2), for s = 0.566. 

where we have introduced E = 1 - s. Making the standard 
replacement for the case of a cubic nonlinearity, we verify 
that we have 

Uo(p> = ( 2 ~ )  '"go (&lbP), (39) 

where go is the well-known Townes mode, which is a posi- 
tive, monotonically decreasing solution (which has no zeros 
at finitep) of the boundary-value problem 

Using (37)-(40), we find 
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PC. = inf P. = lim P.=2n J U o 2 ( p ) p  dp 
O<ICI 8-1-0 0 

where 

is the classical critical power for cubic Kerr self-fo~using.~ 
Solving problem (40) numerically, it is sufficient to de- 

termine P C  PC, z2a.3.72451z23.4018. A value 
Pc,/2a = 3.72 was found numerically in Ref. 22 as the ap- 
proximate value 

m 

Switching to dimensional variables, we find the follow- 
ing expression for the power PC, (in Watts) : 

where the numerical constant is a minor refinement of that 
in Ref. 22. 

There is of course the question of sufficient conditions 
for the relativistic-ponderomotive self-focusing. The calcu- 
lations of Ref. 40 show that self-focusing of beams which 
enter an initially homogeneous plasma with a plane phase 
front occurs if the power of these beams exceeds the critical 
power (42). A sufficient condition for the relativistic-pon- 
deromotive self-focusing of beams with an arbitrary phase 
profile in an initially homogeneous plasma is that the Hamil- 
tonian of the corresponding purely relativistic problem4" be 
negative for the initial transverse distribution of the ampli- 
tude of the laser pulse. 

6. CONCLUSION 

We have studied the self-channeling of an intense, ultra- 
short laser pulse in a cold, subcritical plasma by solving a 
nonlinear Schrodinger equation incorporating a relativistic- 
ponderomotive nonlinearity. Let us summarize the results. 

It has been found theoretically that a substantial frac- 
tion of the power of an arbitrary two-dimensional solution of 
the nonlinear Schrodinger equation with a relativistic-pon- 
deromotive, dissipationless, saturable nonlinearity concen- 
trates asymptotically in an axial focal region. At the same 
time, a cavitation channel forms on the profile of the electron 
density. The light concentrates in this channel. Mathemat- 
ically, this effect corresponds to the asymptotic approach of 
an arbitrary two-dimensional solution of the nonlinear 
Schriidinger equation to the lowest normal mode of this 
equation. The square of the absolute value of this mode is 
spatially localized. The corresponding mathematical fact 
that a two-dimensional solution of the nonlinear Schro- 
dinger equation approaches a normal mode of this equation 

in the case of a dissipationless, saturable instability of simple 
algebraic form had been established previou~ly.'~ This study 
has thus revealed yet another, and more complex, example 
which illustrates that a two-dimensional solution of the non- 
linear Schrodinger equation approaches the lowest normal 
mode of this equation. 

We have analyzed the normal modes of nonlinear 
Schrodinger equations with a relativistic nonlinearity and 
with a relativistic-ponderomotive nonlinearity. The higher 
modes of this equation have been found here for the first 
time. Also for the first time, we have carried out extensive 
numerical calculations on a two-dimensional problem for 
various initial transverse distributions of the intensity and 
the phase. We have discussed cases in which light propagates 
in the interior of an initially homogeneous plasma and in 
which the light propagates along plasmoids. Calculations 
for a situation without a ponderomotive effect reveal a set of 
two-dimensional solutions corresponding to nonlinear prop- 
agation of the light. These solutions are possible for relativis- 
tic self-focusing. They consist of a sequence of foci and inten- 
sity rings, a single-focus regime (for beams which are 
focused to a sufficiently great extent) and a regime of quasi- 
stabilized propagation (along a plasmoid) . In the case of the 
relativistic-ponderomotive nonlinearity (the complete prob- 
lem), the primary regime of two-dimensional propagation is 
one in which the solution asymptotically approaches the 
lowest normal mode of the nonlinear Schrodinger equation. 
This tendency has been observed even for extremely focused 
beams. 

We have few comments regarding the critical power. 
Sun et aLz2 introduced the concept of the critical power for 
relativistic-ponderomotive self-focusing as the lower limit 
on the power concentrated in the zeroth normal mode of the 
nonlinear Schrodinger equation. Before that definition can 
be accepted as correct, however, it is necessary to prove that 
two-dimensional solutions converge on the zeroth normal 
mode. Sun et ~ 1 . ~ ~  tacitly avoided this question, so until now 
their definition of the critical power could not be regarded as 
having a solid foundation. In the present paper we have 
made a special study of this question. We have demonstrated 
by numerical methods that fairly arbitrary two-dimensional 
solutions do indeed converge on the zeroth normal mode of 
the nonlinear Schrodinger equation with a relativistic-pon- 
deromotive nonlinearity. Consequently, the surmise by Sun 
et ~ 1 . ~ ~  that it is legitimate to introduce a critical power in 
accordance with Eq. (37)  has been proven correct in the 
present paper. Furthermore, it has been found possible to 
prove relation (41 ), a curious one, which relates the critical 
power for the relativistic-ponderomotive self-focusing to the 
critical power for the Townes mode, (40). 

We would like to call attention to the following circum- 
stance. We have discussed two-dimensional solutions of the 
nonlinear Schrodinger equation which can be interpreted in 
two ways. First, they can be thought of as solutions for 
steady-state beams applied to the entrance to a nonlinear 
medium. Second, they can be thought of as trajectories 
traced out by thin cross sections of a laser pulse which varies 
in time. The second of these interpretations of the two-di- 
mensional solutions is correct in a study of the self-channel- 
ing of ultrashort pulses. 

If we imagine that the initial pulse has been sliced up 
into a set of thin layers oriented perpendicular to the light 
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propagation direction, and if we then solve the two-dimen- 
sional nonlinear Schrodinger equation for each such layer, 
we can reconstruct the spatially three-dimensional dynam- 
ics of the overall pulse. Results found above provide support 
for the hypothesis that a three-dimensional soliton can exist. 
In other words, they support the possibility that there can 
exist a self-consistent physical object consisting of "light 
plus a medium with altered dielectric properties" and that 
this object is capable of propagating substantial distances 
without a refractive loss. In order to pursue this hypothesis, 
however, it will be necessary to solve a problem which incor- 
porates the second and cross derivatives d2/dt ', a */dz2, 
d '/dtdz in Eq. ( 15) as well as physical dissipation of the 
pulse energy. 

We note in conclusion that a practical realization of the 
relativistic-ponderomotive self-channeling of an intense, ul- 
trashort laser pulse would make it possible to increase the 
intensity of this pulse by a large factor, to 1020-1021 W/cm2, 
and to produce matter in the form of multiply charged ions 
in an ultrastrong electromagnetic field. There would be es- 
sentially no electrons inside the cavitation channel. Such a 
situation would be of great interest from the standpoint of 
fundamental physics and also from the standpoint of appli- 
cations, e.g., from the standpoint of the x-ray laser prob- 
1em.42 
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