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The propagation of phonons of arbitrary frequency in a doped compensated semiconductor has 
been considered at low temperatures when the resonant interaction of phonons with electronic 
two-level systems (pairs comprising one occupied and one free impurity center drawn together) 
becomes important. It is shown that the phonon absorption (scattering) has a pronounced 
frequency-selective character and is the greatest for phonons of wavelength of the order of the 
Bohr radius, whereas at higher frequencies the absorption drastically decreases. The effect of 
external magnetic field on the absorption caused by variation of the electronic wave functions at 
the centers has been analyzed. Weak magnetic fields lead to corrections quadratic in the field 
without changing the frequency dependence of the absorption, whereas strong magnetic fields 
shift the cutoff frequency into the higher frequency range. The mutual influence of phonon and 
microwave pulses, which gives rise to new possibilities in phonon spectroscopy, is discussed. 

1. INTRODUCTION 

It is known that one of the important features of doped 
compensated semiconductors, which, to a considerable ex- 
tent, determines their low-temperature properties, is the 
presence of electronic two-level systems (TLS) formed by 
one unoccupied and one occupied impurity centers that are 
close to each other (see Ref. 1 ). In particular, as it has been 
shown both theoretically and experimentally (see Refs. 2 
and 3), such systems make an important contribution to 
sound absorption. An interesting feature of this contribution 
is a special dependence on magnetic field, caused by its cor- 
responding influence on the wave functions of the electrons 
localized at these centen3 Due to this dependence, it is pos- 
sible to separate this contribution from the contribution of 
both band electrons and nonelectronic mechanisms of sound 
absorption. 

Evidently, the existence of the TLS should also influ- 
ence the propagation of nonequilibrium phonons. Note that 
the spatial dispersion of phonons plays an essential role, 
since, on one hand, for low-frequency phonons of wave- 
length much larger than the characteristic pair spacing the 
absorption increases with frequency, similar to the resonant 
sound absorption, whereas for phonons of wavelength much 
smaller than the size of the electron wave functions at the 
centers the interaction matrix element decreases drastically 
with decreasing wavelength. Due to this fact, the resonant 
phonon absorption proves to be frequency-selective. On the 
other hand, as in the case of sound absorption, the given 
mechanism of the phonon absorption should depend on the 
applied magnetic field. In particular, such a dependence 
should give rise to a dependence of the phonon thermal con- 
ductivity of corresponding samples on the magnetic field 
(the phonon magnetothermoconductivity ) . 

It can also lead to an influence of the magnetic field on 
the phonon propagation in the sample. One can expect that, 
due to this, it would be possible to separate the mentioned 
contribution from the contributions of the usual mecha- 
nisms of phonon scattering (Rayleigh scattering by defects), 
even in the case of relatively small TLS concentrations. Note 

that, due to spectral sensitivity of the discussed absorption 
mechanism (or, more precisely, of scattering, since re-emis- 
sion follows an act of resonant absorption), relevant experi- 
ments could allow to single out the contribution of phonons 
having certain frequencies. 

Another important fact is that the resonant absorption 
of both phonons and photons is sensitive to the TLS occupa- 
tion numbers (see, e.g., Ref. 4). On the other hand, the pres- 
ence of nonequilibrium phonons of a given frequency should 
result in variation of the TLS occupation numbers resonant- 
ly interacting with them and determined by the phonon dis- 
tribution function. Such a variation can be recorded by the 
change of the absorption of electromagnetic radiation of a 
relevant frequency. The last factor makes it possible to "de- 
tect" the spectrum of nonequilibrium phonons with the help 
of electromagnetic methods. In its turn, a reverse experi- 
ment is possible, when an external electromagnetic field 
causes a change in occupation numbers of the electronic 
TLS, thus leading to a change in the sample transmittance 
for the phonons of the same frequency as the field. This also 
gives a possibility of creating a spectrally sensitive phonon 
detector, using conventional bolometers. 

2. INTERACTION OF ACOUSTICAL PHONONS OF 
ARBITRARY FREQUENCY WITH ELECTRONIC TWO-LEVEL 
SYSTEMS 

Consider the resonant absorption of phonons by elec- 
tronic TLS in doped semiconductors, with phonon spatial 
dispersion taken into account. The Hamiltonian of a TLS 
interacting with phonons can evidently be written in the 
form (cf. Ref. 4) 

where 
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Here p, and p, are single-site energies, I ( R )  is the energy 
overlap integral (in the absence of the magnetic field 
I (R)  = Ioexp( - R /a), a is the Bohr radius), D,, and u,, 
are the components of the tensors of the deformation poten- 
tial and the deformation respectively (we omit henceforth 
the tensor indices), rC, is the electron wave function at a cen- 
ter (the centers are considered to be alike), q is the phonon 
wave vector, and R is the size of a pair. Here we consider the 
deformation mechanism of the phonon interaction with the 
TLS; generalization to the case of piezointeraction offers no 
difficulty. 

After a standard diagonalization of the Hamiltonian 
Xo we find the following expression for the nondiagonal 
contribution to Xi,, responsible for the resonant transi- 
tions: 

.I= 21 (H) .  

Following Ref. 6, we use the Fermi "golden rule" to get 
the following expression for the phonon absorption coeffi- 
cient: 

Xesp 
T 

where 

Here the sum is over all pairs and Vis the normalization 
volume. 

Note that the factor tanh(xw/T) gives the level-occu- 
pation difference in resonant pairs in the approximation of 
equilibrium distribution of the occupation numbers. When 
tie, T, Eq. (5) yields 

where (6)  

dn 
I= Jdr jdcp j G r ( 1 - e i q r ) 2 ~ ~ ( c p ,  (no)" r ) n ( f i ( ~ - - ~ ) .  

and F(p,r) is the TLS pair distribution function. 
It is seen that expanding X:,, in powers of q, as q + 0, 

and retaining the lowest terms, we can obtain the well- 
known expression for the sound absorption coefficient, 
which obeys the law q3tanh(hw/T) with growing frequency. 
The cause of such a relatively high power of q is that we 
consider a crystalline semiconductor, for which the defor- 
mation potentials of pair-forming centers are assumed to be 
equal; the interaction is due only to the phase difference of 
the sonic wave at the centers. 

For arbitrary q, passing on in (5)  from the summation 
over pairs to the integration over single-site energies p,, p2 

and the pair separation R, and integrating further over the 
directions of R, one can find the following expression for the 
absorption coefficient: 

n'D2&a r = ------ i n  r sin (2qr.) 
d2qr. 1 1-2 - + - 

vpe2 q r ~  2qr,* I N : . K ~ ( K ) ,  
( 7 )  

where E is the dielectric constant, N, is the donor concentra- 
tion, K is the degree of compensation, f(K) is the function 
giving the density of electronic states (see Ref. 6) and varies 
as 0 . 2 6 ~  'I4 for K< 1 and as ( 1 - K) 'I3 for ( 1 - K)  < 1, r, is 
defined by the condition 2I(r, ) = +im, and 

It is seen that in the range of high frequencies r rapidly 
decreases as ( l /q7)tanh(h/T).  The absorption coefficient 
versus frequency is plotted in Fig. 1. 

Thus, the phonon absorption has a frequency-selective 
character in the sense that the phonons with q in the range 
from l/r, to l/a are absorbed most effectively, whereas in 
the low and high frequency ranges the absorption decreases 
rapidly. 

3. PHONON ABSORPTION BY TWO-LEVEL SYSTEMS IN THE 
PRESENCE OF A MAGNETIC FIELD 

Let us discuss now how the expression for the absorp- 
tion coefficient is modified in the presence of the magnetic 
field. In this situation the electron wave functions are known 
to have the form: 

weak fields, H< Ho for a 4 p  4 R  2/a; 

strong fields, H&Ho: 

Here A = (&/eH) ' I2  is the magnetic length, Ho is de- 
fined by the relation R(Ho) = a, K, and K2 are the normali- 
zation factors, a, = f i / J -  and E, is the binding energy 
of an electron with a donor in the magnetic field 
(EH Q H 'I3). 

The effect of the field on the absorption can be connect- 
ed with two factors. The first one is the change in overlap 

FIG. 1. The phonon absorption coefficient versus the phonon wave vector 
for the parameter r,o/a equal to 2 ( 1 ) ,  6 ( 2 )  and lO(3). 
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integral. The corresponding effect has been considered by 
Galperin et ~ 1 . ~  in the problem of sound absorption. The 
other factor, important for large q, is the change in deforma- 
tional interaction of a phonon with a center (given by the 
parameter d) due to the change in spatial scale of the elec- 
tron wave functions at the centers in the presence of the 
magnetic field. Let us discuss the latter factor separately for 
weak and strong fields. 

a) Weak fields (H6Ho) 

Taking into account the corrections both to the param- 
eter of one-center interaction d and to the quantity J, esti- 
mated in Appendix I, we find 

Here the constant C is of order unity and depends both on 
the relation between q and l/r, and the orientation of the 
vector q with respect to the vector H. Note that for qr, $ 1 
the main contribution comes from the change in overlapping 
intergral. 

b) Strong fields (HR Ho) 

Let us write the expression for the coefficient of phonon 
absorption in a strong magnetic field, using Appendix 2 and 
Ref. 3: 

1 ) If q r g  1, then, for qllH, we have 

where 2 - rm/a.  For q lH  we have 

2) Let qr, $1. Then, for qlH, we have two regions: 
q/Z<landq/Z$l.Forq/Zgl wecanwrite 

whereas for q/Z $ 1 we have 

For qllH we have 

4. MUTUAL INFLUENCE OF NONEQUILIBRIUM OCCUPATION 
NUMBERS OF PHONONS AND TLS 

Up to now we have supposed that the TLS occupation 
numbers were at equilibrium. Now let us discuss the situa- 
tion when these occupation numbers are not in equilibrium 
owing to the interaction with the considered pulses of non- 
equilibrium phonons or with some other external field (e.g., 
with microwave pulses). 

Assuming that the TLS interact mainly with phonons, 
we write the following kinetic equation for the distribution 
function f s  of the TLS occupation numbers: 

where n, is the phonon distribution function, or 

where n, is the distribution function of nonequilibrium 
phonons averaged over the angles and l/r - ( l/fi2v) (Es / 
f i ~ ) ~  1A?':,,, I 2  V is the relaxation rate. 

To the lowest approximation in interaction with the 
TLS (i.e., in fact, neglecting the phonon reabsorption by the 
TLS) the distribution function of nonequilibrium phonons 
can be regarded as specified. In this case, as seen from Eq. 
( 15), for a sufficiently large phonon pulse duration to% T the 
TLS occupation numbers are governed by the phonon distri- 
bution function 

If we introduce the partial temperature T, of the pho- 
nons of frequency w,  so that n, = No(h ,T ,  ), where No is 
the Planck distribution function, then it is easy to see that 
Eq. ( 16) means a "fine adjustment" of the effective tempera- 
ture of the TLS with Es = h to the corresponding partial 
temperature of phonons. 

Thus, it is possible to consider the temperature Tin the 
initial expression (5)  as equal to the thermostat temperature 
only if to 4 T. In the opposite case the temperature T, , which 
is generally speaking frequency-dependent, should enter in 
Eq. (5).  On the other hand, to be able to neglect the factor 
t anh(h /T ,  ) in subsequent expressions, we should have 
h / T ,  $ 1, i.e. the occupation numbers of nonequilibrium 
phonons should be relatively small. In the opposite case, it is 
necessary to include this factor into the obtained expression 
of the phonon absorption coefficient. As a result, the TLS 
contribution into the absorption coefficient proves to de- 
pend on the occupation numbers of the nonequilibrium 
phonons and decreases as n; ' (nonlinear bleaching of a 
sample). 

Let us discuss now a possible effect of the microwave 
field on the phonon absorption. As is known, electromagnet- 
ic pumping of a sufficiently high intensity leads to equaliza- 
tion of the level population in the TLS. Such an equalization 
is important4 if 

where is the electric field and T, and T, are the relaxation 
times of the diagonal and off-diagonal components of the 
TLS density matrix respectively (in our case for t0&r  and 
n, > 1 we have T, zrn;  ' ). Using the analogy with electro- 
magnetic and acoustic absorption, it is easy to understand 
that for P$ Po, where Pis  the intensity of the electromagnet- 
ic radiation and Po is the threshold value corresponding to 
the moment when the condition (17) begins to hold, the 
phonon absorption coefficient for frequencies close to the 
frequency of electromagnetic excitation is proportional to 
Po/P. The phonon frequency band for which this holds is 
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defined by the estimate7 

5. CONCLUSION 

Let us discuss the experimental consequences of our 
results. First of all, note that the contribution of the elec- 
tronic TLS to the absorption (scattering) of nonequilibrium 
phonons in a semiconductor can be sufficiently large. Thus, 
for a semiconductor with the GaAs parameters (E ,  = 12, 
m* = 0.06mo, EB = 5.7 meV, a = 100 A, N, = 1016 ~ m - ~ )  
the characteristic value of r for relevant phonon frequencies 
is of order 10' s- ', which corresponds to mean free paths of 
order 3.  lop3 cm. It is not difficult to see that this mecha- 
nism prevails over the Rayleigh scattering by the impurities 
and can even compete with the isotopic Rayleigh scattering. 

As we have shown, r has a pronounced frequency de- 
pendence with an absolute maximum at qr, - 4. At the same 
time, in the high-frequency range I? decreases rapidly like 
6.-'. 

The possibility of observing the considered absorption 
mechanism experimentally is made considerably easier by 
the fact that the absorption depends on the magnetic field. In 
weak magnetic fields (H<H,) the field does not alter the 
frequency dependence of the absorption, giving, however, 
rise to corrections quadratic in field. Therefore, switching on 
the field can alter the signal of the phonon detector, which 
can be recorded even if the phonon propagation is governed 
mainly by other scattering mechanisms. 

Note that a magnetic field can thus influence the ordi- 
nary phonon thermal conductivity of semiconductors in 
quasiequilibrium conditions (magnetothermoconduc- 
tivity ). 

It is interesting that strong magnetic fields (H>H,) 
can result in a change in frequency dependence of the ab- 
sorption [according to Eqs. ( 12)-( 14) 1. In particular, they 
can shift the cutoff frequency to a higher frequency. 

As to the Ha estimate, Ha- 10 T for the material with 
typical parameters listed above, therefore it is difficult to 
observe the regime H >  Ha. However, for semiconductors 
with narrower bands the value of Ho is considerably smaller 
(e.g., H 0 z 5  kOe for InSb). 

Exposing samples to electromagnetic field opens, as it 
seems to us, new possibilities for phonon spectroscopy. AS 
we have shown, the spectrum of the TLS occupation 
numbers reproduces, under certain conditions, the spectrum 
of the occupation numbers of nonequilibrium phonons. On 
the other hand, the TLS contribution to the absorption y of a 
weak (P4P0) microwave radiation is governed by relevant 
TLS occupation numbers (y-tanh(fiw/T, ), where T, is 
the partial temperature introduced above). Therefore study 
of the change in absorption spectrum of the microwave radi- 
ation under the action of a phonon pulse permits analysis of 
the spectral composition of this pulse. 

In its turn strong microwave pumping (PsP,) ,  equal- 
izing the TLS occupation in the corresponding spectral band 
( 18), leads to a decreasing contribution of the TLS to the 
phonon absorption coefficient at corresponding frequencies, 
which also permits a spectral analysis of the phonon pulse 
using ordinary bolometers. 

We emphasize that the analysis above assumes a uni- 

form distribution of the TLS over energies in the relevant 
spectral range (which practically means that the phonon 
energy should be much smaller than the width of the impuri- 
ty band). 

The authors are grateful to Yu. M. Galperin for reading 
the manuscript and making invaluable critical remarks. 

APPENDIX 1 

CALCULATIONS OF CORRECTIONS TO THE PHONON 
ABSORPTION COEFFICIENT IN A WEAK MAGNETIC FIELD 

The parameter of one-center interaction can be written 
in the form 

J&~--SJ~+AL&. 

Substituting the expression (8)  for $, into the expression 
for d we find the following corrections: 

1) For qllH we have 

where b=qa/2. In the limiting cases we have 

for b s l .  

2)  For qlH we find in the limiting cases 

5n 5n a 
A d l =  - - 12 K i 2a3 ( )  - (  for b < l ,  

Consider now the corrections to J. For weak magnetic 
fields we find, in accordance with (8)  

where 8 is the angle between H and r. 
As is easy to see, the corrections to J arise when we 

expand (6)  in a power series of A -' a H 2. In the limiting 
cases qr, 1 and qr, < 1 they do not result in an extra de- 
pendence on I q 1 : 

J(H)-J(0) a 

J(0) --c(,) 7 

where the constant C -  1 and, generally speaking, depends 
on the angle between q and H. 

APPENDIX 2 

THE PHONON ABSORPTION COEFFICIENT IN A STRONG 
MAGNETIC FIELD 

Consider the case of strong magentic fields. For the pa- 
rameter of deformational one-center interaction d we find 
the following expressions: 

1)  For ql(H we have 
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The expressions in the limiting cases qa, 4 1 and qa, $1 are where A r,  /a ,  if qlJH, and 
obvious. 

2) For q l H  we have in the limiting cases: 

.dCHi=K2'nh22aH= 1 for qA g 1, 

i4tCHL=K2'nh?aH exp [ - - ( q k ) ' ]  - forqA$l. 

if qlH.  
2) For qr, $ 1 we have 

To estimate the integral J, we take it into account that in 
the case of strong fields 

where p = cos0 and 0 = (r ,H).  
It is easy to show that the integration over n in ( 6 )  is 

governed, first of all, by an exponential factor entering the 
expression for I (H, r ) .  The main contribution comes from 
the vicinity of 0- r / 2 ,  since the value of I ( r ,p )  decreases 
rapidly with growingp. The latter fact allows us to estimate 
the result of integration over n. Expanding all the functions 
o fp  in the vicinity ofp  = 0 and restricting overselves to the 
lowest-order terms, we find the following estimates: 

1 ) For qr, g 1 (see Ref. 3 )  we have two expressions: 

J" ( H I  ' a 2 1  
-=3(:) J(0) (--) -, 9 

i.e., the ratio J(H)/J(O) does not depend on the angle be- 
tween q and H. 
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