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The effect of a small concentration of Anderson impurities on the critical temperature Tc of a 
superconductivity transition is studied. The impurities are described by Anderson's Hamiltonian 
to which the interaction of electrons on the quasistationary level of an impurity with lattice 
vibrations is added. The region is studied where the univalent state is unstable, characterized by a 
strong anharmonicity of the lattice-atom vibrations near an impurity or of the impurity atoms 
proper. It is shown, within the framework ofthe Fermi-liquid theory, that Tc markedly grows 
even if the Coulomb repulsion of electrons on a local impurity level is infinitely strong. 

1. INTRODUCTION 

Models that predict high T, values are of particular 
interst in connection with the problem of high-Tc supercon- 
ductivity. Earlier it was shown'-3 that even a small concen- 
tration of Anderson impurities in a metal can lead to a 
marked increase in T, , provided that the electrons localized 
on the quasistationary levels of the impurities strongly inter- 
act with the vibrations of the impurities proper or their sur- 
rounding. The term "Anderson impurity" implies that the 
impurity is associated with a nondegenerate level which 
mixes, via single-particle interaction, with the electronic 
states in the broad conduction band of the metal. In addi- 
tion, one must allow for the Coulomb repulsion of two elec- 
trons on this level. Thus, the system is described by the stan- 
dard Anderson Hamiltonian to which the interaction of the 
electrons on the local level with the lattice vibrations is add- 
ed. 

An important feature of this model is the instability of 
the equilibrium positions of the oscillators associated with 
the impurity, when the electron-phonon coupling constant ( 
becomes larger than a certain critical value gC (see Refs. 4 
and 5) .  In the adiabatic approximation (it is assumed that 
the lattice vibration frequency is much lower than all charac- 
teristic electron energies, including the width r of the quasi- 
stationary electron level of an impurity), this instability re- 
sembles a transformation of single-well adiabatic term into a 
double-well. The different valences of the impurity corre- 
sond to the two minima of this potential well. The dynamic 
behavior of the electron-phonon system is determined large- 
ly by the height of the potential barrier between these two 
states, which grows in the region where ( > gc with 6. The 
impurities have a different effect on the superconductivity of 
a metal in different dynamic modes. Several limiting cases 
have been discussed in Refs. 6 and 7. 

Below we consider the region near the stability bound- 
ary for the univalent state, where If - (, I < 1 .  As shown 

when ( approaches ( ,  from below, the constant of 
effective attraction between electrons increases, and in the 
harmonic approximation it becomes infinite. However, for 
16 - 6, 1 < 1, the lattice vibrations related to the impurity are 
highly anharmonic, a feature that must be taken into ac- 
count when calculating this constant. An important fact that 
makes a fairly meaningful solution of the given problem pos- 

sible is the applicability of the adiabatic approximation for 
I (  - ( ,  I 4 1.  Within this range the state of the impurity is 
characterized by the presence of fairly rapid valence fluctu- 
ations, while for 16 - 6, I 2 1 the adiabatic approximation 
breaks down owing to the well-known infrared divergences 
in the response of electrons to slow quantum fluctuations of 
the system between two (degenerate) states. 

The possibility of employing the adiabatic approxima- 
tion for arbitrary values of the energy U of the Coulomb 
repulsion of the electrons localized on the impurity is also 
ensured by the fact that near the stability boundary of the 
univalent state on the impurity there is no localized magnet- 
ic moment (or it is small), in other words, the Kondo tem- 
perature T K  is high, so that kTK - T. Thus, the adiabatic 
approximation is valid if the vibration frequency w, is much 
lower than r ,  so that r is the lowest of the characteristic 
electron energies. This in turn permits, within the frame- 
work of the Fermi-liquid theory, all the quantities important 
for the problem under discussion to be expressed in terms of 
the DC susceptibilities of the impurity, which are known for 
arbitrary values of U from the exact solution of the Ander- 
son 

This paper is built along the following lines. In Sec. 2 we 
derive all the relations needed for calculating Tc .  In Sec. 3 
we study the dynamics of anharmonic vibrations and nu- 
merically find Tc for two limiting cases, U = 0 and U = w . 

2. AN EQUATION FOR T, 

The system's Hamiltonian is 

H = c.nk. + Eni. + V exp (ikr,) dj.+ck. + H.c. 

The first four terms constitute Anderson's Hamiltonian, 
where c&, c,, and d :, d,, are, respectively, the creation 
and annihilation operators for electrons in the conduction 
band and on the local level of the ith impurity, n, = d d,,, 
and n,, = c&c,,. The other terms describe the vibrational 
degrees of freedom qi , represented for simplicity by Einstein 
oscillators (one oscillator for each impurity), and the inter- 
action of these with electrons. 
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The temperature of the superconductivity transition 
can be determined from the linearized equation for the band 
gaplo 

A (@)=-T.C r(0, o') [GL,I~ (~')G-k,-k~(-~')l..b (a'), 

where [ . . .Iav stands for averaging over the positions of the 
impurities, and summation is carried out over the wave vec- 
tors k and k' and over the discrete frequencies 
w' = 2 ~ ( n  + 1) Tc. The vertex function consists of two 
parts: the BCS interaction in the metal and the vertex T, 
caused by the scattering of electrons on impurites. It is also 
important to allow for this scattering (both elastic and in- 
elastic) in the self-energy part of the electron Green function 
Gk,,'. (a 1. 

In the lowest perturbation-theory order in the Coulomb 
interaction U and the electron-phonon interaction we have 

where c is the impurity concentration, Gz(w) 
= (iw - E + irsignw) - '  the unperturbed Green function 
of electrons on a quasistationary impurity level 
r = rN(0 )  1 V l 2  wide, N(0)  the density of states of the elec- 
trons on the Fermi surface, and D(w) the Green function of 
the oscillator q, . The second term in (3)  reflects the interac- 
tion of these electrons with lattice vibrations and leads to 
effective attraction between them for Iw - w115 a,. When 
the attraction is sufficiently strong, even low concentrations 
of impurities may considerably increase T, (see Refs. 1-3). 
To a great extent this is due to the presence of T, of reso- 
nance factors /Gd (w) l 2  which are large for w, E 5 T. For the 
same reason, when the repulsion U is predominant in (3  ), 
the impurities lead to a strong suppression of Tc , as is known 
from Ref. 1 1. 

The perturbation-theory approach assumes that U is 
small compared to r .  In many interesting cases, however, 
the situation is just the opposite, U% T, and perturbation- 
theory expansions in U are invalid. At the same time, the 
presence of an adiabatic parameter w,g T makes it possible, 
even when the electron-phonon interaction is strong (at 
least when fw,/Tg 1, with f = a2/MwiT), to limit oneself 
to lowest orders in the electron-phonon interaction, as is 
usually done when considering ordinary superconductors. 
Hence, instead of (3)  we have 

ri(Cd, C~')=C~VI'IG~(W))~)G~(O'))~[~~(~, 0') (4) 
f a21F(o, o') 12D(o-o')], 

where Tc (w,ol) is the total vertex of two-particle electron- 
phonon interaction in the Cooper channel, which includes 
the interaction U in all orders, and F(w,wf ) the form factor 
determining the renormalization of the electron-phonon in- 
teraction vertex. Note that since for each impurity only the 
pair correlators of the oscillator coordinates q are included 
in r, ( w , ~ ' ) ,  formula (4)  is valid not only for a harmonic 
oscillator but also when the oscillator's potential energy has 
an arbitrary shape. This makes it possible to calculate Tc in 
the lattice's local instability range, where the lattice vibra- 
tions near impurities are highly anharmonic. It is assumed, 
of course, that the characteristic frequencies of motion in 
this potential are much lower than T, and r is the smallest 
energy parameter of the electronic subsystem. This occurs in 

the absence of a localized magnetic moment on the impurity 
or when this moment is low (the Kondo temperature 
T K  - T is high). 

I t  is not necessary to calculate r, (w,wl) in the entire 
frequency range in order to find T,. In the logarithmic ap- 
proximation, within the framework of the BCS theory, it is 
sufficient to know the value of I'(0,O) and the frequency 
scales over which T, (w,wf ) and D(w) vary in Eq. (4).  Obvi- 
ously, the width T of the quasistationary level serves as the 
scale for Tc (w,wl), and D(w) decreases at the characteristic 
frequencies of the oscillator vibrations. The value of T, (0,O) 
can be expressed in terms of the DC spin and charge suscep- 
tibilities of the impurity by employing Ward identities. This 
has been done in Ref. 12 in the problem of suppressing super- 
conductivity by magnetic impurities in the symmetric An- 
derson model. The result obtained there can easily be gener- 
alized to the asymmetric model (see the Appendix). Thus, 
we have 

IG, ( 0 )  l 4  r,. ( o m  = (X~~-X~,,) n2/r2, (5 

where x,, and x,, are the DC spin and charge susceptibili- 
ties of the impurity. 

When F(w,wr) is calculated in the adiabatic approxi- 
mation, the q, can be interpreted as the static displacements 
of the coordinates of the oscillators, which lead to a shift in 
the energy E in ( 1) by aq, .  Then the function F(o,wf)  at 
w = w' is obtained by simply differentiating the self-energy 
Z(w) of localized electrons with respect to E .  In the adiaba- 
tic approximation in 2 (w ) one must allow only for the con- 
tribution from the Coulomb repulsion U. Since the scale on 
which Z(w) varies is much greater than w,, we can put 
w = 0 and employ the Friedel sum rules: 

where G, ( i w )  is the analytic continuation of the function 

Gd(on) = [ion-e+ir sign on-Z(on) I-', ( 7 )  

and n the average occupation number for the local impurity 
level. Combining (6)  and ( 7 ) ,  we get 

wherex,, = - ( 1/4) (dn/dc), and pd ( 0 )  is the density of 
impurity states per impurity on the Fermi level. Allowing for 
the fact that I G, (0)  j2r/r = pd (0)  and combining Eqs. 
(81, (4),  and (5),  we find that 

In solving Eq. (2)  we use the factorized form of 
Ti (a,@'), namely 

where Z is the frequency characterizing the anharmonic os- 
cillator. This is defined below. 

The average of the product of Green functions over the 
positions of impurities, which enters into Eq. (2) ,  is calcu- 
lated by the usual with a small parameter, the 
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ratio of the electron wavelength to the mean free path. In our 
case the result of averaging differs from the one obtained in 
Ref. 11 only by the replacement of function GO, (w) by the 
exact value G, (w), with 

lattice vibrations at a = 0, Eqs. ( 15) coincide with the result 
obtained in Ref. 12 and describe suppression of supercon- 
ductivity by Anderson impurities. 

3. LATTICE DYNAMICS 

Equation ( 15 ) was derived earlier by one of the au- 
t h o r ~ . ~  Function D(w) was calculated in the harmonic ap- 
proximation. Let us dwell on this aspect. For a harmonic 
oscillator interacting with an electron by ( 1 ) we have 

where N =  (c/r)N(O)r ,  and B1(w) = B(w) = BPh ( a ) ,  
in constrast to X (w ), incorporates the contribution from lat- 
tice vibrations. If T, (75, in substituting ( 10) into Eq. (2)  
we can assume, with logarithmic accuracy, that 

Allowance for the interaction of localized electrons with lat- 
tice vibrations in the adiabatic approximation results only in 
small corrections to the polarization operator Il ( a ) .  More 
than that, in the region where w < r one can expand Il (w) in 
a power series near w = 0. The principal term, II (O), can be 
expressed in terms of the charge susceptibility as follows: 

when w < 75, and, since BPh (w ) rapidly tends to zero when 
w>Z, 

The value of x,, as a function of the local-state energy E 

reaches its maximum x,*, at a certain point E*. Combining 
(16) and (17), we find that at 6 = gc, where 

for 75 < w < I'. According to Eq. (A6) (see the Appendix), 

the natural frequency of the oscillator vanishes and 
D(0) -+ co . This does not mean, of course, the emergence of a 
soft mode as in second-order phase transitions. In the case 
considered here there is no long-range order and "softening" 
refers only to a single vibrational degree of freedom. Hence, 
in the region where 16 - gcl < 1 the quantum fluctuations 
are great or, in other words, the oscillator's motion is highly 
anharmonic. To calculate the adiabatic potential energy 
U(q) of the oscillator, we employ the following formula: 

In the adiabatic approximation, 

Thus, 

where where T is the oscillator's kinetic energy, and ( a  . - ) denotes 
averaging over the ground state of the system. At the equilib- 
rium point q = q,, where dW/dq = 0, we have 
Mwiq, = - an,. Expanding n, the average occupation 
number for the level, on the right-hand side of Eq. (19) in 
powers of q - q,, we find that 

A ( @ )  = Im 
a I;,, (0) O(75 - w). 

dw 

The denominator in ( 13) determines the renormalization of 
the density of states at the Fermi surface owing to the reso- 
nance scattering of electrons on impurities and to electron- 
phonon interaction. Combining Eq. (2)  with (9)  and ( 13) 
and the interaction cutoff conditions, we find that 

T,= (2y ln)  o~ exp ( - I l k ) ,  (14) 

with y the Euler constant, w, the Debye frequency, 

Here we are interested in the critical point E = E * ,  at 
which a 'n/dE2 = - 4dxc, /a& = 0. At 6 = gc , the term in 
(20) linear in q - q, vanishes. A simple estimate based on 
dimensional analysis shows that, since (w,/I') ' I 3  1, the 
terms of orders higher than the third can be discarded in the 
power series in q - 9,. Thus, for 16 - cc ( & 1 and at E = E* 

we have 
Here A, is the BCS constant related to the electron-phonon 
interaction without allowing for impurities, w, is assumed 
to be of the same order of magnitude as 75, and the respective 
contribution of this interaction to B(w) is taken into ac- 
count. 

In the absence of interaction of localized electrons with where 
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As Eq. (21 ) shows, in the region where A < 0 the potential 
energy of the oscillator has two minima. If we set d W/dq = 0 
in Eq. (19), we find how the equilibrium position of the 
vibrational coordinate is linked to the valence of the impuri- 
ty. Thus, two different valences of the impurity correspond 
to two different positions of equilibrium. Note that the 
emerging instability of the valence and vibrational states oc- 
curs even if U- CQ,  with only the value of 6, changing. At 
U = 0 we have 6, = ~ / 2 ,  while at U = CQ , as follows from 
the exact solution of the Anderson model (see Ref. 8), 
cc = 5.4. In addition, the term x,, - x,, in ( 15), which de- 
termines the effect of suppression of superconductivity 
owing to Coulomb repulsion, is finite for all values of U. This 
ensures the possibility of Tc rising when the interaction of 
localized electrons with the lattice vibrations is taken into 
account. 

Knowing the matrix elements of operator q and the en- 
ergy eigenvalues for an oscillator whose potential energy is 
defined by (2 1 ), we can easily find D(w ) : 

where w,, is the frequency of the transition between the 
ground and mth excited levels, and we have allowed for the 
fact that T, g w m o .  The function D(0)  was found numerical- 
ly. The energy eigenvalues of the oscillator were taken from 
Ref. 13, and the matrix elements were calculated by employ- 
ing sum rules.14 In the range of parameters considered here 
where 16 - 6, I g 1, the matrix elements go, with m > 1 are 
small compared to q,,. Hence, 73 = w ,, with a good accura- 
cy. This frequency does not differ too much from w,. At 
A = 0 we have 73 = 0.86(w/r)1'3. The susceptibilities x,, 
and xsP were calculated numerically using the formulas of 
Ref. 9. Figure 1 depicts the curves representing the depend- 
ence of IE on N = JT/.rrT for three different values of A. Ob- 
viously, even at U = CQ the transition temperature increases 
for fairly high concentrations. Note that for a typical value 

than xch does, with the result that Coulomb repulsion wea- 
kens. The method we used to analyze numerically the Schro- 
dinger equation for an anharmonic oscillator does not enable 
studying the region E > E* ,  where cubic anharmonicity is 
present in W(q) . 

4. CONCLUSION 

As shown above, Anderson impurities in metals may 
bring about a considerable increase in Tc if the coupling of 
the electrons localized on the impurities with lattice vibra- 
tions is sufficiently strong and the coupling constant is close 
to a critical value or even exceeds it. What is important is 
that for 6, - 1 the electron-phonon interaction is not neces- 
sarily strong in the sense of the dependence of electron ener- 
gies (constant a in our case) or other energy parameters of 
electrons on the displacements of lattice atoms. As noted in 
Ref. 7, such values of 6 correspond to an ordinary or even 
weak electron-phonon interaction in metals. 

The presence of a strong Coulomb repulsion of the elec- 
tron on an inpurity has no marked effect on Tc , at least in the 
region where 16 - 6, I < 1. Although the increase in T, is 
much stronger at U = 0, it is also quite noticeable at U = CA . 

It is still difficult to say to what extent this mechanism 
of the increase in Tc can be employed to explain the high 
values of Tc in superconducting cupric oxides. There is mas- 
sive indirect evidence in favor of this mechanism (see, e.g., 
Ref. 15). Also of interest is the empirical relation between 
Tc for a broad class of high-temperature superconductors 
and the energy of an electron localized on oxygen atoms at 
the vertices of the pyramids surrounding the copper atoms. l6  

For the same atoms in YBa,Cu,O,, the x-ray absorption 
spectra near the threshold exhibit the presence of two posi- 
tions of equilibrium along the c axis that are degenerate or 
differ slightly in energy." The main problem in the attempts 
to apply this model to high-Tc superconducting oxides re- 
mains its extension to the region of high impurity concentra- 
tions, with, say, special kinds of defects15 (oxygen vacan- 
cies) acting as impurities or with impurities at the sites of a 
dense regular lattice. 

- - 
of ~ ( 0 ) o f  0.2 state per electron volt per atom and r = 0.2 
eV, the value N = 1 is attained at ~ ~ 0 . 1  per atom. The in- APPEND'X 

crease in T, is more evident in the region where A < 0. This Let us obtain the differential formulas for Matsubara's 
agrees with the results of calculations by the Monte Carl;, Green functions in the same way as is done in the theory of a 
method.' Fermi liquid." We place the system in a slowly varying ho- 

The constant IE was calculated by E = E*. However, for mogeneous field that acts only on spins pointing upward 
large values of Uin the region where E > E* the increase in T, ( .t ). Allowing for the fact that the total number of particles 
is apparently greater, since x,, decreases, as E grows, faster with a given projection of spin on the z axis is conserved, we 
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FIG. 1. The dependence of A on the impurity con- 
centration N for w,/T = 0.1 and A,, = 0.1 with ( a )  
U = 0 and (b) U =  m. Curves I correspond to 
A = - 0.1, curves 2 to A = 0, and curves 3 to 
A = 0.1. 
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see that finding the variation in G,, (w) amounted to differ- 
entiating G,, (w) with respect to frequency, while the vari- 
ation in G,, is nil. On the other hand, these variations can be 
found in the first approximation in the external field. As a 
reult we arrive at the following formulas: 

- aGd(o) =- Gd2(o) { I  + j T,, (a ,  o r )  
a io 

do' 
x [G2(o')+2npd(0)8(o')~-) 2n 

-pd(o)h(w), (A1 

do' 
0- I',,(o, o f )  [G2(or)+2np,(0)8(o')l-. 

2n (A2) 

Here roo, (w,wf) is the total vertex of two-particle interac- 
tion with two lines in, (w,a) and (w',ul), and two similar 
lines out. The temperature is assumed low, so that summa- 
tion over discrete frequencies is replaced with integration. 
The terms proportional to S(w) on the right-hand sides of 
Eqs. (A1 ) and (A2) are related to the contribution from the 
conduction electron as follows: 

Now we determine the susceptibility: 

6 

p.(O)x..=sigo o sign of j dr( [n.(r)-(rz.)] [no, (0)-(nOp)] ). 
0 

(A31 

This implies that 

do  do' 
- sign osign or G2(o)I'...(w, o')G2(wf)--- 

2n 251 

Multiplying Eq. (A2) by G2(w),  integrating the product 
with respect to a, and employing (A4), we find that 

where we have used (A2) at point w = 0. One more equation 
can be obtained by integrating Eq. ( A l )  with respect to w. 
Substituting the result into Eq. (A4) with a = a' and using 
the obvious equality T, (0,O) = 0 and the Dyson equation 
for G, ( a ) ,  we find that 

The susceptibilities x,, and x,, are in turn expressed in 
terms of x,, and x,, Equations (A5) and (A6) coincide 
with those obtained in Ref. 18 for the symmetric Anderson 
model, where the symmetries have been used explicitly. As 
we see, there is no need for this. 
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