
Band theory of phase stratification 
A. A. Gorbatsevich, Yu. V. Kopaev, and I. V. Tokatly 

Moscow Institute of Electronic Technology 
(Submitted 4 July 1991 ) 
Zh. Eksp. Teor. Fiz. 101,971-994 (March 1992) 

A theory proposed here explains the stratification into phases in the high Tc superconductors as 
resulting from the existence of different insulating correlations, characterized by a long-range or 
short-range order. The onset of insulating properties is described in the band approach by a model 
with congruent sections of the Fermi surface. A self-consistent solution is found for a soliton in a 
system with a definitely multidimensional spectrum. The condition for a transition from a regime 
of periodic structures (soliton lattices) to a stratified state of insulating and metal droplets is 
determined. The size of the droplets and the structure of the stratified state are determined by a 
competition between the Coulomb energy of the charged droplets and the surface energy. A 
stratification can be induced by a superconducting transition. In a sample which is a 
superconductor in the sense that it exhibits a Meissner effect, application of a weak magnetic field 
gives rise to a resistance which is orders of magnitude greater than the resistance in the normal 
phase. 

1. INTRODUCTION 

The electronic properties, primarily the superconduct- 
ing properties, of spatially inhomogeneous systems have at- 
tracted particular interest because of numerous high-Tc su- 
perconductor experiments which indicate the existence of 
various types of nonuniform structures in these compounds. 
Among these structures, one can distinguish two basic types: 
first, the superstructures (or superlattices) which are ob- 
served in bismuth ceramics,' thallium  ceramic^,^ and bari- 
um-potassium ceramics3 and also in the yttrium ceramics, 
near the crossover of the 60" and 90"  phase^;^ second, the 
stratifications into different phases which can be detected 
directly by neutron diffraction in La,Cu04 +, (Ref. 5) .  
There are also indications of a stratification in other high- Tc 
superconductors: the smearing of the superconducting tran- 
sition temperature T, and the hysteresis effects in a magnetic 
field, which were seen in the very first studies of the high- T, 
superconductors6 and which have since been observed in 
essentially all these superconductors; the plateau on the plot 
of T, versus the composition of yttrium ceramiq4 and the 
conductivity anomalies in Ba, - , K, BiO, in a magnetic 
field, in which case the resistance of the sample has been 
observed to increase significantly in a weak magnetic field 
after the transition to the superconducting phase (detected 
on the basis of the Meissner effect) .' 

Recent calculations show that both the formation of 
superstructures8 and the stratification into phases in yt- 
trium ceramics9 can be explained on the basis of lattice 
atomic models which describe an ordering of oxygen vacan- 
cies in Cu-0 chains. The interrelation between the structure 
of the inhomogeneous state and the superconducting prop- 
erties remains an open question. A more comprehensive ap- 
proach would start from a study of the electron subsystem. 
In the strong-coupling approximation, studied in Refs. 10 
and 11, the stratification into phases (as well as the super- 
conductivity) results from a mutual attraction of carriers. 
There is accordingly a competition between these two phe- 
nomena. Gor'kov and SokolI2 link the stratification with a 
localization of carriers at the Jahn-Teller Cu2+ ions. Drop- 

lets of an insulating phase arise because of an attraction be- 
tween localized holes through an elastic deformation. The 
same interaction might be responsible for the formation of 
local pairs which serve as sources of the superconducting 
pairing interaction of itinerant carriers.I3 In this paper we 
propose a band model in which the stratification does not 
compete with the superconductivity and may in fact be in- 
duced by the superconducting transition. 

We start with a picture of the high T, superconductors 
as doped semiconductors. To describe the conversion of the 
carrier spectrum into that of an insulator we use a model 
with a Fermi surface which approximately satisfies the 
"nesting" (or "congruence") condition. - - 

An exact nesting of the Fermi surface is known to give 
rise to an instability with respect to a transition to a state 
with a charge density wave or a spin density wave. Such a 
state is described by introducing a uniform insulating order 
parameter A - (a,,?+ Qa,  ), which determines the gap in the 
spectrum of elementary excitations. For the discussion be- 
low, it is sufficient that there be a pseudogap due to the estab- 
lishment of a corresponding short-range order. The appear- 
ance of a gap gives rise to peaks in the density of states at the 
edges of the allowed bands. This fact, combined with the 
"softness" of the insulating order parameter with respect to 
doping, sets the stage for a stratification into different phases 
in these systems. Specifically, the elevated density of states at 
the edges of the allowed spectrum slows the increase in the 
kinetic energy of particles added to the insulating phase. At 
the same time, the gap size falls off rapidly:I4 

where A, is the order parameter in the undoped phase, 
n = 2N(O)E is the concentration of the added particles, and 
N(0) is the density of states at the Fermi surface. 

As a result, the chemical potential p decreases with 
doping: p = A,, - 2. The condition dp/dn < 0 thus holds 
until the insulating gap closes (6  < A,/2). 

Under the condition 
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the uniform state of the system is absolutely unstable to the 
formation of macroscopic regions with an elevated particle 
density. It might seem that this situation should definitely 
result in a stratification of the system into homogeneous 
droplets of metallic and insulating phases. 

However, we know from the exact solution of the one- 
dimensional model with nested regions of the Fermi surface 
(a  Peierls insulator)15 that a stratification into different 
phases does not occur in this case, and the ground state cor- 
responds to a periodic soliton lattice. 

The reason for this result is that at D = 1 the nesting 
condition is always satisfied with a vector q = 2pF, regard- 
less of the filling of the Fermi surface (two points). This 
condition results in a (logarithmic) instability with respect 
to the formation of a superstructure with a period of 
(2pF) - '. For this reason, the instability with q = 0, respon- 
sible for the stratification, cannot occur. 

In macroscopic terms, this behavior corresponds to a 
negative surface energy of droplets, which leads to a maxi- 
mum possible disintegration of the droplets. From the soli- 
ton standpoint, the meaning is that the interaction between 
different self-localized states is repulsive. As a result, a peri- 
odic solution arises. 

We thus see that the sole reason for the absence of a 
stratification into different phases with a macroscopic vol- 
ume (despite the condition dp/an < 0) in the models for 
which an exact solution is known is the one-dimensional na- 
ture of the spectrum. 

In any multidimensional system with a spectrum which 
satisfies the condition ~ ( k  + Q) = - ~ ( k )  a nesting of the 
Fermi surface, doping disrupts the nesting at a half filling. 
As we show below, this disruption of the nesting gives rise to 
a region corresponding to a stratified state on the phase dia- 
gram. The general appearance of the phase diagram of multi- 
dimensional models with nesting is discussed in Sec. 2; the 
corresponding diagram is shown in Fig. 3a. When a reservoir 
of carriers is introduced in the system, the stratification re- 
gion in Fig. 3a shrinks; it eventually disappears entirely as 
the reservoir strength becomes infinite (R + UJ ). This situa- 
tion apparently occurs in chromium, where the regions of 
the Fermi surface which have not become insulating consti- 
tute a large fraction of the Fermi surface. They serve as a 
reservoir. Consequently, there are only nonuniform solu- 
tions of the periodic-superstructure type.16 The possible ap- 
pearance of periodic solutions was ignored by Brankov et 
al. " in a discussion of the absolute instability of the model of 
Ref. 14. 

We thus see that both types of nonuniformities which 
are found in the real high Tc superconductors are possible, 
depending on the parameter values of the model: periodic 
superlattices and a stratification into different phases, in the 
course of which a uniform insulating phase generally coex- 
ists with a metallic phase with a periodic superstructure. In 
addition to the model in which the insulating gap is formed 
exclusively by valence electrons, we discuss in Sec. 2 a model 
which incorporates a commensurate lattice potential, which 
results in the appearance of a seed gap. [In the high Tc super- 
conductors, this role may be played by the "tilting" potential 
of the orthorhombic distortions (in a lanthanum ceramic) 

or by the potential of the chains (in an yttrium system) .] We 
will see that this model, which is mathematically simpler, 
has a behavior qualitatively the same as that of the nesting 
model in the temperature range of interest here. To carry out 
a physically more transparent study of the stratified state 
and of the interrelationship between superconductivity and 
stratification, we formulate an isotropic version of this mod- 
el in Sec. 3 and construct a corresponding phase diagram. 

A stratification into metallic and insulating phases is 
accompanied by the formation of space charge. The disad- 
vantage in terms of the Coulomb energy which arises as a 
result can be reduced by a breakup of the system into smaller 
droplets, which lead to electrical neutrality on the average at 
a smaller scale. In Sec. 4 we analyze the structure of the 
stratified state. We find the concentration and size of the 
droplets of the metallic and insulating phases. 

In Sec. 5 we examine the interrelationships between su- 
perconductivity and the phase stratification. We will see that 
superconductivity may induce such a stratification. As a re- 
sult, discrete superconducting droplets form in the system; 
they are separated from each other by insulating "interlay- 
ers" and coupled to each other by weak links. 

2. STRATIFICATION INTO DIFFERENT PHASES IN 
MULTIDIMENSIONAL SYSTEMS WITH NESTED REGIONS OF 
THE FERMI SURFACE 

1. We write the Hamiltonian of a system with a nesting 
of the Fermi surface as follows: 

Here i = 1, 2 corresponds to regions of the Fermi surface 
which can be brought into coincidence by translation 
through a vector Q; A(r) is the insulating order parameter, 
which we assume to be real; qi0 ( r )  are field operators which 
annihilate particles; g is the coupling constant in the elec- 
tron-hole channel; 

are the seed dispersion relations; andp is the chemical poten- 
tial. 

As we mentioned back in the Introduction, the govern- 
ing difference between multidimensional models with con- 
gruent regions of the Fermi surface is the disruption of the 
exact nesting upon a deviation from a "half-filling" [in the 
model of Eqs. (2)  and (3) ,  a half-filling corresponds to a 
value p = 01. In the present section of the paper we show 
that this disruption can lead to a phase stratification. To do 
this, we consider a system with a transverse dispersion of the 
following (fairly general) type. We assume that (( k)  in (2) 
is given by 

where kx and k, are the momenta which are respectively 
longitudinal and transverse with respect to the nesting vec- 
tor Q = ex Q,, and v,, is a positive definite and otherwise 
arbitrary function. 

It can be seen from (3)  and (4)  that the transverse- 

522 Sov. Phys. JETP 74 (3), March 1992 Gorbatsevich etal. 522 



momentum dependence of the Fermi velocity has the result 
that the nesting condition E, (k  + q) = - E* (k )  can be sat- 
isfied on the Fermi surface only at half filling, i.e., only at 
p = 0 (in contrast with the one-dimensional case, in which 
we have v = const, and there is a nesting with a vector 
q = 2p/v for any value of p) . 

The energy ( W )  of the system with Hamiltonian (2)  is 
a functional of the parameter A: 

LIZ 

where D is the dimensionality, L is a linear dimension of the 
system, and the eigenvalues E are the eigenvalues of the sys- 
tem of equations 

The dependence of the wave functions on the transverse co- 
ordinates has been singled out in the form p ( r ) ,  
$(r) -exp (zl<,r1)pkL(x), $kL (x)  in (6) .  The self-consistent 
potential A (x)  must minimize the functional in (5) .  

We first consider the homogeneous state 
[A(x) = const]. We then have the following expression for 
the energy density of the insulating phase, w,: 

The chemical potentialp is found from the equation for 
the density (n)  of particles in excess of a half-filled band 
(p =O): 

Here 

The density of states at the Fermi surface in the normal 
phase, N(O), for dispersion reiation ( 3 ) ,  (4)  is 

where Y = (L /27r) D-  lsdkl is the number of states in the 
transverse band, and where 

means an average over the transverse momentum. 
For the energy of the uniform insulating state we find 

the following result from (7), also using (8)  and (9) :  

FIG. 1 .  Concentration dependence of the energy for a model with "nest- 
ing." I-Energy of uniform state; 11--energy of system which has strati- 
fied into a uniform insulator and a uniform metal; 111--energy of periodic 
solution under condition ( 17); IV-nergy of a system which has strati- 
fied into an insulator and a phase with a periodic superstructure. 

In ( 11 ), as well as everywhere below, the origin for the 
energy scale is taken to be the energy of the undoped (n = 0)  
metallic state. 

The energy of the uniform insulating phase described by 
( 1 1 ) is shown in Fig. 1 [line I corresponds to n < N(0) ADO 1. 
At n>N(0)AD,, the system goes into a uniform metallic 
phase with an energy w, = f i2  [line I, in the region 
n > N(0) ADO 1. It follows from ( 1 1 ) that the uniform insula- 
tor is absolutely unstable, since the energy w, (n)  is a convex 
function of the density: 

d2wD a p  I -=-=-- 
an2 a n  2N(O) 

< 0. 

It is thus natural to assume that the system stratifies into two 
stable phases: 

1) a uniform metal (A = 0)  with an energy density 
w, = n2/4N(0) and a relative volume 17 = V,/V; 

2) a uniform undoped insulator (A = A,, , n = 0)  with 
an energy wD (0) = - N(0) ( Ai0/2) and a relative volume 
of 1 - 77. 

If we ignore the surface component, we can write the 
energy of this state as 

From the condition dw, ( r ] ) / d ~  = 0 we find the equi- 
librium volume of the metallic phase, 7, : 

Since 7, < 1, this stratification occurs under the condition 
n<n, = d N ( 0 )  A,, . The energy of the stratified state is 
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wherep, is the chemical potential of the stratified state. 
The linear concentration dependence of the energy of 

the stratified state, w,, is general in nature and corresponds 
to a change in the volume of the droplets with the doping, at 
a constant concentration of the particles in a droplet. When 
the number of particles in the system reaches n = n,, the 
metallic phase fills the entire volume (v, = 1). As n is in- 
creased further, the concentration dependence of the energy 
corresponds to the energy of a uniform metal, w, (n)  (line I 
in Fig. 1 at n > n, ). It can be seen from Fig. 1 that the energy 
of a system stratified as described above [see (14) ] corre- 
sponds to the tangent to the function w, (n)  = n2/[4N(0) 1, 
which emerges from the point - N(0) (Aio/2) at n = 0 
(line I1 in Fig. 1 ) . 

We know that a stratification does not occur in the case 
D = 1. The ground state of the system corresponds to a peri- 
odic soliton lattice.I5 The formal reason for this result is that 
the polarization operator in the zero-sound channel, II (q), 
has a logarithmic singularity at q = 2p,. This singularity is 
responsible for an instability with respect to the formation of 
a superstructure with this period. The concentration de- 
pendence of the energy of the soliton lattice which arises at 
small values of n starts from the point N(0) (A&/2) and is 
linear in the number of particles (the slope of this line as 
n-0 corresponds to the energy of an isolated soliton, 
E g' ' = (2/II) Ah ).I5 AS n increases, this function re- 
mains at all times below lines I1 and I in Fig. 1, which corre- 
spond to stratified state ( 14) and to a uniform metal, respec- 
tively. This function has a positive second derivative, which 
indicates a repulsion of the solitons and a stability of the 
periodic superstructure at any concentration. 

The appearance of even a slight deviation from a one- 
dimensional nature smears out the singularity in the polar- 
ization operator at all filling levels which do not correspond 
to exact nesting. As a result, the ground state at large values 
of n corresponds to a uniform metal. However, the maxi- 
mum on the II (q) curve at q# Q (instead of the "integrated" 
singularity) causes a phase transition (at the point n = n*) 
as the concentration is reduced. This transition goes to a 
state with a periodic superstructure. A transition of this sort 
was first discussed in Refs. 18 and 19 in connection with the 
appearance of a nonuniform state of a superconductor with 
an internal magnetic field. That case is formally equivalent 
to an isotropic model with nesting and a given value ofp.  

The energy of this periodic phase, WsL (n) ,  can be cal- 
culated by expansion in (n* - n)/n* near the transition 
point n* (Ref. 19). It has a positive curvature (line I11 near 
the point I11 in Fig. 1 ). In general, the point n* may lie above 
the point of a stratification into a uniform metal and a uni- 
form insulator, i.e., n, (this is what happens in the isotropic 
case). In such a case, the stratification described above does 
not occur, but if the curvature of the energy of the periodic 
superstructure which forms at n < n*, i.e., WsL (n) ,  changes 
sign with decreasing n, the system stratifies into an insulator 
and a phase with a superlattice. Since the solution is formed 
in the limit n -0 because of the appearance of distinct, self- 
localized states and an interaction among them, the negative 

value of d WSL /dn2 corresponds to an attraction. This at- 
traction leads to a stratification. 

As n -0, the energy of the periodic structure is the sum 
of the energies of the individual solitons: 

It can be seen from Fig. 1 that there exists a critical 
slope E i of the W,, (n -0) curve: If Es > E i ,  then a neces- 
sary condition for a smooth joining of the known asymptotic 
expressions for the function WsL (n)  as n + n* and n -0 [see 
( 12)] is that there be a point n, < n* such that at n < n, the 
condition d WSL (n)/dn2 <O holds. If the condition n*>n, 
holds, then 

The following is then clearly a sufficient condition for strati- 
fication of the system: 

Line I11 in Fig. 1 shows aqualitative plot ofthe n dependence 
of the energy of the periodic structure under condition ( 17). 
The energy of the system after it has stratified into an insula- 
tor and a metal with a superlattice corresponds to the tan- 
gent to line I11 (line IV in Fig. 1 ). 

These arguments thus make it possible to analyze the 
stability of the periodic solution with respect to phase strati- 
fication simply by calculating the energy of one self-local- 
ized state, Es, and by testing condition ( 17); it is not at all 
necessary to go into the difficult multisoliton problem. 

To calculate the energy of the self-localized state in a 
multidimensional system with energy ( 5 ) ,  we use a method 
like that proposed in Ref. 20 for finding the energy of a soli- 
ton in the case D = 1. 

The energy of one soliton [which determines the coeffi- 
cient of the term in ( 15) which is linear in n] is found as half 
the formation energy of two domain walls separated by a 
large distance, divided by the number of states in the trans- 
verse band: - 

where 

The discrete spectrum and the phase shifts in the continuous 
spectrum, which determine the change in the density of 
states, are found from the second-order equation for one of 
the functions in ( 6 ) ,  with periodic boundary conditions: 

where 

(20) 
We make use of the circumstance that the potential in 
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the Schrodinger equation can be reconstructed from scatter- 
ing data,2' and we use the set of scattering data for problem 
( 19) to express both terms in ( 18). 

By virtue of the supersymmetry of the potential in ( 19), 
there is a zero mode 

in the discrete spectrum of all the equations (for any value of 
ukl ) . We further assume that for each point k, there are MkL 
discrete levels 

Denoting the phase shift in the states of the continuous 
spectrum by Skl (p) and using (21a) and (21b), we find the 
following result from ( 18) (by analogy with Ref. 19): 

The phase shift can be written as 
1 

6k, (PI= arg a k ,  (p)+arctg - , 
P 

where akL (p) is the coefficient in the asymptotic expression 
for the Jost solutions in the presence of one soliton: 

Here r(p) is a reflection coefficient. 
We then find2' 

6k, (p) = - amtg 
,=, P 

Following Ref. 20, we express the last term in (22) in terms 
of the scattering data: 

where - 

is one of the integrals of motion of the Korteweg-de Vries 
equation, and 

is the potential in Schrodinger equation ( 19). Using the ex- 
plicit expressions for the integrals of motion in terms of the 
scattering data,2' we find 

By definition, J in (25) is independent of k,. Using the rep- 
resentation for l/g in terms of the self-consistency equation 
in the uniform case, we then find 

;/A DO 
1 L D-1 dk, 

X -  - d p  
n (2nj 5 11, j (,2 + I,* 

Using (23) and (26), we can put (22) in the form 

M k ~  

+ 2 2 (pkil - [I - ptIrlb [+ - arctg 
1=1 

The first term in (27) is the energy of a soliton for D = 1: 

E,DZi=2A DO / X .  

The expression for E, in (27) is a functional with respect to 
the scattering data at some single point k, , since the quanti- 
ties lakl ( q )  1, MkL, and pkl,, for the various values of k, are 
unambiguously related by virtue of the coupling of the po- 
tentials in (24). This relationship cannot be determined for 
the general case, but it is possible to advance the following 
arguments, which indicate the form of the exact solution. 

Both terms in @ ( v )  in (28) are positive or zero, so we 
have @(v) 20. The asymptotic expressions for @(v) do not 
depend on the particular trial function W(6). To demon- 
strate the point, we assume that the potential W({) has a 
characteristic width v,. As v- a,, we have W(v6) +sign({) 
[ u ,  (6) -26(6) 1. For @(v)  we thus have 
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lim 0 ( v ) = n / 2 - 1 .  ticular odd function A ( x )  which satisfies the condition 
D-. 00 

As v - 0 ,  we find a potential u, (6) from ( 2 4 )  with a depth 
- 1 and a width which goes off to co . In this case we have 

It then follows from ( 2 8 )  that as u-0  the function @ ( v )  
goes off to infinity by a power law. In addition, @ ( v )  vanish- 
es in only a single case: Mu = 0 ,  la, ( q )  1 = 1. This case corre- 
sponds to a reflectionless potential with one level (a zero 
mode ) : 

Figure 2  shows the function @ , ( v )  for the potential 
W ,  (6) = th l / u o .  According to the discussion above, 
Q0 ( v )  touches the abscissa at the point v  = vo. In contrast, 
the functions @ ( v )  for any other potential which has the 
same asymptotic behavior never vanish [ @ ( v )  > 01 .  

These arguments indicate that the minimum of Es is 
apparently realized in the case of the potential 

\ A (  + w ) I  = ADO. Furthermore, the small value of the 
quantity on the right side of ( 3  1 )  and the fact that condition 
( 17)  overestimates the value of the critical slope E raise 
the hope that a stratification would occur in the case of a 
fairly weak transverse dispersion. 

Consequently, if the deviation of a system with nesting 
from a one-dimensional nature is such that condition ( 3  1 ) 
holds, there will be a stratification region on the phase dia- 
gram. Figure 3a is a qualitative sketch of the phase diagram 
of a system of this sort. 

2 .  We turn now to a mathematically simpler model 
whose behavior is similar to that of the system with nesting 
discussed above. This model can be found from the model 
with congruent sections of the Fermi surface by taking ac- 
count of a commensurate potential A,, which gives rise to a 
seed gap in the spectrum. The appearance of a commensur- 
ate lattice potential is described by adding a term 

6 

( 2 9 )  
to Hamiltonian ( 2 ) .  This term gives rise to a source in the 

The minimization in ( 2 7 )  then reduces to solving the self-consistency equation for the parameter A ( r ) .  The latter 
algebraic equation is found from the condition 

where @, ( v k l  ) in ( 2 8 )  is now known explicitly. ~h~ reason An integration of the self-consistency equation in the mi-  
is that for W ,  ( v k L { )  as in ( 2 9 )  we have form case leads to 

sin2 nv0/vkL 
1 akL (9) 1" 1 - shnq ' 

Differentiating the expression for the chemical potential 
p  = I/-, and using ( 33 ) , we find 

?!= - A"(I /N ( o ) g ) ~ , , i i ( ~ + p )  (34) 
We now write stratification condition ( 17)  as follows, 6% A3+ ( l / N  ( 0 ) g ) A D 8 p  (E+p) ' 

where we are using ( 2 7 ) :  It follows that for any A ,  we can find an ii for which the 
condition a p l a n  > 0  holds and for which a uniform phase is 

( 3  ) stable. In the limit 
That ( 3  1 ) can hold in principle is clear simply from the '1 AD8 
asymptotic behavior of the function @ ( u )  : @ ( v - 0 )  -+ w ,  --> 1  

@ ( w ) -* 7r/2 - 1 .  This behavior is independent of the par- 
N(O)g  Ao 

[here A, = A ( n  = 0 )  I ,  the sign of + / a n  changes at 

FIG. 3. ( T ,  n) phase diagrams. a-For a system with nesting. b--For a 
FIG. 2. The @, ( v )  dependence in (28) for the potential W, (6) is model with a source of an insulating gap. Region I-Uniform insulator; 
tanh(</v, ). 11-phase with a periodic structure; 111-stratified state. 
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Because of the small parameter in (35), we can restrict the 
discussion to a single band in the phase which has become an 
insulating phase. We seek a solution for the insulating gap in 
the form 

A (r) =Ao+d(r), 
(36) 

d(r)/Ao<l. 

The seed dispersion relation {( k )  in (41 ) and (42) is of the 
form in (4),  as before. 

A calculation of the energy density in the uniform sys- 
tem (d = const) yields 

y e  gagonalize the uniform part of the Hamiltonian 
H + Hs by means of a standard canonical transformation. 
Assuming that the length scales for the spatial variations in 
the system are on the order of u,/d, we carry out an expan- 
sion in the parameter d / A ,  4 1, retaining the first nonvan- 
ishing terms, as is done in the effective-mass method. As a 
result we find the following effective Hamiltonian for quasi- 
particles in the conduction band (or, in the casep < 0, in the 
valence band ) : 

From (43) we find an expression for dp/dn: 

In the case n < 2AoN2(0)fi,, the uniform state is unstable, 
and the system may stratify into a metallic phase with a rela- 
tive volume 7 and an insulating phase with a relative volume 
1 - 7. As in ( 12) we write the energy of the state as 

t 2 ( V )  d' (r) ZI.,~ = Sdr {Z:g+ (r) [--Z;i; - ii+d(r) ]rp.(r)+ -1. 
0 0 

Minimizing with respect to 7, we find the condition 
The operator p ,f (r)  creates a quasiparticle; ji = p - A, is 
the chemical potential reckoned from the edge of the band at 
n = 0; and we have introduced 

Solving (46), using (43), we find the equilibrium vol- 
ume of the metallic phase, 7, , and the concentration (n, ) 

below which stratification occurs: 
Varying average Hamiltonian (37), we find the self-consis- 
tency equation 

As in ( 14), the energy of the stratified phase is linear in the 
concentration: 

The equation which determines the number of particles is 

3 N(0)" 2 -  
PO=--&(+) 2 =-- A . ( ~ ) .  vii, ( ~ - 0 ~  

2n2 

A comparison of (38) and (39) shows that the self-consis- 
tent potential which determines the position of the edge of 
the allowed band is 

In the expression in (48) for the chemical potential of the 
stratified state, p,, we have made use of the explicit expres- 
sion for the density of states N(0)  from ( 10). 

With D = 1, Hamiltonian (37) corresponds to the 
Frohlich model for a one-dimensional metal with an elec- 
tron-phonon interaction. The ground state for this model is a 
periodic superstr~cture.~~ As in Sec. 1, the circumstance is 
associated with the congruence of the Fermi surface during 
doping. Because of the deviation from a one-dimensional 
situation [which stems from the k, dependence of the mass 
in (42) 1 ,  the uniform phase is stable at large values of n. It 
goes into a state with a superlattice at n ~ n * .  

As n -, 0, the energy of the periodic phase [as in ( 15 ) ] is 

WsL=Esn. 

d (r)  =-'/26cn (r) . (40) 

Before we go into a detailed study of the model which we 
have constructed, (37), we note that this model could be 
analyzed without any direct linkage with systems which 
have a Fermi-surface nesting. The model phenomenologi- 
cally describes the following physical situation. There is a 
peak in the density of states (for simplicity, we assume a one- 
dimensional peak) at the edge of the conduction band. If the 
position of the edge depends on the doping [as n -, 0, a linear 
dependence as in (40) is natural], a stratification can occur 
in a system of this sort, for the same physical reasons as in the 
nesting model (see the Introduction). 

Taking an average of (37), we find the energy func- 
tional 

For the general case n* > n, [see (47) 1, we find the 
following condition for stratification into a phase with n = 0 
and a metallic phase with a periodic superstructure: 

where the eigenvalues E are the eigenvalues of the Schro- 
dinger equation 

We can show that even a slight transverse dispersion is suffi- 
cient to satisfy this condition. 
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Let us assume that the zeroth approximation corre- 
sponds to a dispersion-free transverse band: vc' = 1. 

Expressing the energy in (41 ) in terms of the scattering 
data of problem (42), and minimizing with respect to these 
data, we find that a one-soliton solution corresponds to 

We introduce a transverse dispersion: 

We seek the first perturbation-theory correction to the ener- 
gy E :" in (50). For the eigenvalues we find 

For the energy of the soliton we then have 

Under the condition for the applicability of a perturbation 
theory we have 

Comparing E, from (5 1 ) with p, from (48), we find from 
(49) a condition (on the transverse dispersion) under which 
stratification occurs: 

Let us demonstrate that (53) and (52) can hold simulta- 
neously in the particular case of a transverse dispersion. We 
assume that the relative phase volume in which we have 
v,, # 1 (it has values v > 1 ) is small: fl< 1. Then (52) and 
(53) become, respectively, 

which is the condition for the applicability of a perturbation 
theory, and 

which is the stratification condition. 
These conditions can hold simultaneously by virtue of 

the small quantity on the right side of the stratification con- 
dition [cf. (3 1 ) ]. 

It has thus been shown that the introduction of a slight 
deviation from a one-dimensional situation gives rise to a 
stratification region in the phase diagram, as shown approxi- 
mately in Fig. 3b. 

We thus see that the common physical mechanism for 
the stratification in the nesting model and in the model in 
(37) results in similar phase diagrams in the two cases (Figs. 
3a and 3b), except near the transition to a uniform insulating 

phase in Fig. 3a. Since we will be interested below in the 
region of T and n values far from the line of the insulating 
transition, the entire discussion below will be based on sim- 
ple model (37). Specifically, the isotropic version of this 
model (Sec. 3) will be discussed, since it demonstrates most 
clearly the physical features associated with phase stratifica- 
tion. 

3. PHASE DIAGRAM OF AN ISOTROPIC MODEL WITH A 
SOURCE 

Let us consider the isotropic version of uniform Hamil- 
tonian (37). We assume that the spectrum {(k) in (37) is 

The density of states N ( 0 )  in the seed phase is then 

instead of that in ( 10). At this point it is convenient to intro- 
duce some dimensionless variables: We express all energies 
in units of A,, and we taken to be the concentration normal- 
ized by n = Tt/A,. Using (40), we then find from (37) 

where n, = N(0) Tt,. 
To construct a (T, n)  phase diagram and to find the 

region corresponding to stratification, we calculate the free 
energy of the uniform phase, f, (n). By definition we have 

where 

This system was studied above for the case T = 0; stratifica- 
tion conditions (47) and the energy of the stratified state 
(48), were found. In terms of the new variables we find the 
following results from (47) and (48): For the energy of the 
stratified phase, F,, we find 

and for the concentration (no ) below which a stratification 
occurs we find 

n, 3 -- - 
no = m(0) A0 

n,. (58) 

The boundary found here for the region in which a stratified 
state exists, (58) should be compared with the point n* of 
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the transition to the nonuniform periodic phase. For this 
purpose, we examine the coefficient a ( q )  of the term d in 
the power-series expansion of the thermodynamic potential 
in d,. The change in the sign of a (q) at q#O means an insta- 
bility with respect to the formation of a periodic structure 
with this wave vector. The expansion of the thermodynamic 
potential is 

where n ( q )  is a polarization operator. In model (55) with 
(54), we find the following expression for a ( q )  : 

The function y(p) is less than one for all p > 0 and has a 
maximum at the point p * ~  1.14, at which its value is 
y* = y(p*) -0.87. It can be seen from (60) that a first van- 
ishes at n = n* = +nc y* - 1.3nc. This point corresponds to 
an instability with respect to the formation of a periodic 
structure with q = q* = 2n*p*. 

Since y* < 1, the critical concentration n* associated 
with this instability is smaller than the value 
n = n, = (3/2)n,, at which a stratification of the system 
becomes favorable. In addition, it can be shown that at T #O 
the line of the transition to the phase with a periodic struc- 
ture on the (T, n)  phase diagram lies below the line of the 
first-order phase transition to a stratified state. In this case 
the system thus stratifies into a uniform insulator and a uni- 
form metal with a concentration n = no. A positive value of 
the coefficient a, at this concentration means that the sur- 
face energy is positive. 

We now consider a nonzero temperature T #0, and we 
construct a (T, n)  phase diagram. From (56) we find the 
following asymptotic expressions in different limits in the 
parameter T/n2. At T/n2g 1 we find 

and at T/n2 % 1 we find 

FIG. 4. Concentration dependence of the free energy for a model with a 
source. Solid line-Uniform state; dashed linestratified state. 

FIG. 5. Phase diagram of an isotropic model with a source. Solid line- 
Line of transition to a stratified state; dashed line-line of an absolute 
instability of the uniform phase (+/an = 0). 

Figure 4 shows the function f, (n)  at a nonzero temperature. 
It can be seen from expression (62) forp (n )  that the condi- 
tion dp/dn > 0 holds at concentrations small in comparison 
with the thermal concentration, so the uniform state is sta- 
ble. The meaning here is that the stratification should give 
rise to two equilibrium phases with a nonzero carrier den- 
sity: an insulating phase (in which n is exponentially small) 
and a metallic phase (with n > n, ). The energy of the strati- 
fied state is thus 

Here 77 and n, are the relative volume and the number of 
particles in the metallic phase. From the condition for a min- 
imum of the function FT with respect to the variables 77 and 
n, , at a given total number of particles, n, we find the equa- 
tions 

fTt (pl) =fTr(pZ)7 (64) 

wherep, =n,/r]andp, = (n - n , ) / ( l  -77)  aretheparti- 
cle densities in the separate phases. The first equation in 
(64) corresponds to the equality of the chemical potentials 
in the two phases. Together, these equations determine those 
points (p,,, andpZvo at which the function f, (p)  has a com- 
mon tangent. In the concentration interval 

the energy of the stratified state is lower than that of a uni- 
form phase. Figure 4 shows the energy of the nonuniform 
state as a function of n. With increasing T, the pointsp,,, and 
p,,, move closer together, and at a certain temperature they 
merge. As the temperature is raised further we have 
dp/dn > 0. At sufficiently low temperatures ( T/n2 & 1 ) we 
have 

We can thus use asymptotic expressions (61) and (62) in 
solving equations (64). As a result we find 
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We can use these results to construct a phase diagram of the 
system in the coordinates ( T, n ) (Fig. 5 ) . 

We have been discussing the simplest version of phase 
stratification. In principle, we should allow for the possibil- 
ity that the nature of the insulating order changes upon dop- 
ing. In different concentration regions, different types of 
stratified states may thus arise, with metallic and insulating 
regions with different properties. In this case a plot of several 
parameters of the system (in particular, the transition tem- 
perature T, ) versus the doping level should have a series of 
plateaus corresponding to different types of insulating order. 
The presence of these plateaus is in this case a consequence of 
a pinning of the chemical potential in the stratified state. 
This is apparently the situation which prevails in 
YBa, Cu, 0, -, . Furthermore, in this model there is the pos- 
sibility of a stratification into two (or more) metallic phases. 
The stability of the phase with the lower concentration in 
this case may result from a smearing of the peak in the den- 
sity of states at the edge of the filling band. We then have 
ap/an > 0 at small values of n, but this derivative changes 
sign as the concentration is raised. The change in the ampli- 
tude of the source in (32) upon doping may also lead to 
stability of a metallic phase with a lower density. 

4. SPACE CHARGE AND STRUCTURE OF THE STRATIFIED 
STATE 

Let us examine the structure of the stratified state. In 
the region in which the uniform phase is stable (I3 ( q )  < l/g, 
a, > 0) the surface energy is positive, and mobile carriers in 
the metallic phase would tend to merge into a common drop- 
let. This merging would be opposed by the Coulomb interac- 
tion between the space-charge regions which would form in 
the process. Let us first calculate the Coulomb energy Ec of 
negatively charged spherical droplets against the back- 
ground of a positive charge. We write 

The first and second terms here are the Coulomb energies of 
the background and of the droplets, respectively, and the last 
term is the energy of the background-droplet interaction. 
We denote by V the volume of the system, by Vd the volume 
of the droplets ( Vd/V< 1 ), by p = en the charge density of 
the background, and by p, = pv/vd = en, the density of the 
negative charge in the droplets. We then have 

where p, = .f,pdr '/(&I r - r ' 1 ) is the potential of the back- 
ground, and E is the dielectric constant of the background. 
We also have 

where pi = po8(r - Ri) is the charge density inside a 
droplet, Ri = ( (3/4n) ( Vd/p) ) is the radius of a droplet, 
and 'P* ( r )  = Jpk ( r  ')drl/(&Ir - r ' 1 )  = JZP= I 

X [pi (ri  - r ')/&lr - r ' 1  ]dr ' is the potential of the drop- 
lets. Finally, we have 

D 

In the limitp-, W ,  the sums in (69) and (70) become inte- 
grals, and E, vanishes by virtue of the electrical neutrality of 
the system. However, the increase in the number of droplets, 
p, is limited by the surface energy. Let us calculate E, in the 
first nonvanishing order in l/p. Assuming that the lattice of 
droplets has a cubic symmetry, we find from (70) and (69) 

Finally, for the Coulomb energy of p negatively charged 
droplets, each having a charge density p, = en,, against a 
positive background p = en, we find 

If, on the other hand, the background breaks up into drop- 
lets (i.e., if uniformly distributed insulating droplets with a 
total volume V- Vd appear), the expression for the Cou- 
lomb energy of the system, E ;+ ', is found from (7 1 ) by 
making the substitution n -+ no - n. A comparison of the ex- 
pressions for E ' - ' and E ' + ' shows that, as n decreases 
from no, a lattice of voids with a positive charge first ap- 
pears. At n(n0/2, the formation of a structure of isolated 
droplets against a positive background becomes more favor- 
able. 

Let us calculate the equilibrium number of droplets, p, 
taking the surface energy Esu, into account. The expression 
for E,,, is 

Here vi = Vd/p = ( V/p) (n/n, ) is the volume of a droplet, 
and the surface tension asatisfies a- u,,,I, where us,, is the 
energy density inside the transition layer, and I is the thick- 
ness of this layer (the boundary of the droplet). From the 
condition for a minimum of the total energy E = Ec + E,,,, 
we find 
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The function r(n,n, ) is given in (71 ). To estimate the drop- 
let radius Ri - ( V / p )  ' I3, we assume that the energy density 
inside the transition layer, u,,,,, is on the order of the bulk 
energy: us,, -p,n,,. We then have a-p,n,l and 

The quantity 1 is on the order of the insulating correlation 
length ofthemodel of (55), 1- (v,/A,) (l/n,),  where v, is 
the Fermi velocity in the two-band model, (2) ,  which is the 
starting point for (55). If we are to treat the droplet as a 
macroscopically uniform volume, we must satisfy the condi- 
tion 

In deriving (75) we used the estimates no -N(O) Aon, and 
p, -A,nf. The static dielectric constant which appears in 
the expression for the droplet radius, (74), and also in condi- 
tion (75) is large in the layered perovskite ceramics, even in 
the insulating phase. Doping will cause a further increase in 
the screening, not only because of the mobile carriers in the 
band but also because of a redistribution of the charge in the 
localized states which serve as sources of mobile charge car- 
riers. 

Let us estimate the ratios of the surface energy and the 
Coulomb energy, on the one hand, to the bulk energy, on the 
other 

Under condition (70), the bulk properties of a droplet are 
thus determined completely by the microscopic correlation 
energy (63). The Coulomb energy of the space charge and 
the surface energy, which determine the size and relative 
arrangement of the droplets, can be treated independently. 
We can show that the same parameter ( I / R , )  determines 
the extent to which the charge distribution inside a droplet is 
nonuniform. From the condition that the total force acting 
on a charge at the given point vanish, we find the relation 

Here Sn ( r )  is the deviation of the distribution of the negative 
charge in a droplet from a uniform distribution. The term on 
the left side of (77) is the force which arises because of the 
increase in bulk energy (55) upon the appearance of a non- 
uniformity of the order parameter. The terms on the right 
side describe the forces exerted on the charge by the back- 
ground and by the moving negative charge in the droplet. 
We know that the net charge on a metal sphere concentrates 
at the surface. This classical solution follows directly from 
(77) when we set the left side equal to zero. If the bulk ener- 
gy is instead large in comparison with the Coulomb energy 
from (77), we find the following expression for Sn ( r )  : 

Expression (78) means that under condition (75) a nonuni- 
form charge distribution and the associated nonuniformity 
of the order parameter are unfavorable from the energy 

standpoint, and the charge in a droplet can be assumed uni- 
form. 

5. STRATIFICATION INTO PHASES AND 
SUPERCONDUCTING DROPLETS 

Under what conditions does a stratified state arise in the 
presence of superconductivity? The effective Hamiltonian 
(55) of the one-band model, supplemented with terms to 
describe the superconducting pairing, is 

Here S(r) is the superconducting order parameter, normal- 
ized to the size of the insulating gap, and A is the magnitude 
of the coupling constant in the Cooper channel. The self- 
consistency equation for S(r)  is written in the usual way: 

To calculate the free energy f,, we use standard expression 
(56), in which we should use (79) as the Hamiltonian. Go- 
ing over to the variable E = { 2(k)/2 in the integrals, we find 
the following equations for determining f,, p,  6 in the de- 
pendence on the concentration n: 

1 
-= 
h 

13, (83) 

where 

Here we have introduced an effective chemical potential 

We will first find solutions of the self-consistency equations 
for S andp,  working from (82) and ( 8 3 ) ,  in the asymptotic 
limits in terms of the parameter S/n2. The case of large val- 
ues of this parameter corresponds to the situation in which 
the superconducting pairing, while smearing out the distri- 
bution function to a great extent, causes the chemical poten- 
tialp' to descend into the band gap (p' becomes negative). If 
the condition (Up') 2 <  1 (p' < 0) also holds, then by using 
the corresponding asymptotic expressions for the integrals 
in (84b) and (84c) we can put Eqs. (82) and (83) in the 
form 

531 Sov. Phys. JETP 74 (3), March 1992 Gorbatsevich etal. 531 



Solving these equations for S and p', we find 

6 ( n )  = n ~ " ( n / 2 ) ' " ,  (85) 

p' = -nzh2/8. 

It follows from (56) that the relation (S/pl) '( 1 holds if 
S/n2s 1 or n/A( 1. In the opposite limit 

we have a solution which was first found in Ref. 23 and 
which has been studied in several places: 

6 ( n )  =4nZ exp (-nlh)  . (86) 

According to (85) and (86), the function S(n)  increases 
with increasing n at n/A 4 1, goes through a maximum at 
n - U, and then falls off with further increase in the carrier 
density. In this model, near the maximum, the amplitude of 
the superconducting order parameter may be substantially 
greater than the corresponding value in the BCS theory (see 
Ref. 23 for details). 

A calculation of the free energy and the chemical poten- 
tial in the limit n/A ( 1 yields 

The condition for an instability to phase stratification, 
dp/dn < 0, thus holds over the entire concentration range 
n/A ( 1 in the presence of superconducting pairing. As we 
have already mentioned, a factor which determines the be- 
havior of the chemical potential p upon the appearance of a 
superconductivity is thexmearing of the Fermi distribution 
as S increases. At n/A( 1, this effect causes the chemical 
potential to descend below the boundary of the allowed 
band. As n increases, 6 increases in this region, the smearing 
increases, and p decreases. 

Under the condition n/A % 1 we have 

f o  (n) =i/,n3-'/,n,nz-62/4n, 
(88) - n-n,', n,'>n,. 

We see that again in this limit the stability boundary is shift- 
ed toward higher concentrations by the superconductivity. 
In contrast with the preceding case, the smearing of the Fer- 
mi step at S/n2( 1 (n/A) 1 ) due to the decrease in the den- 
sity of states with increasing energy leads to an increase in 
the chemical potential (at a fixed value of n).  With increas- 
ing value of n, the order parameter S decreases, the smearing 
becomes less extensive, and p also decreases. 

6. CONCLUSION 

In this paper it has been demonstrated that the electron 
subsystem plays an important role in shaping various non- 
uniform states. It has been shown that correlations between 

carriers in systems with certain particular band features, 
such as the presence of congruent regions of the Fermi sur- 
face, can lead to a phase stratification. The most interesting 
manifestation of the fact that collectivized carriers are re- 
sponsible for the formation of a nonuniform state is the inter- 
relationship between the phase stratification and the super- 
conductivity. Specifically, it follows from Eqs. (87) and 
(88) of Sec. 5 that the appearance of a superconducting or- 
der parameter expands the range of instability of the uniform 
state. As a result, the superconducting transition may cause 
a sample which is metallic in its normal phase to stratify into 
superconducting metallic droplets which are separated from 
each other by insulating "interlayers" and coupled with each 
other weakly. The disruption of this coupling by a weak 
magnetic field gives rise to a resistance of the sample while it 
is in the superconducting phase (according to the Meissner 
effect). This resistance is larger than that in the normal me- 
tallic state, since it is determined by the resistance of the 
insulating interlayers.7224 

The estimates of the droplet size in Sec. 4 were based on 
the assumption of immobile, uniformly distributed impuri- 
ties. In real systems, in contrast, a space charge which arises 
from the stratification may be screened by a redistribution of 
impurity atoms. This situation is possible in La, CuO, + , , in 
which added oxygen atoms take positions between lanth- 
anum layers and may have a high mobility. 
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