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A nuclear spin-echo method makes it possible to measure the mean value of the temporal 
autocorrelation function, (f(t)f(O)), where f( t )  is the force of the interaction between a liquid 
molecule and the sdkace of a porous system at the time t. Quartz sand was used as the porous 
material, and normal tridecane as the low-molecular liquid, in the experiments. The dependence 
of the correlation function (f ( t )  f (0) ) on the time, the radius of the sand grains, and the 
concentration of the liquid was studied. The experimental results agree satisfactorily with 
previous theoretical predictions by N. F. Fatkullin [JETP 71, 1141 ( 1990) 1. 

1. INTRODUCTION 

Diffusion of molecules in random fields is a classical 
problem in the physics of disordered media and has been 
studied for many decades (see, for example, the reviews 
Refs. 1 and 2). Nontrivial examples of disordered media are 
porous systems or, which is the same thing, systems with 
random obstacles. 

Self-diffusion of molecules of a low-molecular liquid in 
porous media has been studied time and again, both theoreti- 
cally and experimentally (see, for example, Refs. 3-10). 
These works were primarily concerned with analysis of the 
dependence of the self-diffusion coefficients of the molecules 
of liquid on the concentration of obstacles in the system. 

Diffusive damping of the amplitude of the spin echo of a 
particle moving in a random field was studied theoretically 
in Ref. 11. It follows from the results of this work that one of 
the main objects of experimental investigations should be the 
time dependence of the average (also sometimes called effec- 
tive) self-diffusion coefficient D *(t,) for short diffusion 
times t,. It was found that the derivative dD *(tD )/dt, 
is more informative than the limiting value 
d * = limtD-, D *(t,), which is essentially what the au- 
thors of all preceding works known to us studied (see Refs. 
3-10). 

In the present paper we present the results of an experi- 
mental investigation specially designed for studying the time 
dependence of the effective self-diffusion coefficient 
D * ( t, ), which contains new information about the auto- 
correlation function of the force of interaction of a molecule 
with the surface of a porous system. We also develop a num- 
ber of theoretical assumptions made in Ref. 1 1. 

2. CHARACTERISTICS OF THE OBJECTS AND METHOD OF 
INVESTIGATION 

The objects of investigation were chemically pure tride- 
cane (TD) as the model liquid and fractions of quartz sand 
with particle radii ro = 0.04-0.05, 0.10-0.12, and 0.15-0.18 
mm as the porous media. These materials are easily accessi- 
ble and are important in practice (for example, for develop- 
ment of oil fields). The volume fractions of tridecane in the 
specimen studied ranged from 0.06 to 0.26. The sand frac- 
tions were first washed in distilled water and dried at 100 "C 

for 8 hours, after which the tridecane was introduced. 
The specimens were sealed in test tubes of 7 mm diame- 

ter and allowed to stand for several hours at 80 "C in order to 
establish in them thermodynamic-equilibrium states. The 
porosities, i.e., the ratios of the pore volume to the total vol- 
ume of the system, fall into the range 0.33-0.45 for the sands 
investigated in the present work.'* The volume fractions of 
liquid did not exceed 0.26. Hence it is obvious that liquid did 
not occupy the entire pore space. It  can apparently be as- 
sumed that liquid is present in the specimens in the form of a 
layer with thickness h around each sand grain; microscopic 
investigations confirm this picture. 

Assuming that each sand grain is a sphere of radius ro 
and neglecting the mutual touching of the grains, the quanti- 
ty h can be estimated from the following relation: 

where p ,  and p, are the density of tridecane and sand, re- 
spectively, and w ,  is the mass fraction of tridecane. 

Table I gives the designations and the characteristics of 
the specimens studied as wells the values of h.  

The self-diffusion parameters were measured by the 
method of NMR (stimulated echo) on protons with a pulsed 
gradient magnetic field. The maximum value of the magnet- 
ic field gradient was 50 T/m and the resonance frequency 
was 60 MHz. The laboratory diffusometer is described in 
Refs. 13 and 14. The diffusion times tD ranged from 3 to 3 10 
ms; the measurements were performed at 30 "C. 

The experimental errors of measurement of A($), of 
the coefficient of self-diffusion, and of the parameter u did 
not exceed 10% under the most unfavorable conditions. 

3. EXPERIMENTAL RESULTS 

In low-molecular liquids the measured amplitude of the 
diffusive damping of the spin-echo signal is described by the 
very simple expression (see, for example, Refs. 5, 13, and 14 
and the extensive literature cited there) : 

A ( g ' )  = A  ( 0 )  exp ( - y V 2 g ' D , , f . ) .  ( 2 )  

where g and S are the magnitude and duration of the pulsed 
gradient magnetic field, A(0) is the intensity of the ampli- 
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TABLE I. Designations, characteristics of the investigated specimens, and some parameters 
describing the process of self-diffusion in tridecane-sand systems. 

Tndecane 

No. 

tude of the spin-echo withg = 0, Do is the self-diffusion coef- 
ficient of the pure liquid, and y is the proton gyromagnetic 
ratio. 

In our specimens (the numbers of the specimens are 
given in Table I )  the form of the diffusive damping was more 
complicated (see curves 1-6 in Fig. 1 ). The equation (2) 
described diffusive damping only in specimen No. 6 (curves 
7 and 8 in Fig. 1) which had the largest sand grains 
(ro = 0.18 mm). 

The diffusive damping of the other specimens (Nos. 1- 
5) was described in the standard manner (see Refs. 13 and 
14): 

.4 (? - )=- I  (0) j e l p ( - y ~ f i ~ q z ~ ~ t r , ) ~ ( ~ ) d ~ .  (3) 
0 

FIG. 1. Diffusive-damping curves for specimens Nos. 1 (curves I ) ,  No. 2 
(2), and No. 3 (3) with tD = 6 ms; specimen No. 4 with tD = 310ms ( 4 ) ,  
62 ms (5) ,  and 6ms (6) and specimen No. 6 with tD = 310111s ( 7 )  and 13 
ms ( 8 ) .  The measurement temperature was equal to 30 "C. 

where P(D) is the distribution of effective self-diffusion co- 
efficients, assumed to be the log-normal distribution 

The parameters D, and d? of the distribution (4)  were cho- 
sen by fitting the expression (3)  to the measured values of 
A($). The parameter D, is the most probable value of the 
effective self-diffusion coefficient and the parameter 2 de- 
scribes the width of the apparent distribution of the self- 
diffusion coefficients. The values of these parameters are 
presented in Table I for different diffusion times 1,. 

It is obvious from Fig. 1 and the data on d? that the form 
of the diffusive-damping curve for specimens Nos. 1-5 de- 
pends on the diffusion time and on the amount of liquid in 
the specimen: 

1) As the diffusion time t ,  increases the diffusive- 
damping curve tends to deviate from the exponential behav- 
ior (3) (see curves 4-6 in Fig. 1 ) . 

2) For constant tD the quantity d? increases with de- 
creasing tridecane content (curves 1-3 and 6).  

In such cases a reliably measured characteristic of the 
motion is the average self-diffusion coefficient D * ( t ,  ), 
which is determined from the initial slope of the function 
lnA($) (see Refs. 11, 13, and 14). The average self-diffu- 
sion coefficient D * is presented in Fig. 2 as a function of the 
time t,. It is obvious that for tD (40-60 ms D * depends 
strongly on the diffusion time, and for tD> 100 ms this de- 

FIG. 2. Average self-diffusion coefficient D * as a function of the diffusion 
time tD for pure tridecane (curves I ) ,  specimen No. 6 ( 2 ) ,  No. 5 (3 ) ,  No. 
4 ( 4 ) ,  and No. 3 (5) .  
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pendence virtually vanishes. The form and position of the 
curves D * ( t ,  ) and the value ofD * depend on the concentra- 
tion of the liquid in the specimen and the size of the sand 
grains. Obviously, the self-diffusion coefficient of pure tride- 
cane does not depend on the diffusion time t,. 

4. SOME THEORETICAL ASPECTS OF THE PROBLEM 

To make the presentation more coherent we deemed it 
possible to begin this section, right up to the formula ( 9 )  
inclusive, by examining the results of our Ref. 1 1 ,  where we 
investigated the general properties of self-diffusion and dif- 
fusive damping of the spin-echo signal of a particle in a non- 
uniform medium. The effect of the nonuniformities of the 
medium on the particle motion was described in terms of an 
effective potential U ( r ) .  It was assumed that the Green's 
function W(r , t )  of the particle, i.e., the probability distribu- 
tion of displacement of a particle by the radius vector r  in a 
time t, satisfies the Smoluchowski equation 

where Do is the self-diffusion coefficient of a particle in a 
pure liquid, f ( r )  = - d U ( r ) / d r  is the random force exerted 
by the nonuniformities of the system on a particle located at 
the point r, k,  is Boltzmann's constant, and T is the tem- 
perature. 

The diffusive-damping amplitude, which is the van 
Hove incoherent dynamic structure factor, satisfies the 
equation 

were k = ysg is the "wave vector" describing the spatial 
nonuniformity induced in the magnetic field in the system by 
the gradient of the magnetic field. 

The solution of Eq. ( 6 )  up to terms of order k  can be 
written in the following form: 

where a, ( t ,  ) = D * ( t ,  ) at, is one-sixth the rms displace- 
ment of molecules in a time t,, D * ( t ,  ) is the effective self- 
diffusion coefficient of a molecule in a diffusion time t,, and 
a, ( t ,  ) is a positive-definite function describing the initial 
nonexponential nature of the amplitude of diffusive damp- 
ing. 

The following limiting cases exist (see Ref. 1 1 ) : 

where 6 is the correlation radius of the random field f ( r ) .  
In stimulated-spin-echo experiments S2tD = const. For 

this reason, as can be seen from the relations ( 7 )  and (8a,b), 
the diffusive damping of the spin echo deviates strongly from 
exponential behavior only at times of the order of Do t ,  ~6 2,  

i.e., as t ,  increases the nonexponential behavior of the am- 
plitudeA ( k  ',t, ) passes through a maximum and is small for 
long and short times. 

The initial rate of change of the average self-diffusion 

coefficient D * ( t ,  ) satisfies the equation 

where (f2 ( r )  ),, is the mean-square force exerted at equilib- 
rium on the particle by the nonuniformities of the system. 

This formula indicates that it is in principle possible to 
measure the variance of the random field f ( r ) .  In practice, 
however, the extrapolation to zero t ,  -0  cannot always be 
done reliably, since the apparatus has a "dead" time .r,,, 
below which t ,  cannot be reduced. 

If rap %a:/Do, where a, is the characteristic range of 
the random force f ( r ) ,  which happens for the systems dis- 
cussed in the present paper, then when the measured deriva- 
tive dD * ( t, ) /d t ,  is extrapolated to t ,  = 0  one actually ob- 
tains not the true value ( 9 )  but rather some value of the 
derivative in the time interval 0  < t ,  <rap. It is thus neces- 
sary to find for the relation ( 9 )  an analog that takes into 
account the circumstances mentioned above. 

In Ref. 1 1  it was shown that the average self-diffusion 
coefficient D * ( t ,  ) is connected with the instantaneous self- 
diffusion coefficient E ( t D  ) by the relation 

!I, 

The instantaneous self-diffusion coefficient satisfies in 
turn the equation 

d 1 Do 
- ( t )  - ( )  < f  ( t ) f  ( O ) ) ,  
dt  3 k,T 

where f ( 0 )  is the random force acting on the particle initial- 
ly, f ( t )  is the value of this force at the time t, and the brackets 
denote averaging over all random trajectories of the particle. 

To avoid misunderstandings, we note that the time de- 
pendence of the random force f ( t )  is caused by the displace- 
ments of the particles in space, i.e., 

f ( t )  = f ( r ( l )  ) .  

The following expression can be easily derived with the 
help of the relations ( 10) and ( 1 1 ) : 

u o  I 
1_ ) -  7J dt ,  3 d t ? ( f ( t , ) f ( O ) > .  ( 1 2 )  

Hence one can see that the average derivative of the 
average self-diffusion coefficient D  * ( t ,  ) at a finite moment 
in time contains information about the time-averaged corre- 
lation function defined by the relation 

LD ' I  

In accordance with this definition, we rewrite the rela- 
tion ( 12) in the following form: 

We also note that for short times t ,  &a2/Do the rela- 
tions ( 14) and ( 12) transform into the relation ( 9 ) .  This can 
be verified by expanding the correlation function 
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(f (t)f(O)), contained on the right-hand side of Eq. ( 12), in 
a Taylor series. 

The exact calculation of the correlation function 
(f (t)f (0)  ) * is a nontrivial mathematical problem, whose so- 
lution we do not know. Reasonable estimates can be ob- 
tained, however, in the case when the obstacles are a system 
of randomly distributed spheres with radius r, and volume 
concentration p ,  and the interaction with the molecules is 
repulsive and described by the potential 

where E is the energy parameter and r is the distance between 
the molecule and the center of a given sphere. 

We note first that the correlation function of interest 
can be calculated exactly for t ,  = 0:" 

where r ( x )  is the gamma function and a, = ( ~ / k ,  T) '/" is 
the effective range of the repulsive forces and in our case can 
be considered to be the depth of the surface layer; we as- 
sumed that a, (r, . 

We shall interpret the structure of the formula (16) 
with the help of a relation which makes the result itself ob- 
vious: 

where k, T/a, is of the order of the repulsive forces acting 
on a molecule in the surface layer, 6 a 0  is of the order of the 
volume of the effective interaction of the molecule with a 
separate obstacle, and 4 ( 1 - p)/p is of the order of the free 
volume per separate obstacle. 

From this interpretation it is clear that the factor 

is proportional to the probability of finding a molecule at a 
distance of the order of a, from some obstacle. 

We now estimate the correlation function (f ( t )  f (0)  ) *. 
We start from the fact that a molecule of the liquid interacts 
effectively with an obstacle only at distances of the order of 
a,; this is formally reflected by the representation ( 17). For 
this reason, when calculating the correlation function 
(f ( t )  f (0)  ) * from the formula ( 13) only the times when the 
molecule is located in the surface layer will contribute to the 

by r, the so-called "settled" lifetime or, equivalently, the 
time of a "jump" of a molecule in the pure liquid. We take 
into account the interaction of a molecule with the surface of 
the obstacles by means of the parameter r,-the "settled" 
lifetime of a molecule on the surface of the obstacles. It  is 
obvious that the time r ,  is a function of the interaction po- 
tential U(r) . 

Let No be the total number of jumps a molecule makes 
outside the surface layer and let N, be the number of jumps 
occurring over the same time interval within the surface lay- 
er. We now write the obvious relation 

Let the diffusion time be quite long, i.e., DotD $a;. In 
such cases, for any reasonable ratios of r, and r , ,  we have 
No ) N, and the second term in the formula ( 19) t, = 7, N, 
can be neglected: 

We impose one other constraint on the diffusion time: 

i.e., we study times when the motion of the molecule is con- 
centrated in a neighborhood of some one sphere. 

All contacts between the molecule under study, with 
the exception of the first one, and the surface of an obstacle 
are repeated returns. For this reason, the last contact occurs 
at a distance of the order of IN A/2 from the first one. Hence it 
is understandable that the volume of the surface layer in 
which all contacts with the surface are concentrated is of the 
order of 

The trajectory of a molecule is distributed in a volume of the 
order of 

Assuming that the trajectory of a molecule is distribut- 
ed randomly over the entire volume V (this is intuitively 
reasonable), we estimate the number of hops of a molecule in 
the surface layer as follows: 

Using now the relation Do -- 1 */r0 and t, = r1 N, as 
well as the formula ( 16), we transform the relation ( 18) into 
the form 

time integral. a. TI 
< f  ( t ) f  (0)>'=:(f2(r),-- 

Hence it is obvious that the correlation function of in- (DotD)lh TO 
terest to us can be estimated as 

tl 
< f  ( t ) f  (0) >'-(fZ(r) ),q-. 

t D 

where t, is the total residence time on the surface of a given 
obstacle, taking into account all returns within the time t,, 5. DISCUSSION 

under the condition that initially the molecule is located in We begin by analyzing the form of dzffusiue damping as 
the surface layer. a function of the tridecane content and the diffusion time t,. 

We consider the spatial displacements of the molecules It follows from the relation (7) that in the general case the 
to be a series of random jumps, each of length I. We designate amplitude of diffusive damping A (g2) is nonexponential. Its 
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behavior becomes simpler only if the conditions (8a) and 
(8b), which contain the correlation radius c of the random 
field, are satisfied. Our systems have two characteristic 
lengths: the average thickness h of the liquid on the surface 
of the sand grains and the average radius ro of the sand 
grains. 

It is obvious from the data in Table I that h < ro in all 
cases which we investigated. It is obvious that in our systems 
the thickness of the layer of liquid should play the role of the 
parameter ( in the relation (8a), while in the relation (8b) 
the quantity ro will play the role of this parameter. 

The values of the quantities DotD, for which the form of 
diffusive damping of the spin-echo signal was investigated, 
are presented for different specimens in the sixth column of 
Table I. It is obvious that for specimen No. 6, for example, 
with tD = 13 ms, the condition (8a) is satisfied very accu- 
rately; for t, = 3 10 ms, however, the same condition is not 
satisfied as well, but it is still satisfied. Hence it follows that 
in these cases a, z O  and the diffusive damping should be 
exponential; this has, in fact, been observed experimentally 
(curves 7 and 8 in Fig. 1 ) . 

For specimen No. 4 with t, = 6 ms (curve 6, Fig. 1) 
h ' > Do t, . These values are, however, almost comparable. 
It is clear that the diffusive damping is slightly nonexponen- 
tial. As the content of liquid in the system decreases (speci- 
mens Nos. 3,2, and 1 ) the nonexponential behavior of their 
diffusive damping becomes increasingly stronger. The ratio 
of the characteristic parameters in this case varies as 
Do t, 5 h ', Do t, z h ' and Do tD 2 h ', but in all of these cases 
the condition (8b), i.e., I$ (DotD, does not hold. This is why 
the nonexponential behavior intensifies. 

The small change in diffusive damping accompanying a 
change in tD can be explained analogously (curves 4-6 in 
Fig. 1 ) . For technical reasons, however, the conditions ( 8b), 
unfortunately, could not be satisfied experimentally. 

Thus the proposed theory explains satisfactorily the ob- 
served tendency for the form of the diffusive damping in the 
specimens studied to change with the sizes of the sand 
grains, the amount of liquid, and the diffusion time. 

The observed dependence of the average self-diffusion 
coefficient D * (t, ) on the time t, (Fig. 2) makes it possible 
to obtain with the help of the relation (14) information 

- - 

" 4  6 8 1 0 '  2 4 6 8 1 0 ~  
I I I I  I I I l l  

t,, rns 

FIG. 3. Parameter (Do - D *(tD ) )/tD as a function of the diffusion time 
tD for specimens No. 3 (curve I ) ,  No. 4 (2), No. 5 (3) ,  and No. 6 (4) .  The 
measurement temperature is equal to 30 "C. 

about the correlation function (f (t, )f (0) )  *. The time de- 
pendence of the quantities (Do - D * ( t, ) )/t,, which is 
proportional to the correlation function (f ( t, ) f (0) ) *, is 
presented in Fig. 3. It is obvious from this figure that 

where n = 0.5-0.7. In addition, for specimens with larger 
obstacles (specimens Nos. 5 and 6 ) ,  for which the depend- 
ence D *(tD ) is weaker, n = 0.5; as the sand grains become 
smaller the dependence D *(tD ) on the initial section of the 
curve becomes stronger and n increases to 0.7. 

We note that this tendency for the observed exponent n 
to increase with increasing obstacle sizes for a fixed time 
interval t, is consistent with the theoretical prediction (23). 
Indeed, the relation (23) was derived for quite short times 
t,, satisfying the relation (2  1 ) . For long times t, % d/D0 
the time dependence of the correlation function is given by 

which can be easily seen from the relation ( 14) and the fact 
that limtD_ D *(to ) = D * = const, where D * is the self- 
diffusion coefficient in a random medium. " 

Hence it is clear that the measured value of the expo- 
nent n = 0.7 for specimens Nos. 2 and 3 is related with the 
fact that the time t,, whose lower limit is the dead time of the 
apparatus, does not satisfy as well the condition that it be 
small. It seems to us, however, that the agreement itself be- 
tween the measured dependences of the autocorrelation 
function of the force of interaction of a molecule with the 
surface of the porous system on the time t, and the theoreti- 
cal estimate (23) is satisfactory. 

We discuss now the absolute magnitude of the autocor- 
relation function (f (tD ) f (0))  * for t, = 3 ms. As one can see 
from Table I, 

This quantity is approximately six to seven orders of magni- 
tude smaller than the squared force of the characteristic in- 
teraction of two molecules f k,, =: (k, T / d )  ' - 10 - 23N2, 
where d is of the order of the intermolecular distance. This 
ratio of these quantities is reasonable. 

Indeed, over a time of the order of t, = 3 ms a molecule 
initially located at the wall of the porous material moves 
away from the wall to a distance of the order of 
, / m z 1 0 4  A. The smallness of the quantity 
(f(t, )f(O))*/f~,, reflects the fact that the total residence 
time t, of a molecule at the wall is short compared with the 
diffusion time t, [see formulas ( 18)-(23) 1. 

This is a good point at which to indicate the following 
circumstance. From time to time the possibility of the exis- 
tence, on the boundary with the surface of the porous materi- 
al, of surface layers of liquid with thicknesses of the order of 
lo3-lo4 A and structurally different from the main liquid is 
discussed in the literature (see, for example, Refs. 15 and 
16). The above estimates of the ratio 
(f (t, )f (0) ) */f i,, z 10 - 6-10 - can be considered to be di- 
rect experimental evidence of the absence of any serious 
changes in the structure of the liquid over these spatial scales 
in systems of the type sand-tridecane which we studied. 

It follows from the relation (23) that the correlation 
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FIG. 4. Parameter (Do - D * ( t ,  ) ) / t ,  as a function of the inverse radius 
of the sand grains in specimens Nos. 4, 5, and 6. 

function (f ( t, ) f (0) ) * is inversely proportional to the radii 
ro of the obstacles. Figure 4 shows the experimentally mea- 
sured dependence of this function on the radii of the sand 
grains for specimens Nos. 4 and 5, in which the concentra- 
tion of the liquid is almost constant (see Table I ) .  The value 
of the correlation function was taken at t, = 3 ms. It is clear 
that the correspondence with the theoretical estimate (23) is 
satisfactory in this case also. 

It is interesting to estimate, on the basis of the relations 
(23) and ( 14), from the experimental data the ratio of the 
"settled" lifetime T, on the surface of the porous material to 
the "settled" lifetime T, in the pure liquid with the help of 
the relation 

The average values of this ratio, which were determined 
from the experimental data in the time interval t, = 5-100 
ms with n = 10, are presented in the last column of Table I. 

We note first that an estimate based on the formula 
(25) gives only the order of magnitude, since we do not 
know the numerical coefficient which was omitted from re- 
lation (23). Nonetheless it is less comforting that all these 
numbers have turned out to be quite close to one another. 
The systematic increase of these numbers with decreasing 
radii of the sand grains is probably related with the fact, 
mentioned in the discussion of the formula (24), that the 
condition (21 ) that t, be small for systems with small obsta- 
cles is not as well satisfied. The fact that the ratio T, /ro < 1 
seems to be associated with the fact that on the whole the 
obstacles repel molecules. It is thus natural that the "set- 
tled" lifetime at the surface is shorter than the "settled" life- 
time in a pure liquid. Of course, these assertions will be much 
more reliable after the temperature dependence of the ratio 
T, /ro, determined from the experimental data with the help 
of the formula (25), is carefully analyzed. It seems to us that 
such investigations are a very useful scientific problem. We 
also note that in the derivation of the relation (23) the poten- 
tial (15) describing the interaction of a molecule with the 
wall of the porous system was assumed to be repulsive. For 
this reason, we can state that our experimental data on the 
possible values of the ratio rl/rO are consistent with the 
theoretical predictions (23). 

The concentration dependence of the correlation func- 
tion (f (t, )f (0) ) *  was studied with specimens Nos. 3 and 4 
as the example. It was found that the ratio of the correlation 
functions for t, = 3 ms calculated for the indicated speci- 

mens with the help of the formula (23) was equal to 1.74, 
while the experimentally determined value of this ratio is 
equal to 1.45. 

We begin our discussion of these numbers from the fact 
that as far as the concentration dependence is concerned the 
agreement between the expression (23 ), describing an ideal- 
ized model, and a real porous tridecane-sandstone system 
should not be as good. This is connected primarily with the 
fact that, as indicated in Sec. 2 of this paper, liquid does not 
completely fill the pores of the sandstone. The remaining 
voids act as additional obstacles, since, owing to surface ten- 
sion, the molecules of the liquid are on the whole reflected 
from the liquid-gas boundary. Hence it is obvious that inter- 
actions on this boundary also contribute to the correlation 
function ( f ( t, ) f (0) ) *, and this was neglected in the deriva- 
tion of the formula (23). It  is clear that these corrections 
affect primarily the concentration dependence of the corre- 
lation function (f (t, ) f (0)  ) *. For this reason, the agree- 
ment indicated above between the theoretical concentration 
dependence and the experimentally observed dependence 
can be considered to be satisfactory. 

We end this paper with the following general remark. 
The theoretical foundation of this paper and of Ref. 11 is 
Smoluchowski's equation. It is well known that this equa- 
tion can be rigorously derived only in the so-called long- 
wavelength approximation (see, for example, Refs. 17 and 
7). In general, however, it is clear that the interaction of a 
molecule with the surface of a porous medium is, on the 
whole, of a microscopic character. On the phenomenological 
level short-wavelength effects could be taken into account by 
including higher powers of the Laplacian in Eq. (5)  (see 
Ref. 18). The results of the present work show that Smolu- 
chowski's equation gives at least a good qualitative descrip- 
tion of the real dynamic processes occurring in the systems 
studied, though undoubtedly investigation of short-wave- 
length effects is of scientific interest in itself. 

We thank N. N. Neprimerov and A. V. Kosterin for 
their interest in this work. 
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