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The diffusion of magnetized charged particles, considered as test particles, in a turbulent plasma 
is analyzed. It is assumed that there is a regular, quasiuniform magnetic field B, in the plasma. 
There are also large-scale stochastic fluctuations of the field, B, and of the velocity of the medium, 
u, which satisfy the MHD equations. The length scales of the velocity and field fluctuations are 
greater than the local transport mean free path of the test particles. The drift kinetic equation for 
the particle distribution function is averaged over an ensemble of realizations of statistically 
uniform and isotropic fluctuations of the magnetic field and the velocity of the medium. No upper 
limit is imposed on the amplitudes. A renormalization method is used to calculate the average 
diffusion tensor. This method leads to a system of transcendental equations for the components of 
the diffusion tensor. These equations can be studied analytically and numerically. Some simple 
analytic expressions are derived to describe the various regimes of the particle diffusion across the 
regular magnetic field. 

1. STATEMENT OF THE PROBLEM 

In many systems, both in the laboratory and in astro- 
physical settings, a transport of charged particles occurs in a 
random magnetic field ~ ( r ,  t )  whose variations occur over a 
length scale much larger than the local transport mean free 
path of the particles with respect to scattering by small-scale 
electromagnetic fields (Coulomb or plasma fields). Quite 
frequently, there is a regular (quasiuniform, with shear dis- 
regarded) magnetic field B, in the system. This situation is 
particularly common in the diffusion of various impurities, 
both thermal and nonequilibrium, in turbulent magnetized 
plasmas with broad spectra of fluctuations of the magnetic 
field and of the velocity of the medium, u(r, t ) .  

If the Larmor radius of the particles is small in compari- 
son with the transport mean free path, the local diffusion of 
the particles is sharply anisotropic. The particles move pri- 
marily along the local magnetic field, deviating from this 
direction because of drift. On the other hand, the global 
transport over distances greater than the correlation length 
of the random field, over times much longer than the correla- 
tion time of the large-scale fields, and/or in a system with 
transverse motions of the plasma may reduce to a diffusion 
which is approximately isotropic. There is accordingly the 
problem of the relationship between the local and global dif- 
fusion tensors. The transverse diffusion coefficient (trans- 
verse with respect to the quasiuniform magnetic field B,) is 
a particularly important question. This problem is pertinent 
to transport in fusion devices'-3 and to the analysis of the 
propagation of cosmic rays and of elements synthesized in 
active processes under astrophysical  condition^.^ For exam- 
ple, let us estimate the local transverse diffusion coefficient 
x, for relativistic particles in the local galaxy. The classical 
transport theory gives the following expression for magne- 
tized particles: 

where xl,  is the diffusion coefficient along the magnetic field, 
r, is the Larmor radius, and All is the longitudinal transport 
mean free path of the particles. Adopting B, ~ 3 .  l o p 6  G 

and All =. cm (Ref. 4 ) ,  we find the magnetization factor 
All /r = wBr=:5. lo6 [ ( 1 GeV)/E], where E is the total en- 
ergy of the particle, and r = l/v is the mean free time with 
respect to scattering. It follows from these estimates that the 
local diffusion of cosmic rays (E- 1 GeV) should be sharply 
anisotropic: 7 ~ ~ / f ~ ~ ~  - 10 - 1 3 .  Analysis of the chemical com- 
position indicates that the mixing of cosmic rays in the local 
galaxy is nearly i s~ t rop ic ,~  so the global diffusion tensor is, 
too. 

To correctly calculate the global diffusion tensor, we 
need to take account of both the turbulent velocity field of 
the medium and the stochastic component of the large-scale 
magnetic field. In the local galaxy, this stochastic compo- 
nent is comparable in magnitude to the regular field of the 
spiral arms. The stochastic nature of the large-scale field 
results in a particle transport across B,, as the result of a 
deviation of the local field from the mean field. The trans- 
verse components of the turbulent velocity field (and the 
associated electric fields of the ideally conducting plasma) 
play the same role.5 Ptuskin and Chuvil'gin6 have calculat- 
ed the transverse diffusion coefficient by perturbation theo- 
ry (BIB, < I ) .  

The problem we are taking up here is that of deriving a 
theory without any restrictions on the amplitude of the ran- 
dom field ( g  /B, - 1 ) and with a simultaneous and self-con- 
sistent incorporation of turbulent motions. To solve this 
problem we use a renormalization me th~d . ' -~ .~ , ' -~  In Sec. 2, 
this renormalization method is applied to the drift kinetic 
equation, and transcendental algebraic equations are de- 
rived. These equations can be used for numerical or analytic 
calculations of the diffusion coefficients for magnetized test 
particles in the direction across the mean magnetic field in 
systems with a statistically uniform and isotropic turbu- 
lence. The diffusion coefficients are expressed in terms of 
binary correlation functions of the fields. It is assumed that 
the percolation transport of particles (see the review in Ref. 
9, for example) is slight. Percolation transport can play a 
major role for systems in which the longitudinal correlation 
length of the fluctuations is considerably larger than the cor- 
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responding transverse length.' In this case the particle 
transport is determined by a relatively small number of long 
field lines. Percolation is of only minor importance, on the 
other hand, for systems with an isotropic turbulence, with 
dimensions much greater than the correlation length of the 
fluctuations. In this case the limitation on the topology of the 
random magnetic field reduces to the condition that the cor- 
relation of field lines at scales greater than the correlation 
length be destroyed rapidly. A description of systems with 
long correlations requires more in the way of statistical in- 
formation than the binary correlations which we are using 
here. 

The relationship between the correlation functions for 
fluctuations of the magnetic field and of the turbulence-ve- 
locity field is required for calculations on the diffusion. This 
relationship is derived in the Appendix, where a turbulent 
renormalization of the viscosity is taken into account. 

2. AVERAGING OFTHE DRIFT KINETIC EQUATION 

We start from the drift kinetic equation for the distribu- 
tion function of magnetized particles, f(r, p, p ,  t ) ,  in the 
approximation of a zero gyroradius. We write this equation 
in the form 

Here u(r,  t)  is the turbulence-velocity field of the medium, 
which is specified by the binary correlation tensor 

~ ~ ~ ( p ,  T) =<urn (r. t ) u 6  (r' .  t ' )  >. p=r-r', t=t-t', ( 3 )  

where b is a unit vector along the overall magnetic field. This 
unit vector is given by 

where B(r, t)  is the turbulent magnetic field, with length 
scales l(All < 1 5  L). We shall average over these length 
scales below. These length scales also characterize the veloc- 
ity u. The field B, is regular; the length scale of its variations, 
R $ L, is on the order of the dimensions of the plasma system 
under consideration. To keep the calculations from becom- 
ing too complex, we have omitted from Eq. (2)  all terms 
which describe changes in the energy of the particles. These 
effects are extremely small if we assume that the motion of 
the medium is incompressible: 

div u=O. (5)  

Where necessary, we can drop this condition and take the 
acceleration terms into account, as was done in Ref. 5. The 
interaction of the particles with magnetic fields with length 
scales smaller than or on the order of the particle gyroradius 
is modeled by the right side of Eq. (2) ,  where v is the rate at 
which particles are scattered by small-scale fields. The supe- 
rior bar on f means an average over the pitch angle 8 
(p = cos 8). We have omitted from Eq. (2) a term which 
describes the focusing of the pitch angles of the particles by 
the large-scale field fluctuations, since the scattering rate v is 
much higher than the corresponding rate of change of the 
pitch angle, v div b. The conditions for the applicability of 
Eq. (2)  are discussed in detail in Ref. 6. We seek a result by 

taking an average of Eq. (2)  over an ensemble of turbulent 
pulsations in the form 

where F(r,p,t) = ( f(r,p,t) ) is an average distribution func- 
tion. 

Note that the function f(r,  p, 8, t) ,  which has not been 
averaged over the ensemble, and the function F(r ,  p, t ) ,  
which has been averaged, depend on different angles deter- 
mining the orientation of the momentum p. The function f 
depends on the local pitch angle 8, while it is independent of 
the local (fast) gyrophase. Equation (2)  is the result of tak- 
ing an average over this gyrophase. After an average is taken 
over the turbulence fields, the direction of the momentum is 
characterized by the angle 9-, which is the angle between the 
momentum and the mean magnetic field B,, and also by the 
azimuthal angle p, reckoned around B,. The azimuthal an- 
gle q, is not a fast variable. The distribution function may be a 
function of this angle by virtue of either an azimuthal anisot- 
ropy of the turbulence or a gradient in the particle distribu- 
tion which is not along the direction of B,. 

In Eq. (61, 

Va=< (vb-ub) b,+ua>=<vaeff> ( 7 )  

is the mean drift velocity of the particle. The term with the 
second derivative, xap (p)  (d2~ /d r , d rp ) ,  is written as the 
result of an averaging of the term 

in (2) .  
The tensor xap (p)  is not the overall diffusion tensor. It 

describes only the turbulence component of the diffusion. 
Below we will calculate it by a self-consistent approach. 

* 

First, however, we write the mean velocity V, in a conve- 
nient form. Writing 

we write the correlation function of the unit vectors taken at 
one point as follows: 

where boa is a unit vector along the field Bo . Using ( lo),  we 
find 

where 11  and 1 now refer to the direction of B,. The param- 
eter E here varies over the interval O<E< 1. It characterizes 
the contribution of the turbulent component of the magnetic 
field. Here also, Sip = Sa8 - boa boo, where Sap is the three- 
dimensional Kronecker delta. 

The overall diffusion coefficient should be expressed in 
terms of V and,yap (p)  by going over to the small-anisotropy 
approximation in Eq. (6) .  Setting 

GN (r, p,  t )  =0, 16N I K N, (12) 
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we put Eq. (6)  in diffusion form: 

d N  -= 
a2N 

Dae- 
a t  ar, ar, 

where 

Moving on to a calculation of the kinetic coefficient 
xaS (p), we single out a narrow wave-number interval Ak 
from the turbulence spectrum. We denote by Su and SE the 
components of the turbulence field which come from har- 
monics associated with Ak. As a result we find the represen- 
tation 

eif  v:ff =vbcff +6va , (15) 

where 

The interval Ak has been eliminated from the spectrum of 
the quantities marked with primes. 

We now take an average of our original equation, (2) ,  
over the entire spectrum of turbulence fluctuations, except 
those in the interval Ak. We denote this averaging by means 
of a prime ( ( . . . ) I ) .  We have 

Here V' and x :~  differ only slightly from the corresponding 
quantities in the completely averaged equation, (6).  We 
then write 

where 

The primes can be omitted everywhere on the right side of 
this equation. The last term in ( 18) is the most difficult to 
estimate. Comparing it with the corresponding term in (8),  
we write it in the form 

uT6BT ,,, d2F uT6uT ( 2 ,  a2F 
=- Ass -+-A06 +. . .  

vBo ar, ar, v- arm are 

where the unknown coefficients A $),...,A '6' are quantities 
on the same order as xAD [as follows from a comparison of 
( 18) with (8) and from the structure of the expressions for 
vzff and Sv"kf]. The form of (20) is based on the incorporation 
of all possible tensor combinations which are linear in the 
small quantities Su, and SB, involved in the problem at 
hand. As a result, after averaging our original equation, (2 1, 
over the turbulence spectrum, except in the interval Ak, we 
find the equation 

A 

where the perturbation operator L is 

We take the final average over the ensemble of realiza- 
tions of 62, and Su, by making use of standard perturbation 
theory: 

a6F ' + v (ijF-6F) = i F .  (24) - + V' - - xnl, --- 
d t d r ar, ar, 

It is sufficient to solve Eq. (24) for time scales and 
length scales shorter than or on the order of the correspond- 
ing correlation scales. Here we use the assumption that there 
are no field lines which preserve correlations over a large 
scale (and which might lead to a percolation transport of 
particles). 

We solve Eq. (24) with the help of the Green's function 
G(r, p, t; r', p', t '), which satisfies the equation 

d~ aG aZ G 
-+V---X,~--- 
d t  d r ar, drp 

Here the average velocity and the diffusion tensor have been 
replaced by the exact values. Using Fourier coordinate and 
time transforms, we find 

+ 6 (cos 0-cos I!+')) ((cp-q') 
v-io+ik,Va+kakexa6(p) ' 

Here, as before, the superior bar means an average over the 
angles ( 9  and 9) specifying the direction of the momentum 
of the particle. This averaging, like all the subsequent calcu- 
lations, is carried out under the assumption that the wave- 
lengths of all harmonics of the stochastic field are large in 
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comparison with All = v/v. As a result we find the inequali- 
ty lkvl4v, and we then find 

where v' = v - iw. We finally find 

The Green's function in (26) has thus been completely de- 
termined, and we can write the solution of Eq. (23) as 

6F(r .  p. t ) = J  G(r .  p, t :  r'. p'. t ' ) E 1 F 1  d3r t  dt r  dQ', (28) 

where do' is an element of the solid angle specifying the 
direction of p'. 

Turningnow to an evaluation of the right-hand side of 
Eq. (23), (LSF), we first extract from (22) the operator 
with the first derivative, which dominates the diffusion ten- 
sor: 

( I ,  d2F 
=Axas ----. 

dr ,  dra 

where 

To evaluate the latter expression we use ( 19), (26), (27), 
and the inequalities w/v- uAIl /vL 4 1, kV/v- All /L  ( 1, 
and k, k,T, /v- (AII /L 4 1. Using the notation Da8 for 
the overall diffusion coefficient [see ( 14) 1 ,  and taking an 
average of AX$) (p) over the angles specifying the direction 
of the vector p, we find 

Ka8 (k, o) d3k d o  --- 
io+k,k,D,, (2n)' 

The first integral on the right side here shows the contribu- 
tion from turbulence velocities described by the binary cor- 
relation function zap (k,w ) [see (A19) in the Appendix]. 
The other terms stem primarily from the large-scale stochas- 
tic magnetic field. The correlation function for the magnetic 

fields, (S2,SS ; ),, , can be expressed without difficulty in 
terms of the velocity correlation function with the help of 
Eq. (A23) from the Appendix. The other contributions 
from the operator with the second derivative in (22) either 
vanish or contain factors on the order of (A,~/Z) and 
(AII /Z) 2. ~ e r e z i s  an average value of the length scale of the 
random magnetic field, defined by 

1/,Zi=~.'(2n)-' 1 k2<B')k , .  kk do. (32) 

If all harmonics in the spectrum (3 2)k, satisfy the condi- 
tion l )AII ,  then these factors are small, regardless of the 
shape of the spectrum, and we can ignore all terms other 
than (29). Taking these conditions into account, we find 
- - 
Axa8 = AX:;. Using (141, and carrying out the integra- 

tion over the entire wave-number spectrum in Eq. (31 ), we 
find a self-consistent equation for the transverse diffusion 
coefficient: 

where 

We wish to stress that these relations are, for given correla- 
tion functions, transcendental algebraic equations for the 
components of the diffusion tensor. They are valid over the 
entire range O<E< 1, i.e., without any restriction on the am- 
plitude of the magnetic field or on the amplitude of the tur- 
bulence fluctuations of the velocity which are transverse 
with respect to the field. 

3. ANALYSIS OF RESULTS 

Let us examine the transport of particles by a weak Alf- 
vin turbulence ( E  = ( Z  2)/Bg = ( u ~ ) / u : ~  4 1). If the local 
transport mean free path is sufficiently small, we have 
v,, L /vAll % I. We then have DII zxII z vAI1 /3, and 
w =  /kvA( )k iDI I  +k:D,. Using (A23), we find from 
(33) 

In this case the anomalous transport across a uniform mag- 
netic field is proportional to the square of the amplitude of 
the turbulence component of the field. 

If the longitudinal mean free path of the particles is long 
enough that the condition vAll ) v, L, holds, then by ignor- 
ing the damping of the AlfvCn modes, and integrating over 
frequency and over the angles of the vector k in the second 
term on the right side of (33 ), we find 
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Dl! + V A 2  

lie ! [ (Dl,-Dl) k2 (D,l-DL)z 
+ I ] - ' d ~ .  (36) 

where 2 = x + iv, /k(Dil - D, ). For the spectra of fluctu- 
ations with the length scale L from (36) we have 

where b * is a numerical factor on the order of unity. Corre- 
spondingly, we can find an estimate of the third term on the 
right side of (33). As a result, for particles which have a 
longitudinal diffusion coefficient in the interval 
v,L<x, ,  < ~ , L E - ' ,  we find 

DL=~v.4L. (38) 

If xll  > U ,  LE I ,  then the fluctuations for such particles can 
be assumed quasistatic. In this case we have 

Hence 

D-=g~~x,l ,  

where the numerical factor is g=: 1.8 (in practice, this factor 
may depend on the fluctuation spectrum). These results are 
in qualitative agreement with the corresponding regimes 
studied in Ref. 6. The transport of charged particles by 
small-amplitude quasistatic fluctuations is proportional to 
the fourth power of the amplitude. 

We have been discussing particle transport across a 
magnetic field by a weak AlfvCn turbulence. It is pertinent to 
note here that the second term in Eq. (33) has the same form 
as the corresponding term which describes turbulent trans- 
port in a system without large-scale fluctuations of the mag- 
netic field, but with a strong regular field.'' We could thus 
examine the transport of particles by velocity fluctuations 
with a longitudinal component. In this case, the longitudinal 
diffusion coefficient is renormalized at xl l  <up, L&'l2. In this 
region of parameter values we find xl l  z b  * ~ , , L E ' / ~ .  The 
transverse-transport regime in (35) persists, but instead of 
(38) we have a regime with a weak xI I  dependence of DL. 
This regime later becomes (40). 

Finding a description of particle transport by a strong 
turbulence requires a numerical solution of transcendental 
algebraic equations (33). For typical turbulence spectra, the 
results lead to the conclusion that the diffusion is rendered 
isotropic by a strong turbulence: D, -Dll.  

We wish to thank V. S. Ptuskin and L. G. Chuvil'gin for 
useful discussions. 

APPENDIX 

The fields u, B, and B,, in Eq. (2)  are not independent. 
They are coupled by the magnetic-induction equation 

dB a2B - = rot [uB] + qabm - . 
at ara are 

Here 77; is the local magnetic-viscosity tensor. Since the 
turbulent magnetic viscosity is generally far larger than v,"p, 
we will treat the latter quantity as a "seed," which need not 
be taken into account precisely. We choose it to be of the 
form 7:' = vmSap, where 7, = c2/4vu is determined by 
the electrical conductivity of the plasma, a. Incorporating a 
possible anisotropy and a possible gyrotropy of the turbu- 
lence, we write the Fourier transform of the correlation ve- 
locity tensor in the most general form: 

where Tao (k, w) = TDa (k, w) = Tor13 ( - k, a) is a sym- 
metric real tensor which is invariant under the replacement 
of k by -k,  and Cap(k,w) = -Cap( -k ,w)  =Coa 
X ( - k, W )  is an antisymmetric, negatively noninvariant 
tensor. If Cap #O, the turbulence is gyrotropic. 

We will use the method of Ref. 5 to average Eq. (A1 ) 
over the ensemble of turbulence velocities and to calculate 
the coefficients of the average equation. We seek an equation 
for the average field B, = ( B  ), whose variations occur over 
a distance substantially larger than L: 

dBoa dB,, to1 d2Boa - = .-IZP" - + q,," - 
at a r, dr, dr, 

Here A,,, and 77; are constant tensor coefficients in the 
case of a uniform turbulence, and a repeated Greek index 
means a summation. If there are no special directions in co- 
ordinate space, other than the direction of k, we can write 
the following, in the case of an incompressible medium: 

Equation (A3) then takes the known form1' 
f3Bo -= 
d t 

rot ( a B o )  +qto'AB,. (A61 

The coefficient a, which leads to the generation of a large- 
scale magnetic field, is zero except in the case of a gyrotropic 
turbulence [C(k, w ) # O ]  . 

To calculate the coefficients in the more general equa- 
tion (A3), we again single out a small part Su of the velocity 
field-a part which contains harmonics of a narrow interval 
of wave numbers Ak. Taking an average over all harmonics 
in (A1 ) except in this narrow interval, and designating the 
magnetic field averaged in this manner by B,, we find the 
equation 

dBoa 
-= Azpv I - $BOY+ dLBoa 

d t q a v  - + rot, [ ~ u B ,  I .  ar, ar, 
(A71 

a r, 

where A h,, and v;:0' differ only slightly (to the extent that 
Ak is small) from the exact coefficients A,, and v E .  

We take an average of the last equation over realizations 
of Su by perturbation theory. Setting 

we find from (A7) the two equations 
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d Boa -- I dBov , l o t  ~ ' B O X  
at - *Jaw-+  ~ W V  --- + rot,( [ G U X ~ B ]  >. (A9) a r~ ar ,  dr,  

The length scales of the turbulence fluctuations (1 5 L )  and 
of the regular field B, can be sharply different ( R  ) L )  only 
if the gyrotropic part CaD of correlation tensor (A2) is small 
in comparison with the nongyrotropic part TaS. The reason 
is that the magnetic field is generated at length scales 
I < LC =: 2.rnqt0'/a =: 2vL ( ~ ~ ) ' / ~ / a ,  and the condition LC % L 
holds at a (u2) where - 

j <u(r, t)rot u(r, t - ~ ) > d ~  
OL=3 0 

is a gyrotropy parameter. 
Since we are assuming that the gyrotropic term in 

(A10) is small, we can discard the first term on the right side 
of this equation and write the solution in the form 

a6ua(r1 ,  t ') 
6Ba (r, t) =Boo (r, t) j G. (r-rf. k t ' )  d3r' dt' 

ar8' 

Here we have used the condition div 6 u  = 0 and the Green's 
function G, which satisfies the equation 

Substituting solution (A1 1 ) into the last term in Eq. (A9), 
we find the contributions of harmonics from the wave-num- 
ber interval Ak to the kinetic coefficients, Ma,, and Aq;:: 

Integrating (A13) and (A14) over the entire wave-number 
spectrum, and going over the Fourier representation, we 
find a system of self-consistent equations for the viscosity 
coefficient q E  and for the coefficient representing the mag- 
netic-field generation, A,,,, which appear in average equa- 
tion (A3 ) : 

tot = j T,(k, a )  d3kdo 
r lwv io+k,k,q:; (2n)" (A151 

I t  follows from this system of equations that the diffusion 
tensor for the magnetic field, T::, is initially calculated from 
the first (transcendental) equation. A simple integration 
over the result found for 77;: then leads to the third-rank 
tensor A,,, which is antisymmetric with respect to its first 
two indices. For the simple case of a gyrotropic turbulence, 
(A7), Eqs. (A15) simplify. The diffusion tensor becomes 

diagonal, 7:' = qmt,,S,,, and the tensor representing the 
magnetic-field generation can be expressed in terms of a 
pseudoscalar a :  AD,,, = aeD,,. The coefficients qtot and a 
are found from the system of equations 

Since we are not interested here in the generation of a 
large-scale magnetic field (see Refs. 11 and 12), we are con- 
cerned primarily with Eq. (A1 1 ), which relates the turbu- 
lence fluctuations of the velocity and the magnetic field. Our 
only comment is that the applicability of the renormaliza- 
tion procedure in the case of a system with a gyrotropy re- 
quires a firmer foundation.13 To simplify the problem of tak- 
ing an average of the original kinetic equation, (2) ,  we 
ignore the gyrotropy of the turbulence velocities, and we 
assume that the velocity field is two-dimensional, directed 
perpendicular to the uniform magnetic field B, = const. We 
describe the velocity field by means of the correlation tensor 

Rae (k, a )  =T (k, W )  (Gasi-kaLk~ilk,2), (-419) 

where b, is a unit vector along B,, and k, is the transverse 
component of the wave vector (transverse with respect to 
B, ). We are assuming that the motion is incompressible. 

In the case under consideration here, the turbulence 
magnetic field 6 is also perpendicular to B,, and it is related 
to the velocity fluctuations by 

The Green's function G,  contains the renormalized field 
diffusion tensor T:, which must be calculated in terms of 
the velocity correlation function in (A19) from the system 
of equations 

Using (A20), we can easily find the relationship be- 
tween the correlation tensors of the velocity and of the tur- 
bulence magnetic field. Going over to the Fourier represen- 
tation, we find 

where, according to (A12), the Fourier transform of the 
Green's function is 

t o t  Gm(k, o)  = [-ia+kOk~rlD~ I-'. (A24 

If the turbulence is weak and can be treated as a set of quasi- 
linear MHD modes with phase velocities v,, ,u, then 
w$k,k,.r;l::. According to (A23) and (A24), we have 

In the case of a strong turbulence we would have up, =: u and 
( B 2 ) = : ~ i .  
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