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A steady-state solution in the form of an electromagnetic shock wave exists in a dense, collisional 
plasma with a bunched relativistic electron beam. The damping of the field in the plasma due to 
Coulomb collisions is accompanied by a decrease in the depth of the potential wells for the 
electrons trapped by the electromagnetic radiation. As a result, the longitudinal dimensions of the 
bunches increase. The shock wave is thus an infinite set of periodic equilibrium solutions for a 
collisionless plasma. 

A relativistic electron beam in the form of distinct 
bunches is known',2 to be at equilibrium with electromag- 
netic radiation in a plasma if the modulation frequency 
w, = 2m/l ( v  is the beam velocity, and I is the distance 
between bunches) is lower than the plasma frequency of the 
plasma and if the dielectric constant E = 1 - w;/w; is nega- 
tive. The electromagnetic radiation emitted by the beam in 
the plasma is a superposition of the vacuum field of bunches 
moving at a constant velocity and of the polarization wave 
excited by this field in the plasma. If E < 0, this wave, whose 
field is stronger than the Coulomb field of the bunches under 
resonance conditions, is out of phase with the charge density 
wave of the beam, and it focuses the bunches. In other words, 
the polarization wave induced by the beam displaces plasma 
electrons from the volume occupied by the beam, and the 
field of the net ion charge cancels the Coulomb repulsive 
force and the gradient of the kinetic pressure in the bunches. 
The beam is thereby brought to equilibrium with the radi- 
ation. 

In a real dense plasma, a perturbation caused by a beam 
is damped by Coulomb collisions, and the lifetime of a fo- 
cused beam is limited by the time scale of this effect. For this 
reason, the one-dimensional periodic solution found in Ref. 
3 is time-varying. It describes a slowing of the nonrelativistic 
beam as a whole. If the solution in a collisional plasma is 
written formally as a monochromatic plane wave, the dielec- 
tric constant of the plasma acquires an imaginary increment 
E, = E + ivc/wp (v, is the collision rate). This increment 
implies the appearance of a phase difference between the 
polarization wave and the charge density wave of the beam. 
A numerical integration of the equation for the radial equi- 
librium of a bunch under the condition vc > 0 shows that 
there is no steady-state periodic solution in a collisional plas- 
ma with a modulated electron beam.4 

In the present paper we establish a new result: A steady- 
state solution in the form of an electromagnetic shock wave 
exists in a collisional plasma with relativistic electron 
bunches. This solution differs in a fundamental way from 
those of Refs. 1-4, in that there is no periodicity in terms of 
the variable z' = z - ut, because of the temporal damping of 
the waves in the plasma. Since the longitudinal dimensions 
of the bunches increase with decreasing strength of the fo- 
cusing field,' an observer in the frame of reference of the 
plasma sees bunches moving at a constant velocity and be- 

coming longer as time elapses. There is a corresponding in- 
crease in the amount of Coulomb charge which they must 
have in order to offset the energy loss and to maintain a 
steady-state wave in the plasma. 

Allowance for collisions in the form of a friction force 
- mvcvp in the equations of motion of the plasma electrons 

leads to additional terms in the equation for the effective 
potential (cf. Ref. 1 ) : 

where p and v are the density and velocity of the beam, 
y = ( 1 - v2/c2) - 'I2 is the relativistic factor, 
a /a7 = a /at + vc, $ = q, - vA,/c, and q, and A, are the 
scalar and vector potentials. These potentials satisfy the 
gauge condition 

Since the mean free path I, = v/vc, of an electron in the 
plasma, is considerably larger than the characteristic size 
m/wp, of a bunch, vca /at is the most important term near 
the plasma resonance. Incorporating this term only in the 
first operator on the left side of Eq. ( 1 ), discarding the terms 
on the order of and switching to the variable 
z' = z - vt, we find the equation 

where we have retained the notation of Ref. 1: 

p, is the density of the electrons trapped by the wave, and $, 
is the potential at the center of a bunch. 

Variables can be separated in Eq. (2) : 
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The Y-independent equation for the radial function, 

is the same as that in Ref. 1. It has at Ro = R (0) = 2.39 the 
soliton solution which is necessary for the occurrence of a 
self-focusing. 

The longitudinal equilibrium of the bunches is de- 
scribed by the equation of a nonlinear oscillator with a small 
negative friction: 

In a collisionless plasma,' the change of variables 

makes it possible to eliminate the constant factor Wm from 
the equation for the auxiliary function Z([). When colli- 
sions are taken into account ( Y  > O), on the other hand, the 
wave amplitude Wm (5) varies slowly along the beam, 
W k  - Y Wm 4 W,,, , and an additional term (a nonlinear fric- 
tion) appears in the equation: 

(the point < = 0 corresponds to the center of a bunch). In 
going from (4) to (5)  we made use of the obvious relation 
Wm = (R iZ0 ) - ', where Zo (5) is the maximum value of 
the function Z(6) at the centers of the bunches. 

Equation (5)  can be used for a qualitative analysis, by 
analogy with problems in mechanics.' In the absence of dis- 
sipation ( Y  = O), the integral of (5)  is 

From the plot of the potential energy U(Z) in Fig. 1 we see 
that in the region 

the motion of a particle is periodic, with turning points Z,, 

FIG. 1. Plot of the potential energy. The dashed line shows the transfor- 
mation of a soliton into a shock wave at v = 0.3. 

and Z,. As Zo -+ 1, the solution transforms into a soliton. 
The soliton solution Zo = 1 is a separatrix in the phase 

plane. It describes two semi-infinite electron beams, separat- 
ed by a gap .rrc/o, (Ref. 1 ). The physical meaning of this 
solution becomes apparent when collisions are taken into 
account, since under the condition Y,, = Y + 4 2  A /Zo < 0 
Eq. (5) describes slightly damped nonlinear oscillations cor- 
responding to a slow descent of the particle from the point 
Zo = 1 to the bottom of the potential well, Zo = 0 (Fig. 1 ), 
at which point the soliton transforms into a shock wave.5 

The small parameter v g  1 in Eq. (5)  can be utilized to 
find an analytic solution in the adiabatic approximation. 
Since this solution describes weakly damped oscillations, we 
can take the unperturbed solution to be the periodic solution 
found for a collisionless plasma ( Y  = 0)  in Ref. 1: 

In Eq. (7) we have retained the notation of Ref. 1: 

The points 4 = 0 and C0 = ( L  - r ) / 2  correspond to the 
center and boundary of a bunch, and sn(x{, k )  and dn(x<, 
k) are elliptic functions. 

The nonlinear spatial period of the beam is expressed in 
terms of an incomplete elliptic integral of the first kind: 

It increases without bound in accordance with 
L - ln( 1 - Zo ) - ' as the periodic solution transforms into a 
soliton.' 

We now move on to the next approximation in the small 
parameter Y. Working from Eqs. (5)  and (7) ,  and taking an 
average over the fast oscillations, we find an equation for the 
slowing varying function E(6)  : 

The integral on the right side of (9) is the following adiaba- 
tic invariant from mechanics6 

20 

Using the relation I '(E) = L, and integrating (9),  we find 

Zo- ' I (Zo)=I ,  exp [v(C-C..) I ,  (11) 

where 6, corresponds to the soliton solution Zo =I, 
E =  U(Zo). 

The integral in ( 10) can be expressed in terms of incom- 
plete elliptic integrals of the first and second kinds: 

459 Sov. Phys. JETP 74 (3), March 1992 V. B. Krasovitskiland G. V. Fornin 459 



J 

2 

1 

0 2 4 6 4 
FIG. 3. Shock wave at v = 0.3. I-The function Z(v6, 6);  2-potential at 

FIG. 2. The slowly varying functions ( I )  Z,, (2)  L / 2 r ,  and (3) W,,, . The the beam axis, *(O*f 20qm ). 
points on line 1 correspond to the maxima of the function Z(vf, 6 ) .  

4 Zo2 sn 4 
~ = 2 n + - ~ ~ +  -(---I I=nZo2. 

3 3 4 3 '  
(13) 

1 2 
- ( 2 - k 2 )  ( I - ~ ' ) F ( ~ ,  k ) 1 - 2 2 . ( Z + - ~  -?)( i  - T z O )  '1. For a near-solution a soliton solution (with 

A = 1 - Z, 4 1 ), we find the following results from (8)  and 
( I 2 )  (12): 

+ -  4 3 

For highly compressed bunches, with Z, 4 1, and with a 1: 3 ti 2 
(14) 

i - L .  I .=--T(,--) .  nearly monochromatic wave,'*' Eqs. (8)  and ( 12) simplifv: 2 6 3 3". 

FIG. 4. Curves of constant electron density in the bunches. a: 
v=0.1 ,C=0.9,0 .5 ,0 .1 .b:~=0.01;C=0.9,0 .6 ,0 .3 ,0 .1 .  

. . . .  . . .  
' . "u' ' 
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Equations ( 11 ), ( 12), and ( 14) determine the function 
Zo(v<) and thus the slowly varying coefficients k(v<), 
~ ( v < ) ,  and q(v6) in Eqs. (7)  and (8).  The results of the 
adiabatic theory are shown in Fig. 2, where line 1 is a plot of 
Zo (vc). Lines 2 and 3 show the slow spatial evolution of the 
beam modulation period and of the function 
W,,, = ( R  $2,) -'. These curves are in qualitative agree- 
ment with the asymptotic expressions in ( 13) and ( 14). The 
two-scale solution Z(v<, <) which follows from Eqs. (7) ,  
( l l ) ,  and (12) isshowninFig. 3. 

The auxiliary function Z(v5; c), which has the form of 
a classical shock wave, determines the profile of the potential 
along the longitudinal coordinate: 

A simple physical explanation can be found by introducing 
the time T = - 5. The time T -  - co then corresponds to 
the creation of a infinitely deep potential well for the 
bunches whose longitudinal dimension is equal to half the 
wavelength, ?rc/w, (cf. Refs. 1 and 2).  At later times, Cou- 
lomb collisions in the plasma reduce the field amplitude. As 
T-* co, this amplitude tends toward the asymptotic value' 
$, = $o/Ro. Figure 3 shows the evolution of the potential 
at the beam axis. 

In the adiabatic approximation (v- 0) the particle de- 
scends infinitely slowly to the bottom of the potential well 
(Fig. 1 ), and the shock wave is an infinite set of periodic 
solutions. At nonzero values of the parameter v, discreteness 
appears in this system. However, since the period varies only 
slightly over the length of an individual bunch, the constant- 
density surfaces 

are approximately collisionless. Figure 4 shows the results of 
some numerical calculations based on Eqs. ( 3 ) and ( 5 ) and 
those of some calculations based on Eqs. ( 1 1 ) and ( 12). The 
curves here correspond to the intersection of the surfaces in 
( 15) with a plane passing through the beam axis. As the 
parameter v decreases, the spatial evolution of the longitudi- 
nal dimensions of the bunches becomes more noticeable 
(Fig. 4b). 

This study was a continuation and a development of the 
study reported in Ref. 1 for a collisional plasma. Conse- 
quently, the physical mechanism for self-focusing which was 
discussed in the collisionless approximation in Ref. 1 re- 
mains in force when collisions are infrequent, i.e., under the 
condition v< 1. At the same time, the absence of periodic 
solutions in a collisional plasma means that the beam modu- 
lation regime must be corrected if the steady-state wave re- 
quired for transporting relativistic electron bunches over 
large distances is to be maintained in the plasma. 
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