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A random flow of a conducting fluid is represented as consisting of cells within each of which an 
independent strengthening or weakening of the magnetic field occurs. The cells are coupled with 
each other by one-dimensional magnetic diffusion. An increasing magnetic field suppresses 
strengthening through a nonlinear inverse effect. The distribution function of the steady-state 
magnetic field is non-Gaussian. The field is intermittent in time and space; i.e., it is clumped in 
distinct strong concentrations. A comparison is made with the distribution of a scalar property in 
the same flow. 

1. INTRODUCTION 

An initially weak magnetic field frozen in a random 
flow of a turbulent conducting fluid increases exponentially 
with time.' When the energy of this field becomes compara- 
ble to the energy of hydrodynamic motions, a dynamic equi- 
librium is reached (a  stage of nonlinear saturation). 

The flow of the fluid in the first stage of evolution of the 
magnetic field, in which the inverse effect of this field on the 
motion can be ignored, is called a "kinematic dynamo." 
When the inverse effect is taken into account, one speaks in 
terms of a "nonlinear dynamo." A kinematic dynamo is 
characterized by intermittence: the magnetic field is concen- 
trated in structures which occupy only a small fraction of the 
volume but which determine the overall magnetic energy. 
The contrast between the maximum concentration and the 
background magnetic field increases exponentially.' 

In the nonlinear stage, this intermittence can of course 
not be as catastrophic as in the linear stage. On the other 
hand, one might expect that intermittence effects would still 
be manifested, in a slightly altered form. 

A nonlinear dynamo in a turbulent flow has been stud- 
ied through a direct joint numerical solution of the Navier- 
Stokes equations and the induction e q ~ a t i o n . ~  These studies 
have shown that the magnetic field does indeed concentrate 
in distinct formations which resemble braids. The equilibri- 
um magnetic-field distribution was studied by analytic 
methods in Ref. 4. A simple model of the nonlinearity was 
used there. An expression of the form H was derived for 
the distribution of the magnetic field, although the index f l  
could not be calculated analytically. Under the condition 
P < 0, the magnetic field is typically very low, and the maxi- 
mum value is close to the mean value. This shows the inter- 
mittent nature of the magnetic field distribution. 

Direct numerical simulations are not the only way to 
study the generation of magnetic fields in random flows. A 
magnetic field apparently generated by this process can be 
observed directly in, for example, galactic  cluster^.^.^ Sever- 
al properties of growing solutions can be identified through 
an asymptotic study of the induction equation in a turbulent 
medium (Ref. 7, for example). Analysis of the results found 
by this approach leads to the conclusion that the generation 
process is governed by more than the customary universal 
characteristics of turbulence such as the index of the energy 
spectrum. The process apparently also depends substantial- 

ly on quantities which have not been studied extensively, 
either theoretically or by astronomical observation. Under 
these circumstances, an additional approach to the theory of 
a turbulent dynamo emerged in the late 1980s. In that ap- 
proach, the velocity field is not specified; instead, the effect 
of this field on the magnetic field is effectively described. 
This approach goes back to Zel'dovich's classical "figure- 
eight," which describes the elementary doubling of a mag- 
netic-field loop in a flow with a frozen-in magnetic field. This 
figure-eight is usually invoked in qualitative discussions of 
the mechanism for the dynamo. This approach was devel- 
oped in Ref. 8 into a qualitative model of magnetic-field gen- 
eration in a single turbulence cell. It was later suggested in 
Refs. 9 and 10 that the flow be represented as consisting of 
distinct cells, within which a nontrivial three-dimensional 
strengthening or weakening of the magnetic field occurs. 
For example, there may be a conversion of a Zel'dovich fig- 
ure-eight type in a generalized form. The cells communicate 
with each other by magnetic diffusion. 

We recently took this approach to study the evolution 
of the magnetic field in the kinematic stage.'' Our purpose 
in the present paper is to study the process in the nonlinear 
stage. 

2. NONLINEAR MODEL FOR THE EVOLUTION OF THE 
MAGNETIC FIELD 

Following Ref. 11, we consider a set of cells in which an 
initial magnetic field H, is given. Over the time scale which 
is characteristic of the magnetic-field conversion in cell i, 
and which does not depend on magnetic diffusion, the mag- 
netic field vector may increase by a factor ofp(i) as a result 
of the dynamo mechanism, and it may reverse direction. In 
each discrete step of this sort, the field distribution is aver- 
aged with the help of a one-dimensional diffusion operator 
with a magnetic diffusion coefficient E. As a result we have 

where the random numbersp, (i)  and q, (i)  are independent 
for different values of the discrete time n and for different 
cells. The random number q, ( i )  describes a reorientation of 
the magnetic field, taking on values of 1 with equal proba- 
bilities. The numbersp are written in the form expg, where 6 
is a quantity with a normal distribution, a zero mean, and a 
standard deviation of 2. This representation corresponds to a 
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velocity field with a normal distribution in the cells. The 
magnetic diffusion operator is 

where the normalization factor is equal to the area under the 
gaussoid curve used for the diffusion-induced smearing: 

v 

1 1 . .  . l l = x e x p  [- 
, = l  

(i-'v'2)2 2e2 I . 
A region of 300 cells was adopted for a numerical simu- 

lation. The numerical simulation shows that this number is 
sufficient for achieving stable results. The magnetic field is 
assumed to vanish at the boundary of this region. 

We introduce a nonlinearity, assuming that the coeffi- 
cient by which the magnetic field is strengthened (or weak- 
ened, depending on the sign of 6) depends on the value of the 
field at the given point. For example, we have 

p n ( i )  = ( 1 + H 2 / H . ' . ) - '  esp  i , , ( i ) ,  ( 3  

FIG. 1. Snapshots of the spatial distribution of the mag- 
netic field (over the cells) after the first time step ( a )  and 
after the 41st (b) .  The initial distribution is rectangular, 
with zero boundary values. 

where H, is a characteristic value of the magnetic field. It 
can be assumed that this value corresponds to an approxi- 
mate equality of the magnetic energy and the kinetic energy 
of the random motions. 

A problem'2s'3 of the evolution of a scalar field closely 
related to the problem at hand can be found by setting 
q, = 1. 

3. EQUILIBRIUM DISTRIBUTION OFTHE MAGNETIC FIELD 

A numerical solution of problem ( 1 ) shows that any 
initial magnetic field distribution quickly becomes nonuni- 
form (Fig. 1 ). A steady-state distribution is reached in 20- 
40 steps of the characteristic time (which is on the order of 
the reciprocal of the field growth rate in the kinematic prob- 
lem with a standard deviation of 2; Ref. 11). The steady- 
state probability distribution of the magnetic field (Fig. 2)  is 
stable, changing only slightly if a change occurs in the form 
of the nonlinearity [if, say, the quadratic dependence on the 
magnetic field in ( 3 )  is replaced by a cubic dependence] or 
upon variation of the parameters of the problem. It can be 
seen from this figure that the maximum magnetic field is well 
below H, (by a factor 2 or 3). The apparent reason for this 
result is that the rate of the exponential growth in a random 
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FIG. 2. Probability density of the magnetic field distribution. 
Left: Snapshot at the time n = 39. Right: Average over 20 time 
steps (from the 22nd to the 41st). The magnetic diffusion coeffi- 
cient E is ( a )  0.5 or ( b )  3. The nonlinearity in ( 3 )  is quadratic in 
the magnetic field. c-Probability density for a cubic nonlinear- 
;tv with a diffusion coefficient 0.5. 

flow is low, and even a slight weakening is sufficient to sup- 
press generation. 

The most probable value of the magnetic field is close to 
zero, so the distribution function can be approximated by a 
6-function near the origin and by some decreasing function 
at H # 0. The latter is not Gaussian; it is more nearly a power 
law (Fig. 3). A calculation of the moment coefficient of kur- 
tosis F = ( H ~ ) / ( H  *)', where (...) means an average over 

FIG. 3. Probability density versus the magnetic field, in logarithmic scale. 
The approximately linear shape of this distribution supports the conten- 
tion that the distribution is not Gaussian. The parameter values are the 
same as for Fig. 2a. 

cells, shows that this quantity, which is random in time, var- 
ies from 7 to 9. We recall that the moment coefficient of 
kurtosis of a Gaussian distribution would be 3. A value high- 
er than 3 implies that the tail of the distribution is playing an 
important role, i.e., that there is an increased probability for 
large deviations. 

The behavior of the probability density thus implies an 
intermittent distribution of the magnetic field. A snapshot of 
the magnetic field distribution in the stage of nonlinear satu- 
ration (Fig. lb )  shows that the magnetic field is clumpy. 
Table I shows calculated evolutions of several statistical mo- 
ments of the magnetic field. The growth rates increase ex- 
ponentially with increasing index of the moment, providing 
further support for the idea that the magnetic field distribu- 
tion is intermittent in both the initial kinematic stage and the 
nonlinear stage. 

The solution found here for the nonlinear magnetic- 
field problem is quite different from that for a scalar field. A 
transition to the case of a scalar field can be made by setting 
q, = 1. In the scalar case, there cannot be a well-defined 
peak in the distribution at the origin, and the distribution 
itself will be bell-shaped, indicating that the scalar field is 
concentrated in "columns" with a height determined by the 
maximum of the distribution. The tail of the distribution, 
particularly at small diffusion coefficients, is quite substan- 
tial. The intermittence is thus seen in the scalar case also. 
Interestingly, the magnetic field distribution (this is a vector 
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problem in which reconnection of magnetic field lines is tak- 
en into account) is quite stable. When the parameter values 
are varied, the only change is in the right-hand end of the 
field distribution. In contrast, the distribution of a scalar 

TABLE I. Time evolution of several statistical moments of the magnetic field for two values of 
the magnetic diffusion coefficient. 

FIG. 4. Spatial correlation function of the magnetic field at E = 3. The 
nonlinearity is quadratic. a-The magnetic diffusion coefficient is 0.5; b- 
3. 

n 

changes substantially when the parameters of the problem 
(primarily the diffusion coefficient) are varied. 

We also show here (Fig. 4 )  a two-point correlation 
function of the magnetic field. This function was calculated 
for an average cell (the 150th) and then averaged over time 
( 1600 steps). The correlation function falls off to zero over 
roughly the diffusion length; i.e., the "large" structures are 
of a diffusive nature. The oscillations in the tail of the corre- 
lation function reflect fluctuations associated with the dis- 
crete nature (i.e., the cellular nature) of the space. 
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