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The results of the author's earlier paper [Sov. Phys. JETP 71,690 ( 1990) ] are generalized to the 
case where the internal states of molecules are quantum variables while the coordinates and 
momenta of the molecules' centers of mass are quasiclassical. It is assumed that v"~AP%R, where 
v = V/N, and AP = ( P  ') l t 2  is the rms spread of momenta, and that v"6rf,(:AP%fi. The former 
condition makes it possible to ignore exchange effects (the case of weak degeneracy). 

1. INTRODUCTION 

In Ref. 1 the H-theorem was proved in the Boltzmann 
approximation for the association and dissociation reactions 
A + B F? C and A + B + C s D of complex molecules, that 
is, molecules with internal degrees of freedom. There the 
setting was totally classical. The natural approach is to gen- 
eralize the theory to include the quantum case, and the first 
step is to consider the quantum internal states of molecules. 
The discussion will be restricted to the reactions of the 
A + B e  C type; A + B + C s D reactions can be considered 
in a similar manner. The reader will recall (see Ref. 1 ) that 
for A + B G C reactions at least one of the molecules, A or B, 
must be complex; otherwise the reactions do not take place 
because two conservation laws, of momentum and of energy, 
must be satisfied simultaneously. When both A and B are 
simple, a third body Mis required and the reactions proceed 
according to the scheme A + B + M s C + M. 

When the molecules are structureless, that is, possess 
no internal degrees of freedom or these are not taken into 
account, the quantum Boltzmann equation has the form 
(see, e.g., Refs. 2-4) 

-f,f~(l+~jf,')(l+s,fl')I~(vji7~)sin~d~d (1.1) 

where .9;. = (27di)3Sj/Gj is the statistical weight of the mole- 
cule of the jth species, with 8, = - 1 and 6, = 1 for the Fer- 
mi-Dirac and the Bose-Einstein statistics, respectively; 
a (v,, ,x) the scattering cross section; and x the angle of de- 
flection of the trajectory when molecules of the jth and 1 th 
species interact. 

The normalization of the distribution functions in Eq. 
( 1.1 ) and in what follows is the one accepted in Ref. 3, where 
IJ;d 3pj is the number of particles of the jth species per unit 
volume. 

The addition of 9,J; to unity in Eq. ( 1.1 ) is due to ex- 
change effects (symmetry effects). These manifest them- 
selves weakly when 

The discrepancy between the expression 
a ( v,, ,x) sin xdx  in Eq. ( 1.1 ) and the classical expression 
v,,bdb is due to quantum diffraction effects in molecular 
collisions. These effects are small when rint Ap$fi, where rint 
is the interaction radius of the molecules. We assume that 
rint Ap - 6 (or even rint Ap 4 ii, but r:,:Zvlt6Ap) fi), that is, dif- 
fraction effects do take place. The method employed in the 
present approach makes it possible not to introduce diffrac- 
tion explicitly. 

For association and dissociation to occur, at least a frac- 
tion of the molecules must be complex, that is, must possess 
internal degrees of freedom. As in Ref. 1, we denote the co- 
ordinates and momenta of the mass centers of molecules by 
rj and Pi, respectively, with j standing for the species of the 
molecules. The set of internal coordinates q; ,...,q&, defined 
in formula (2.1) of Ref. 1, is designated qj, and the set 
p;, ,...,pik,, defined in formula (2.2) of Ref. 1, is designated 
pi. Then, for the quantum case, instead of the classical distri- 
but@ function4 (r, ,Pj ,qj ,pj ) we must introduce an opera- 
tor 4 with the following matrix elements: 

(the coordinate representation). We assume, however, that 
the state of the mass center of the molecules is quasiclassical 
in view of the condition ArjAPj = V113A~, ) f i  or, in other 
words, the state of the molecules is quasiclassical in rj and 
P,. Then the statepf the molecules is characterized by an 
operator function (rj,Pj) with the following matrix ele- 
ments: 

that is, 3 is a function of rj and P, and an operator of the 
other variables. As in Ref. 1, we take the variables r,,, q,, and 
q2, with r l 2  = r,  - r2, for the internal coordinates q, of mole- 
cule C. The total Hamiltonians of molecules A = El, B = E,, 
and C = E3 are sums of external and internal Hamiltonians: 

for any value ofj, with v, = V/Nj and Ap, = (p;) 'I2. Condi- where the Hamiltonian of the center of mass is assumed non- 
tion ( 1.2) is met even for light molecules of gases, except at quantum. OnAthe other hand, calculations show that the 
extremely low temperatures. Therefore, we ignore exchange Hamiltonian Hj" is expressed only in terms of the operators 
effects. of the internal coordinates and momenta: 
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Specifically, when q3 = (r12,ql,q2), we have 

where F12 = (M~/M,)@~ - (M1/M3) s2 = - iM/i?r12 
= - ifiV12, and @ is the potential energy of the interactign 
of molecules and B. S i ~ e  M ,  'P: 
+ (M;'+M;')P; = M ; l e  +M;'P:, the kinetic 
energy entering into H,, where we must allow for ( k3  ), is 
%qua1 to the sum of the kinetic energies entering into H I  and 
H2, which is corroborated by ( 1.3 ) . And because ri, AP 5 fi, 
the internal state of the molecules is quantum rather than 
classical. 

We select a quantity ro that satisfies the inequalities 

When r, = rl;;~''~, the inequality roAP$fi follows from the 
inequality r~,:2~"~AP$fi. We assume, for the time being, that 

molecules A and B merge into molecule C when r12(ro, that 
is, when r,, belongs to a ball D of radius ro, and do not merge 
if this condition is not met. Within (1.4) the exact choice of 
ro is unimportant. If we bring into the picture the region 

which includes the surface uofD, the transient state of mole- 
cule C in this region is quasiclassical in the variables r,, and 
P,, because of the condition roAP)fi. It is this fact that un- 
derlies the considerations that follow. 

2. ENTROPY OF MOLECULES OF DIFFERING SPECIES 

As is known, the quantum entropy of structureless par- 
ticles of each species is given by (see, e.g., Ref. 5)  

where ifj has the same meaning as in ( 1.1 ) . The expression 
in the square brackets can be represented as follows: 

Hence, if condition ( 1.2) is met we can employ instead of 
Eq. (2.1 ), with sufficient accuracy, 

Allowing for the complexity of the mo~ecules, we must re- 
placed (r,p) with the operator function& (r,Pj ). In the spa- 
tially homogeneous case we have 

with y, = (al ( = (2~+i)~/G, ,  i the identity operator, and 
Tr, the trace over the internal variables of a molecule of the 
jth species. The formula constitutes a direct generalization 
of Eq. (4.5) in Ref. 1 to the case of quantum internal states 
and refers to molecules A and B, that is, in it j = 1,2. 

In writing the entropy density s, = S3/Vof molecule C 
we must bear in mind that by convention C exists only when 
I r12 1 cr,. Clearly, the number of molecules Cper unit volume 
is 

but 

s3 = 1 dP,Tr, ~ r , l  dr,,G,(.,,. ..!, -I d P , d q ,  dq: ! dr.? 

where 

Differentiating Eq. (2.4) with respect to time and al- 
lowing for ( l .2a) and ( l .3), we find that 

where we have introduced the notation %< '̂ = M , ' 
+ M - ' 2 n d  employed the $c; that Tr, [H y,G3] = 0, 

in Trz[H2,G3] =0,andTr,~r2[@,G3]r,2=r,2 =O,sinceinthe 
coordinate representation @ =A@~i.,z,ijl,~2) is diagonal. In- 
deed, the matrix elements of [@,G3] are 

Similarly, the entropy density is not g3(r12+ ql, q2. rIz1 ,  ql', q2') [@(r , , ,  q l ,  q2) -@ (r12', ql'. q : ' )  I .  
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which vanizh if we put r ; ,  = r,,, q;  = q , ,  and q; = 9,. 
Since P, ,  = - iCiV,,, we can write Eq. (2 .5 )  as 

( ~ 3 s  + ($3 Idis 

( 2 . 6 )  
The operator @ (P, , r , , ,p , , )  with matrix elements 

~(P3,r , , ,Pl , ,q , ,q2 ,q:  ,q; 1 is defined as the result of a partial 
Wigner transformation: 

We denote this transformation by Yo, that is, 

~ = P O { G Q ) = - I ~ P O { ~ ~ [ ~ ~ ( ~ ~ ~ ~ ) - I ] ) .  

The inverse of transformation ( 2 . 7 )  is 

with q,,q,,q;, and q; not written e2plicitly. We u s ~ ( 2 . 8 )  to 
transform the commutator [V;A,G,],  where V,,G3 stands 
for the derivative dg3/&,, and G3V12 for - dg3/dr;,  . It is 
easy to verify that for any function u we have 

where V ,  and V ,  are the del operators referring to the first 
and second vector arguments of function u, respectively. 

Applying this equality to Eq. ( 2 . 8 )  yields 

at R = ( r I 2  + r;, )/2. Hence, 

Substituting (2 .9 )  into (2 .6 )  and transforming the integral 
over the region D into an integral over the surface u via the 
divergence theorem, we arrive at 

where Y is the unit outward normal at du, ( v , , ) ,  = v .v , , ,  
and v , ,  = Pl2/MO = P , / M ,  - P,/M,. 

Up to this point all reasoning that led to (2 .10)  was 
exact. Now we employ the approximate equality 

valid on u. This relation, as shown in Appendix A, is caused 
by the inequalities ro% ri,, and roAP% fi. It follows essential- 
ly from the fact that the transient quantum state in the region 
specified by ( 1.5) is quasiclassical in r,, and PI,. 

If introduce the notation 
W ~ & ( P , ) ]  = F3(P3,r, , ,P, ,) ,  then, in view of (2 .11) ,  Eq. 
(2 .10)  assumes the form 

( i ) , , .=k Tr l  Tr, .f d ~ ,  d ~ , ,  do (v,,).l, 

which is the quantum generalization of formula (5.6) in Ref 1 .  

3. VARIOUS CONTRIBUTIONST0 THE DERIVATIVE OF THE 
ENTROPY DENSITY 

We partition the sphere u into the entrance hemisphere 
u-, where r , , .v , ,  < 0 ,  that is, ( v , , ) ,  < 0,  and the exit hemi- 
sphere a+, where (v, ,) ,>O. Then the integral in Eq. (2.12) 
consists of two parts: 

( i3). .=k T r ,  TI, J d ~ ,  dp,, Jdo- (v.,).~,{ln[ (Znfi)'P31-1). 

( i3) , , .=k Tr,  Trz dp3 dP,, jb+( v ,, ) P,{ln[ (2nfi)3E'3]-1).  
0. 

(3 .2 )  

When the trajectory r , , ( t )  (the notion of a trajectory can be 
used because the transient quantum state in the region speci- 
fied by (1.5) is quasiclassical in r , ,  and P, , )  intersects the 
entrance hemisphere, formally molecules A and B transform 
instantly into molecule C. Since prior tg  this transformation 
A did not interact with B, the operator F3 on u- is a product 
o f h  and?,: 

The reader will recall that ex:han$e eEects ar: notJakep into 
account here. The operatorsf, = f ;  e I :  andf, = I ' e f  ;' en- 
terin4into (3:3) commute. Here I'  and I " are identity opera- 
tors, f ;  and I' act on the wave functions from the Hilbert 
space of the first molecule, and?; and j " on the wave func- 
tions from the Hilbert space of the second molecule. Substitu- 
tion of (3 .3 )  into (3 .1)  yields 

v ) 3 f lln(yly,fif'2)-l'l. (i,)..=k TrITrz dPi dPz j b -  ( . I 2 

a- (3 .4 )  

(2 .10)  where we have allowed for the fact that ( 2 d ) 3 y 3  = y,y2 be- 
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cause G, = GIG, and replaced the integration variables via 
the relation d 3P3d ,PI, = dPld 3P2. 

Turning our attention to the exit hemisphere, we intro- 
duce the notation 

Allowing for this and replacing the integration variables P, 
and PI, with PI and P,, we can write (3.2) as 

The reasoning that has led from (2.4) to (3.4) ant(3.5)  can 
be a~plie! to any concrete realization of operator G,, includ- 
ing G3 =A. Hence, differentiating (2.3) with respect to time, 
we arrive in a similar manner at 

(L).i.=-Tr, ~ r ,  J d ~ ,  rn, I do+ (v,,)vp,l, 

We see that 

Tri Trz AP~AP,~Ao+ (viz)vP, (Pa, r12, P12) 
=Trl Tr, APlAP,Ao+(v,2),PS'(PI, P,, rt2) 

can be interpreted as the number of C molecule per unit vol- 
ume with momenta in the AP3AP,, range that disintegrate 
per unit time because of the passage of trajectory r12(t) 
through the surface area element Au,, that is, due to dissocia- 
tion. This is also the number of pairs of A and B molecules 
with momenta in the AP,AP, range that emerge per unit vol- 
ume per unit time thanks to)his process. It is easy to see that 
the derivatives Cf,),, and Cf,),, caused by dissociation are: 

In a similar manner, by allowing for (3.3), we arrive at formu- 
las for the derivatives caused by association: 

since3 andj", are independent of r,,, we have 

But 

We can therefore write (3.7) as follows 

Similarly, employing (3.8), we can transform Eq. (3.4) into 

(&)..=-k Tr. Tr, J ~ P ,  dP, do+ (v,,).f,f, (3.10) 

Differentiating the entropy densities (2.2) with respect to 
time and combining the result with (3.6) and (3.9), we get 

and similarly for (S,), + (S,)di,. Summing (S, ),, + (S, Idis 
and (S,), + (S,),, yields 

It only remains to add the contributions (3.5), (3.10), and 
(3.11 ) to obtain the final result: 

x Tr, Trz[y,y,P3' ln(y,~zPa') 

Allowing for the fact that (v,,),  > 0 on u +  and, as shown in 
Appendix B, that 

Tr(A In A-A+ B-A In 8) >C, (3.12) 

which is an operator ineguality valid for any Hermitian non- 
negative definite matrix A and any Hermitian positive definite 
matrix B, we arrive at the szught res2lt S,, +Ais 20. qb,vious- 
ly, in (3.12) we must put A = yly2F; and B = y, y f J2. 

4. CONCLUDING REMARKS 

A similar method of proving the H-theorem for the case 
of quantum internal states can be applied to reactions of the 
A + B + C e D  type and also to more complex reactions of 
association and dissociation. For the process in which three 
molecules are associated into one and for the reverse process it 
is expedient to define the range of bound states by the inequal- 
i ty~; ,  ( 4 ,  that is, 6 ,  + 4, <4 (see Ref. 1 ). Here the analog 
of (2.5) is 
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where 

pol = (r,,,r,,), and Dis the ballpo,<ro. By employing the six- 
dimensional Wigner transformation Y ,  we can transform 

into 

In all other respects the generalization of the proof in Sec. 3 to 
the case of the A + B + C s D  reactions requires no special 
comment. 

APPENDIX A. SUBSTANTIATION OF EQ. (2.1 1) 

We will focus our attention on the dependence of various 
functions r,,, r;,, and P,,. The other variables P,, q,, q,, q;, 
and q; are at first considered fixed and will not be written out 
explicitly. Consider the Wigner transformation 

F(rI2, P1S)=jyB0[f31 =(2nfi)-3Y0[f31, (A1 

where To stands for the Weyl transformation 

(A21 

If we introduce the function u(r,s) via the equality 

then 

F (r,,, Pi,) = (2nh) -' I exp (-ih-lPl,s) u (r,,, s) ds. 

Differentiating the inverse transformation 

u(rI2. 8) j= 5 e ~ p ( i h - ~ P ~ ~ s ) F ( r ~ ~ ,  Pi2)CIP11, (-43) 

we obtain 

The right-hand side of this equality can be estimated in order 
of magnitude at (AP/fi)'. This suggests that the function 

u(r12,s) varies rapidly with s; specifically, its characteristic 
scale (the distance over which it changes significantly) is f i /  
AP. Let us assume that the dependence of u(r,,,s) on s is 
characterized by a single scale factor. If F(O,P,,) is differen- 
tiable a sufficient number of times, its Fourier transform 
~ ( 0 , s )  decreases sufficiently rapidly as Is1 grows, and for 
large values of Is1 the following asymptotic formula holds 
true: lu(0,s) 1 ZC Is1 - k, k>l.  Determining the constant C 
from dimensional considerations, we obtain for 1s 1 ) WAP 

If F(r12,Pl,) is differentiable in PI,, a similar formula exists 
for every r,, - r,,: 

where the fact that the dependence of u (r,,,s) on s is charac- 
terized by a single constant WAP was employed. We have 

The validity of this formula for 1s 1 -NAP and 1s 1 (WAP is 
obvious and for 1s 1 ) WAP follows from (A4). 

Now let us examine the behavior of u as a function of r,,. 
In a region L where ri,, ( r,, - ro, molecules A and B do not 
interact; their motion is purely kinematic. From the validity 
of the equation 

assuming that r;, = r ;, , and employing (2.9) we easily 'find 
that 

or n = - V,,((v,,)n), where n = S F(r,,,P1,)dP1, is the 
spatial density, and (v,,) = (Man)-'J P,,FdP,, the mean 
velocity. In usual conditions, n and F are changing with time 
quite slowly, i.e., t-n/ln I time of the change is much longer 
than the T, - r, / I  (v,,) I, T, - r,/(v,,) I time of flight, where 
r, -n/lV12nl, r, - I (v12)I/V12(v12) 1. From T>T,, 797, fol- 
lows that the n derivative can be ignored compared with 
(v12)V,,n and nV,,(v,,). 
Then 

This yields 

The mean velocity consists of two parts, (v,,) = a + b, where 
a is the velocity v,, averged over molecules A and B not inter- 
acting with each other (this part is independent of r,,), and b 
is the velocity averaged over molecules A and B formed as a 
result of dissociation of C. Such molecules emerge in region 
Lo, which is much smaller than L. In L we can put b z p ( l ) l ,  
with 1 = r12/r12. This corresponds to motion from Lo, which 
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is assumed to be practically a point, withe, > 0 a function. The 
result is 

I ~~~b l I~b l - l l r~+ IO ,cp l I i r~cp ) .  

In the case of quantum diffraction we have 
I V,e, 1/e, 5; rin, AP/fi. Combining this with (A6), we obtain 

1 V , 2 n ~ / n 4 1 / r o + r , n ~ A P / ( R r o ) .  

Since n = u(r,,,O) owing to (A3), we can write the above 
relation as 

1 VIzu(r12, 0) l/u(rlz, 0 )  G liro+r,nlAP/(hro). 

If the dependence of u(r,,,s) on r,, is characterized in L by a 
single scaling distance, we have 

I VI2u(rl2, s) I/Iu(r12. s) l~l/rO+r,nlAP/iRrO). (A71 

Let us now consider the matrix product 

Here we have written instead of j': because the other 
variables q,, q,, q;, and q; in the various factors may have 
different values. We take the Taylor expansion 

where V, is the del operator referring to the first vector argu- 
ment of u, and higher-order terms have not been written. In 
view of the last equality we have 

where 

Because of (A5) we can obtain the estimate: 
f i  

l v 1 4 u I p n , ~ s  for every rlZtf, 

and in view of (A7) we have 

f i  r,, rI2+rl2' 
I T I C  (= + ;) tuuIs-n.>P tor - 

2 
E L .  

Hence, the correction Tis fairly small for roAP) fi and ro) r,,, 
and the contribution in the integration with respect to r,, is 
small. We can prove in a similar manner that in the integral in 

(A8) we can replace u((r; +ri2)/2,r;  --r;,)) with 
U (  (r12 + r;, )/2, r; - r;,) and obtain 

for (r,, + r;,)/2&. Applying the Weyl transformati04 
(A2) to both sides of this equality, we find that 

7'0[13(2'] Z F  (r12, PIZ)F(rlZ. PlZ)~{7'o[f31 I"'. r12Brtnt 

What is important is that 6, defined as 

has the same properties (A5) and (A7) as the function u. 
This means that by using the same method we can obtain 

;lnOlf3(3)l ~ ( F " ~ ( f ~ 1  r12%rint. 

By mathematical induction, 

We now lift the restriction that the variables q,, q,, q; and$ 
mustpe fixed in each factor and consider the matrices You3]  
and f ,  in these variables and the powers of these matrices. 

Then instead of (A9) we have 

Employing the expansion 
z 

an$ allgwing for ( AlO), where instead o f h  we have taken 
yf, - I, we find that 

or the^ sought formula (2.11 ) if we allow for the fact that 
Yo[A]  = ( 2 d )  -3Yo[A], according to (A1 ). 

APPENDIX B. PROOF OF INEQUALITY (3.12) 
h 

Let us first prove that for any two Hermitian operators A 
h 

and D the following inequality holds true: 

h A 

where /Zi and p, are the eigenvalues of matrices A and D, 
respectively. Minimization on the right-hand side of Eq. ( B g  
is carried out over-41 permutations j(i). Indeed, in the A- 
representation, Tr AB can be written as 2/ZiDii, with 

so that 

yhere uii is the unitary m!trix of the transformation from the 
D-representation to the A-representation. Hence, inequality 
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(B 1) can be transformed into the following form: 

where p is the column matrix constructed from the pj eigen- 
v a l u ~ ,  A Tthe row matrix constructed from tke Ai  eigenval- 
ues, H a  matrix whose elements are 1 uu 1 2 ,  and Ma the perm? 
tation matrix, whose elements are eigzr zero2r unity. The H 
matrix, in view of the property that UU + = I, is bistochastic 
(i.e, has nonnegative elements and the sum of the elements of 
each row and column is equal to unity) and moreover orthos- 
tochastic. According to Birkhoff s theorem (see, e.g., Ref. 6 ) ,  
every bistochastic matrix can be written in the form of the 
following sum: 

where the coefficients pa are nonnegative and such that Zp, 
= 1. Substituting (B3) into (B2), we obtain an equivalent 

inequality, 

h 

(a, = hTM,p and Z = max a, ), whose validity is obvious 
because all the pa and Z - a, are nonnegative. This com- 
pletes the proof of inequality (B 1 ) . 
A 

Let us now turn to the proof of inequality (3.12). We put 
h h 

D = In B. Then the eigenvalues bj of matrix B ar -  related to 
the pj Ahrough the equalities fi = In bj . Matrix D is Hermi- 
tian if B is Hermitian and positive definite. Taking the permu- 

Adding (B4) to the obvious equalities 

we arrive at 

The expression within the brackets on the right-hand side is 
nonnegative for every value of i since it is equal to iliF(bj(i, / 
ili ), where F(y) = y - 1 - In y is a non-nzgative function 
and the ili are nonnegative because matrix A is nonnegative 
definite. The fact that the right-hand side of (B5) is nonnega- 
tive proves the validity of (3.12) 

Strictly speaking, the above proof is valid only for matri- 
ces of finite rank. However, by enforcing a special limiting 
process in which the volume of the space tends to infinity and 
the discreteness step to zero it is possible to extend these in- 
equalities to a more general case. 

'R. L. Stratonovich, Zh. Eksp. Teor. Fiz. 98, 1233 (1990) [Sov. Phys. 
JETP 71,690 ( 1990) 1. 

*E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43,552 (1933). 
'0. J. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theoty of 
Gases and Liquids, Wiley, New York ( 1964). 

4L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green's 
Function Methods in Equilibrium and Nonequilibrium Problems, W .  A. 
Benjamin, Reading, Mass. ( 1962). 

5A. I. Akhiezer and S. B. Peletminskii. Methods ofStatistical Physics. Per- - .  

tation j(i)  at which the sum BiAi,ui(i) assumes its maximum gamon, Oxford ( 1980). 

value, we find that (B1 ) yields 6M. Marcus and H. Minc, "A Review on the Theory of Matrices and Matrix 
Inequalities, Prindle, 1969. 

-Tr A in ~2-z A .  in 034) 
Translated by Eugene Yankovsky 

453 Sov. Phys. JETP 74 (3), March 1992 R. L. Stratonovich 453 


