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The action of the Virasoro algebra on hierarchies of nonlinear integrable equations, and also the 
structure and consequences of Virasoro constraints on these hierarchies, are studied. It is 
proposed that a broad class of hierarchies, restricted by Virasoro constraints, can be defined in 
terms of dressing operators hidden in the structure of integrable systems. The Virasoro-algebra 
representation constructed on the dressing operators displays a number of analogies with 
structures in conformal field theory. The formulation of the Virasoro constraints that stems from 
this representation makes it possible to translate into the language of integrable systems a number 
of concepts from the method of the "matrix models" that describe nonperturbative quantum 
gravity, and, in particular, to realize a "hierarchical" version of the double scaling limit. From the 
Virasoro constraints written in terms of the dressing operators generalized loop equations are 
derived, and this makes it possible to do calculations on a reconstruction of the field-theoretical 
description. It is also indicated how hierarchies restricted by Virasoro constraints are related to 
nonlocal evolution equations. The reduction of the Kadomtsev-Petviashvili (KP) hierarchy, 
subject to Virasoro constraints, to generalized Korteweg-deVries ( KdV) hierarchies is 
implemented, and the corresponding representation of the Virasoro algebra on these hierarchies 
is found both in the language of scalar differential operators and in the matrix formalism of 
Drinfel'd and Sokolov. The string equation in the matrix formalism does not replicate the 
structure of the scalar string equation. The symmetry algebras of the KP  and N-KdV hierarchies 
restricted by Virasoro constraints are calculated: A relationship is established with algebras from 
the family Wm ( J )  of infinite W-algebras. The method of dressing operators also makes it possible 
to introduce Virasoro superconstraints on the super-KP hierarchy that are consistent with all 
(even and odd) super-KP flows. 

1. INTRODUCTION 

A surprising feature of exactly integrable equations 
(besides, of course, the integrability itself) is the extremely 
wide diversity of their physical applications." Recently 
there has been a further addition to the latter: Integrable 
equations arise in nonperturbative two-dimensional quan- 
tum gravity, in a rather nontrivial manner as "renormaliza- 
tion group" evolutions of the coupling constants. Because 
there are infinitely many of the latter, infinite hierarchies1-3 
of integrable equations arise. 

The manner in which nonperturbative two-dimensional 
quantum gravity and the matter interacting with it generate 
integrable hierarchies was first understood with the aid of 
matrix  model^.^-^ The method of matrix models has made it 
possible to show that the resulting solutions of the integrable 
hierarchies are subject to so-called Virasoro constraints- 
dominant-weight conditions in relation to a certain Virasoro 
algebra acting on functions of the coupling constants. We 
recall, for those who are not specialists in quantum field the- 
ory, that the Virasoro algebra is one of the fundamental con- 
structiops of two-dimensional physics, and is at the same 
time a nontrivial object of study for mathematicians (be- 
cause of the felicitous combination, in the infinite-dimen- 
sional situation, of representation theory and differential ge- 
ometry ) .  The study of dynamical realizations of the 
Virasoro algebra forms the content of conformal field theo- 
ry. 

The Virasoro constraints on integrable hierarchies have 
paramount significance, since they make it possible to single 
out the partition function of matrix models from among all 

the T-functions,&' and contain, in essence, the nonperturba- 
tive dynamics of the model. In the present article we first 
study the somewhat more general question of how, in gen- 
eral, the Virasoro algebra acts on integrable hierarchies, and 
then go over to the Virasoro constraints in the form of the 
requirement of invariance under this action. As a result of 
our analysis of the structure of the Virasoro constraints the 
possibility arises of regarding the Virasoro constraints on 
arbitrary integrable hierarchies as the first principle of a 
nonperturbative description of a certain class of models of 
quantum gravity. 

The fact that the Virasoro algebra should act in some 
way on integrable hierarchies is already clear from the con- 
struction of Kr i~hever ,~  according to which Riemann sur- 
faces furnish solutions of integrable hierarchies, while the 
Virasoro algebra undoubtedly acts on Riemann surfaces.'O 
We shall consider as an example the Kadomtsev-Petviash- 
vili (KP)  hierarchy' or its various reductions to generalized 
(modified) Korteweg-deVries [ (m)KdV] hierarchie~,~ de- 
scribable in terms of (scalar) pseudodifferential ($ Diff) 
operators. The action of the Virasoro algebra of Ref. 10 is 
then carried over on to $ Diff operators in accordance with 
the diagram 

Riemann surface ---+ $ Diff operator 

BMS I 
(Ref. 10) 1 Ref. 11 

Riemann surface - $ Diff operator. 
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This is a diagram "on the mass shell," since the horizontal 
arrows give solutions, and therefore the right vertical arrow 
carries solutions over into solutions. We shall see, however, 
that the latter mapping can also be defined "off the mass 
shell," i.e., without regard to any particular solutions of the 
hierarchy. 

In other integrable hierarchies the $ Diff operators are 
replaced by another (as a rule, infinite-dimensional) Lie al- 
gebra g (e.g., an algebra of cc x cc matrices). Such an alge- 
bra g is used in the construction of the Lax representation 
(the Lax operators are elements of g ) ,  and, on the other 
hand, plays the role of the phase space of the hierarchy, since 
a feature of the Hamiltonian interpretation of integrable sys- 
tems is the circumstance that it is precisely the Lax represen- 
tations that acquire a Hamiltonian meaning (for example, 
Gel'fand-Dikii structures on algebras of (pseudo) differen- 
tial operators). 

The description of a hierarchy in the language of flows 
in phase space is in a certain sense supplementary to the 
description in terms of the T-function and Hirota bilinear 
relations. An advantage of the former is the familiar simplifi- 
cations that arise from the fact that with the Lax operators 
one can associate a hierarchy wave function that is, in es- 
sence, a linear object. The correspondence with the descrip- 
tion in the language of the T-function is achieved in several 
steps: The wave function is constructed from the T-function, 
and knowledge of the wave function makes it possible to find 
the dressing operator, which, in its turn, is used to construct 
the Lax operator: 

T-function ++wave function -dressing 

operator-Lax operator. (1.2) 

The idea of the approach that we are developing is to trace 
the Virasoro algebra along the above arrows, and then to 
note that the Virasoro generators that are obtained as a re- 
sult can be represented in a sufficiently universal (in the 
sense of lack of dependence on the specific hierarchy) man- 
ner, making it possible to postulate these generators on a 
whole series of integrable hierarchies, including those for 
which the scheme ( 1.2) is unknown or not so simple. 

Recalling also that the solutions of the integrable equa- 
tions are given by Riemann surfaces (with auxiliary Krich- 
ever data on them), we obtain the chain of mappings 

R~emann 
surface H ?-function H rnzlon 

++ dress~ng Lax 
operator operator ' (1.3) 

Riemann surfaces of various generi are thus described in a 
completely unified manner, and this is the reason behind a 
number of attempts to reformulate two-dimensional field 
theory in the language of integrable equations. As an exam- 
ple of a 2-geometric object that has an extremely natural 
description in terms of integrable hierarchies, we shall con- 
sider the coordinate that appears in the set of Krichever 
data. From the point of view of "two-dimensional" field the- 
ory, this is in fact the coordinate on which the operator inser- 
tions depend, while in the language of the hierarchy it is the 
eigenvalue of the Lax operator: 

(here $ is the wave function). Following the coordinate, we 
should like to "transfer from the right- to the left-hand side 
of Eq. ( 1.4)" the energy-momentum tensor. The strategy, as 

already stated, will consist precisely in the use of the map- 
pings (1.3). As the starting conformal theory we consider 
the bc-theory of spin J (Ref. 12). Then the first result can be 
formulated as follows: 

Oz the phase space2' there exists a family of vector 
fields X(u) that depend on the formal parameter u and 

a )  satisfy the Virasoro algebra (without a central exten- 
sion) 

(1.5) 
where 

is a formal 8-function (and [ [,I ]  denotes a commutator of 
vector fields on g, and not simply a commutator of elements 
from g); 

b )  are tangent to the space of solutions of the hierarchy; 
C )  with a constraint on the Krichever locus, make the 

following diagram commutative: 
Riemann surface - Lax operator 

Riemann surface - Lax operator, 
where by the Riemann surface we mean in reality the Krich- 
ever data, and the left vertical arrow is given by the action 
(constructed in Ref. 10) of the vector field 
2 . u - n - 2  n + l  

n e L  z d /dz (we recall that u is a formal param- 
eter). A 

Furthermore, as we shall see, the structure of X(u) re- 
plicates the structure of the energy-momentum tensor 
( 1 - J)db.c  - Jbadc of the bc-theory itself, although the 
$ Diff analogs of the fields b and c are in no way fermions. 
(The trick that "corrects the statistics" involves an analog of 
the operation in the middle.) This result is extremely gen- 
eral, and is related to general properties of integrable hierar- 
chies-more specifically, to their r-matrix structure.I3 We 
recall that the latter is approximately equivalent to specify- 
ing, for the Lie algebra g, its decomposition as a sum of two 
subalgebras:" g = a + b (Ref. 13). In the r-matrix formal- 
ism, the Virasoro algebra acts on the Lax operators via the 
differentiation ad& of the Lie algebra g, where has a uni- 
versal form in terms of the dressing operators, the r-matrix, 
the character of the subalgebra a, and certain other data per- 
taining to the algebra of differentiations (Derg). In the pres- 
ent paper, which has a more physical orientation, we shall 
not describe this general construction, but confine ourselves 
to a number of meaningful examples of importance in appli- 
cations. 

The study of the structure of the action of the Virasoro 
algebra on integrable hierarchies has an important applica- 
tion to the nonperturbative description of two-dimensional 
quantum gravity and the matter interacting with it-an area 
familiar under the general name of "matrix  model^.""^^'^^'^ 
Knowledge of the explicit form of the generating expression 
X(u) for the Virasoro generators is used in the imposition of 
the Virasoro constraints on integrable hierarchies. As is well 
known, it is precisely hierarchies restricted by Virasoro con- 
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straints that arise from matrix models: The partition func- 
tion of a matrix model (up to the double scaling limit) is 
given by the T-function of a certain integrable hierarchy:' 

where the integration is performed over the space of all (say, 
Hermitian) matrices. The times ( t )  are the coupling con- 
stants of the theory (more precisely, of the discretization of 
the theory). Shifting M in (1.7) by 
M-M + EM" + ' ( n >  - 1 ), we discover8 that the r-func- 
tion is annihilated by the (n> - 1)-generators of the Vira- 
soro algebra that are of the type written out below in Eq. 
(2.16): 

Again transferring these constraints on to the phase space, 
we obtain practically ~niversa l '~  constraints on the dressing 
operators of the integrable hierarchy. For example, for the 
Toda hierarchy, which plays an important role both in ma- 
trix models and in our analysis below, the Virasoro con- 
straints have the form16 

where n> - 1. The details of the notation pertaining to the 
Toda hierarchy will be explained in the appropriate place, 
but meanwhile we shall attempt to understand what the Vir- 
asoro constraints ( 1.9 ) could mean for an arbitrary integra- 
ble hierarchy. The left-hand side ofEq. ( l .9) is an element of 
a Lie algebra g, and (. . . ) - is then a projection on to one of 
the subalgebras appearing in the decomposition g = a + b 
(Ref. 13). Furthermore, W... W -  ' is the adjoint action by 
the dressing operator, and A is the character (one-point 
coadjoint orbit) of one of the subalgebras. Finally, j? is cho- 
sen in such a way that 

We have enough of these general properties to verify the 
fulfillment of the commuta$on relations of the Virasoro al- 
gebra for the vector fields 2, associated with the left-hand 
sides in ( 1.9) (although, of course, the definition of both the 
operator? and expressions of the type?Anin the general case 
imposes requirements on the Lie algebra g). 

Therefore, Virasoro constraints in a form of the type 
(1.9) can be postulated simply for a rather wide class of 
integrable systems, without raising the question of the exis- 
tence of an intrinsically matrix variant of the theory. The 
correspondence with a field-theoretical description can then 
be sought as follows. Knowledge of the explicit algebraic 
structure of the Virasoro constraints makes it possible, as we 
shall see, to construct their generating function. The latter, 
after a Laplace transformation, can be rewritten in the form 
of a relation that has the structure of recursion/loop equa- 
tions. 17.18.6.5 Recursion equations are one of the formulations 

of two-dimensional topological theories, i.e., theories inter- 
acting with gravity. The generalized recursion equations ob- 
tained from the integrable hierarchies can therefore be used 
to restore the field-theoretical description. Although the lat- 
ter problem already lies beyond the scope of this paper, we 
should like to draw attention to the correspondence 

theory interacting with 
two-dimensional gravity 

integrable hierarchies, restricted 
(1.11) 

by Virasoro constraints 

Our aim in this paper is to develop a formalism for the de- 
scription of the right-hand side of ( 1.1 1 ). 

The content of the paper is as follows. In Sec. 2 we start 
from the KP hierarchy and, after introducing the basic nota- 
tion, recall the results of Ref. 11 on Virasoro-type action. 
The latter demonstrates analogies with the formulation on 
the world sheet familiar from conformal field theory, and 
these analogies, which are useful for the following, are dis- 
cussed in Sec. 3 (among them is the "hierarchical" version of 
the boson-fermion correspondence). 

Another example of a hierarchy with Virasoro genera- 
tors of the type ( 1.9) besides the KP hierarchy is the impor- 
tant case of the (two-dimensional) Toda lattice h ie ra r~hy .~  
The necessary notation is introduced in Sec. 4, and in Sec. 5 
we calculate the action of the Virasoro algebra on the corre- 
sponding spaces of cc X cc matrices. The results, in fact, 
structurally repeat those obtained in Sec. 2, and therefore the 
correspondences noted in Sec. 3 could be reproduced almost 
word-for-word in application to the Toda hierarchy (the 
reader, of course, will be spared this). 

An important example of the reduction of the Toda 
hierarchy is provided by the N-periodic Toda hierarchies. In 
Sec. 6 we elucidate which of the generators of the Virasoro 
algebra can be restricted to the N-periodic case. In addition, 
as is well known, an N-periodic Toda hierarchy admits a 
formulation related to the current algebra s l (N).  The action 
of the Virasoro algebra is also carried over to this case, and 
this has required a certain special realization of the commu- 
tation relations ( 1.10). The spirit of this N X N formulation 
consists in the fact that it clarifies the group-theoretical na- 
ture of the periodic Toda hierarchy, and makes it possible, at 
the cost of only slight effort, to replace sl(N) by other Kac- 
Moody algebras and thereby to construct in a systematic 
way the generalized Toda hierarchies corresponding to these 
algebras. 

In the next sections we specifically consider applica- 
tions to matrix models, i.e., to integrable hierarchies restrict- 
ed by Virasoro constraints. In Sec. 7 we investigate the ques- 
tion of the correspondence of the Virasoro constraints that 
arise at the discrete level (i.e., for lattice hierarchiest9 of the 
Toda type)20 to the "continuum" Virasoro constraints from 
Ref. 6. 

It turns out that the two principal examples of hierar- 
chies restricted by Virasoro constraints-the KP hierarchy 
and the Toda hierarchy-are related by a certain scaling 
limit. This limit is taken extremely naturally in the language 
of dressing operators, and carries certain combinations of 
"discrete" Virasoro constraints into their continuous var- 
iant. In this way, the scaling limit proposed in Sec. 7 turns 
out to be the "hierarchical" version of the so-called double 
scaling limit that forms the basis of the interpretation of the 
matrix  model^.^^^,^^ 

Next, in Sec. 8, we study the Virasoro-constrained KP  
hierarchy that is obtained. It is shown there that the analog 
(obtained in Sec. 3) of the bosonized representation for the 
energy-momentum tensor makes it possible to interpret the 
Virasoro constraints as an (operator) version of the recur- 
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sion/loop equation that arises in the context of topological 
field the~ries.~," Here, it is pertinent to stress once again the 
possibility of generalizations of the construction of this 
equation to a broad class of integrable hierarchies that admit 
an r-matrix formulation. We also note a connection with the 
nonlocal integrable equations considered recently in Ref. 2 1. 

The next step in the study of the recursion relations 
obtainable in the context of integrable hierarchies is the re- 
duction (performed in Sec. 9)  to generalized N-KdV hierar- 
chies;' the latter, strictly, have also been noted in matrix 
models. We elucidate how and in what sense the KP hierar- 
chy subject to Virasoro constraints is reduced to generalized 
N-KdV hierarchies, and what restrictions on the latter arise 
in the process. Here we investigate the complete symmetry 
algebra of the hierarchies that are subject to Virasoro con- 
straints. This question has been considered recently in a 
number of with somewhat contradictory conclu- 
sions. The advantage of our approach, using dressing opera- 
tors, is based on knowledge of the explicit forms of the Vira- 
soro generators, which not only makes the conclusions very 
transparent but also opens up possibilities for further gener- 
alizations. As regards the symmetry algebra, for the KP 
hierarchy we have ascertained that it coincides with a Bore1 
subalgebra of the recently constructed algebra W ,  (J) (Ref. 
24). For N-reduced hierarchies we also discuss the appear- 
ance of the current algebra sl(N) in the language of dressing 
operators.25 

There is also an sl(N) formulation for the N-reduced 
KdV hierarchies. This formulation constitutes the content 
of the fundamental work of Drinfel'd and S o k ~ l o v , ~  the 
"physical" part of which is, in particular, the theory of W- 
algebras4' In Sec. 10 the Virasoro generators and constraints 
are "raised" from scalar generators and constraints to the 
corresponding matrix differential operators. This makes it 
possible to clarify the meaning and formulation of the matrix 
string equation, which, contrary to some expectations, turns 
out to be different from the scalar string equation. 

Finally, in Sec. 11, we consider the supersymmetric KP 
hierarchy. For supermatrix models a naive matrix formula- 
tion has been found to be inadequate,26 but, of course, it is 
indubitable that both supersymmetric theories interacting 
with supergravity and supersymmetric hierarchies them- 
selves exist. In this situation it is all the more natural to use 
the formalism of dressing operators. As we shall see, this 
formalism makes it possible to introduce Virasoro con- 
straints that are consistent with all (even and odd) equa- 
tions of the super-KP hierarchy. 

2. ACTION OFTHE VIRASORO ALGEBRA ON THE KP 
HIERARCHY 

We shall work with a KP hierarchy describable in terms 
of pseudodifferential operators.' (We note in passing that 
there exists an alternative description in the spirit of the 
n = cc KdV hierarchy, i.e., in terms of x cc matrices.") 

We recall that the KP hierarchy is formulated as an 
infinite system of pairwise-commuting evolution equations 

on the coefficients w, (x=t,,t,,t ,,... ) of a IC, Diff operator 
(more precisely, of a $ Diff symbol) K of the form 

We use the notation 

and identify x =  t ,  in accordance with Eq. (2.1 ) for r = 1 : 

ilK dK - =-(KDK-')K+(KDK-')+K=-KD+DK = -. 
it, 4 x 

(2.4 
The operator K will also be called a dressing operator. 

The commutativity of the flows determined by Eqs. 
(2.1 ) is ensured by the classical Yang-Baxter equation, 
which is satisfied by the "r matrix" 

is the projector on to the integral part. (Correspondingly, 
the standard notation ( ... ) + indicates that the purely differ- 
ential part of the pseudodifferential operator is singled out. ) 

We introduce the "matrix-model potential" 

[henceforth, t in the argument of a function will denote the 
set (t,,t,, ...) 1. The wave function and conjugate wave func- 
tion are defined by the equalities 

where K * is formally conjugate to K. It is obvious that $ 
satisfies Eq. ( 1.4), in which 

We also define w and w* by the formulas 

$( t ,  z)=eC'' . ' 'w(t,  2 ) .  ** (t .  2 )  = e - E ~ L ~ " ~ ' ( t ,  z ) .  (2.9) 

Like IC, and $*, w and w* will also be called wave functions. 
Obviously [compare with Eq. (2.2)], 

A basic property of the wave functions is their relation to the 
T-function: 

where 

and, correspondingly, 
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We shall need the following combination of the map- 
pings (1.3) and ( 1.4): 

Riemann surface H T-function H$ Diff operator 

Riemann surface H T-function H$ Diff operator 
(2.14) 

(this diagram is projectively commutative). By a Riemann 
surface we shall mean a set of Krichever data in which the 
linear bundle is the bundle of J-differentials and the trivializa- 
tion is determined by a parameter a, [see Ref. 11, in which 
a, = N + f and J-(1 - J ) .  Then 

with the usual expressions for the generators of the Virasoro 
algebra: 

a I (2.16) 3,- ~ k t , - ~ - a . ~ - -  
h>1 

at, 2 24 ' 

which form the algebra 

In the action of the operator X(u) on arbitrary functions 
of K one must regard 5 (u ) K as the components X i  of a vector 
field X 'a /ax,. In other words, we define a vector field as the 
differentiation of a ring of functions of K: 

The functions $and $* in (2.19) are, of course, functions ofK 
through Eq. (2.7). 

We can now forget about the solution from which we 
started, and take the derivation of &(u)  as simply a way of 
guessing the form of Eq. (2.19) [and of proving the assertion 
(c) from the Introduction]. Equations ( 1.5) follow as a re- 
sult of a simple calculation," as does the assertion (b) .  The 
latter is valid irrespective of whether the operator K is a solu- 
tion of the KP hierarchy. 

Starting from the variation SK = - X(u)K, it is easy to 
determine the variation of the wave function: Eqs. (2.7) give 

These formulas have been reproduced in a more geometrical 
context in Ref. 29. 

3. CONFORMALTHEORY ON INTEGRABLE HIERARCHIES? 

In this section we shall discuss certain consequences of 
the formulas (2.19), (2.22), and (2.23) obtained; and also 

from which one can see, in particular, the role that is played formal aspects of them that are important for what follows. 
by the parameter J. [By the shift YeYO - f(J2 - J + 4 )  Equation (2.19) displays a remarkable similarity to the 
in (2.17) one reproduces the standard central term energy-momentum tensor of a bc-system of spin J (Ref. 12): 
- ~ p + q , o ( ~ 3 - ~ ) ( J 2 -  J+;).l  

Thus, we deform the T-function by means of the Virasoro T= -lb.ac+(l-1)ab.~. (3.1) 
generators: 

r(t)*t(t  )+dz(t) = z ( t ) + ~ ( u ) z ( t )  (2.18) 

and apply Eqs. (2.7)-(2.1'0) with the new T-function. As a 
result we obtain a new dressing operator K - &(u)K, where" 
(see also Ref. 28 for J = 1 ) 

Z(u)=(l-I)  d.g (t, u) D-'o.g' ( t .  u) 
au 

(and, for simplicity, we have chosen a, = - 4 ) . Upon trans- 
fer of the operator D -  ' to the right there appears an infinite 
"tail" of negative powers of differentiation, in accordance 
with the formula 

The fact that, unlike (3. I ) ,  the right-hand side of (2.19) con- 
tains only bosonic quantities "is compensated" by the pres- 
ence of the operator D -  ' between the two wave functions. 

Moreover, Eq. (2.22) can be regarded as the abstract 
version of the usual operator product 

Jb(u) + (I-J)db(u) 
T(u)b(z)=- ( u - z ) ~  . (u-Z) 

since w (z,u;t) is the analog of the Cauchy kernel off the equa- 
tion of motion, i.e., 'off shell": In fact, "on shell," i.e., for a 
given algebro-geometric ~olution,~'  when z and u become gen- 
uine coordinates on the Riemann surface, we have 

1 
m(z,u:t)=-+ ..., 

u-z 

where. . . denotes terms that are regular at z = u. 
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Another important object in bc-theory is the ghost cur- 
rentj = - bc. From the formulas of Ref. l l it follows that its 
KP analog has the form 

l (u)  =$( t ,  u)oD-'og' ( t ,  u). (3.3) 

This can also be written in the form 

1 1 
j(u)= ( K - ~ ( ~ . D ) K - ' )  = - ~ ( u . Q ) -  

u - U 
(3.4) 

[where Q is defined in Eq. (2.8) 1. 
Next, the $ Diff analog of one further fundamental oper- 

ator product 

namely, 

also follows rapidly from Eq. (3.3). 
The observed similarity with the structures of conformal 

field theory leads us to pose the question of the $ Diff descrip- 
tion of bosonization in terms of the $ Diff analog of a scalar 
field. In fact, whereas Eq. (2.19) suggests "fermionized" 
analogies, it can be rewritten identically in the form 

where the operator 

represents, on $ Diff operators, the derivative with respect to 
the spectral parameter (and therefore is the principal player 
in the Douglas equations5). We shall call Eq. (3.6) the "bo- 
sonized" form of the energy-momentum tensor on the hierar- 
chy. It is zonvenient to use it in the calculation of the commu- 
tators of & ( u )  with other vector fields. Indeed, for any vector 
fields [as in Eq. (2.21 ) ] 6 and b of the form 

(3.8) 

we find 

%K=;[ (KBK-')-Kl 

= ( (KAK-')-KBK-']-K- (KBK-' (KAK-'1-)-K 

+ (KBK-I) -(KAK-')-K 

= ( (KAK-')-KBK-')-K- (KBAK-')-K 

+ ( (KBK-I)  -KAK-'1 -K, 

whence follows the useful relation 

[[i,,^b]]K=(K[A, BIK-'1-K. (3.9) 

Ugng this for commutation of the energy-momentum 
tensor X(u)  and the current i ( O ) ,  we substitute, respectively, 

so that 

1 1 a 
[ A ,  B ]  = - [x, 6 ( v ,  D) 16 (u, D) = -- 

uu uD du 
~ ( v , D ) ~ ( u , D )  

and 

Like ( 1.5), Eq. (3.12) is fulfilled "off the mass shell," and 
duplicates the standard commutation relations. 

We note, however, that although the energy-momentum 
tensor written in the form (3.6) resembles the well known 
construction 

it is nevertheless not  expressed precisely by this formula in 
terms of the current i from (3.4), since all modes of the cur- 
rent j are mutually [ [,] ]-commuting, so that the "compen- 
sating" presence of the operator P is necessary. In an analo- 
gous way, the appearance of P is unavoidable in the 
construction of a "bosonized" representation for the wave 
functions $ and $*. 

We recall that the analogs of $ and $* on the complex 
plane, i.e., the fields b and c, are expressed in terms of the 
current j by 

However, even on Riemann surfaces of the leading generi, 
these simple formulas are modified because of the fact that the 
field q, is no longer uniquely determined by the current j as 
p(x) -S"j, since the integral executes jumps around the ho- 
mologies. The Baker-Akhiezer mechanism copes with this 
ambiguity by giving to the naive expression 

b(u)c(v)a exp j j  (3.15) 
U 

an invariant meaning when it is introduced into the back- 
ground of a certain operator %, the basic ingredient of which 
is the operator 8-function that depends on the b-periods of the 
operator current j (Ref. 3 1 ) : 

Upon normal ordering of the product ( 3.15 ) and (3.16) the 
argument of the Sfunction is shifted as follows: 
&H$J + v - u (where v - u denotes a Jacobi mapping), 
thereby supporting the Baker-Akhiezer structure 
( expSuj )8(v- -u+ $ , j ) .  

The moral of this recollection is that bosonization pre- 
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supposes the presence of objects of two kinds: a background 
operator 9, representing the Riemann surface as a whole 
with the minimum number of operator insertions on it, and 
additional insertions. The former correspond to the operators 
Q (or K ) ,  while the latter correspond to the vector fields on 
the space of these operators. 

The elementary neutral insertion b ( u ) c ( u )  is described 
by the vector field 

This expression, which appeals for a "bosonic" interpreta- 
tion, can also be rewritten in a "fermionized" form: By direct 
application of the Campbell-HausdoriT formula we find 

and, furthermore, 

Applying the analogous arguments to S(u ,D)K-  ' , we finally 
obtain 

= g ( t ,  v+z)oD-'o$'(t, v ) .  (3 .20)  

which is the "fermionized" version of (3 .19)  and shows that 
D(u ,v )  indeed describes the insertion of b ( u ) c ( v )  into the 
background of the operator Q = K D K -  ' . 

It is perhaps worth mentioning again that it is not neces- 
sary to assume that the equations of the KP hierarchy are 
fulfilled along times t ,  for r)2;  the constructions given above 
pertain simply to the space of $ Diff operators with respect to 
X .  

It is also instructive to calculate the behavior of the "bc 
insertion" (2 .19)  under the action of the Virasoro algebra; 
commuting 'Z ( z )  with D ( u , v ) ,  we obtain two groups of terms, 
one of which contains S(z ,u )  while the other contains S(z , v ) .  
The terms of the first group have the form 

which can be rewritten as 

x D-'e$.(t, u ) .  ( 3 . 22 )  

thereby attesting that the variation reduces to a natural vari- 
ation of the wave function $ ( t , u )  appearing in ( 3 . 20 ) .  For the 
S(z ,v )  terms the situation is analogous. The square bracket in 
(3 .22)  does not coincide with the right-hand side of Eq. 
(2;?2) ,  gnce in (3 .22)  we have calculated the co~muta tor  
[ ['Z(z),5D(u,u) ] 1, while in ( 2 . 22 )  we have applied & ( z )  to a 

function on the phase space. 

4. THE TODA HIERARCHY-DEFINITIONS2 

We shall apply the strategy of Secs. 1 and 2  to calculate 
the action of the Virasoro algebra on the phase space of the 
two-dimensional Toda hierarchy. First of all, we recall some 
basic definitions. A reader familiar with the formalism of Ref. 
2  can p r o ~ e d  to the next section. (We note, however, that our 
W is the W from Ref. 2. ) 

The dressing operators are represented by ZX Z matri- 
ces, which act on vectors that can be written in the form 
2,,, U ( S )  I S )  [in reality, the construction is doubled, since the 
operators carry superscripts ( cc ) and ( 0 )  1. We define the 
operators (Z x Z matrices) j and A by 

Let I u, ) denote the eigenvectors of A: 

The operator3 is assumed to be Hermitian, and A is assumed 
to be unitary with respect to the scalar produce ( s f  Is) = S,, .  . 
We easily find that (s lu,  ) = A s(Olu, ) = A  ". We define the 
dressing matrix W' " ' as 

where w'" ' (s;x,y;A) is expressed as follows in terms of the 7- 

function: 
rn 

1 (s:  x-[).-'I. y )  
w'=!(s: x ,  y ;  k) = z u ? , ~ = l ( s :  x ,  y)A-> = 

, s o  T ( s :  x. y )  

We normalize w,= 1. From the definitions there follow di- 
rectly the useful relations 

where we have denoted 

Next we introduce 

where the conjugate wave function w' " '* is found to be equal 
to2 
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The Lax operator L is defined as 

where q has not yet been fixed. 

We shall also need the "complete" wave functions2 5.1. The("'-part 

For a time we omit the superscript ( co ). Under the vari- 
ation (5.1 ) the wave function w E w' " ' changes as follows: 

The associated linear problem with eigenvalue A can be 
written by introducing the vector 

for which 

where the energy-momentum tensor F ( p )  is equal to 

This equation is transformed into an identity if we note that, 
from knowledge of W'" ', we can reconstruct ( A )  as fol- 
lows: ag (2, p) + p- 'G!(p, x)+anC' (p, X )  

a P 

The second dressing matrix ( W'O') of the two-dimen- 
sional Toda hierarchy is constructed as 

W"'= r , ) l ) < s I w ' ~ ~ ( s ; x , y ;  A),  - 
Here we have used the notation 

and the x-half of the equations of the Toda hierarchy is writ- 
ten in the form 

Calculating now ~ ( x , A ) 7 ( p ) ~ ( x , A ) ,  ' we find the vari- 
ation S W from the relation d W'O' -- - (L')+w'"' ,  

d x ,  

where (. . .) denotes that one takes the strictly lower-trian- 
gular part (nonstrictly upper-triangular part, respectively) of 
the matrix. 

We shall not be interested in the dependence of our func- 
tions and operators on the y-times of the two-dimensional 
Toda hierarchy, and shall not introduce the corresponding 
second set of generators of the Virasoro algebra. Accordingly, 
we shall frequently omit the dependence on the times y. 

"'"' ')-+L(v (p, I ) - ~ ( p ,  A)) ] 
all, 2 

5. THE TODA HIERARCHY-ACTION OFTHE VIRASORO 
ALGEBRA 

We now apply the generators of the Virasoro algebra to 
the T-function of the Toda hierarchy and use Eqs. (4.1)- 
(4.15 ) for the systematic elimination of the derivatives 3 /ax, 
in favor of the hierarchy flows (4.16) and (4.17). Under the 
action of the Virasoro generators the T-function varies as 

where we have denoted 

Use of the equations of the Toda hierarchy gives 

where the generators of the Virasoro algebra are given by Eqs. 
(2.16) with the replacement t , ~ x , ,  and the operator a, is 
related t o j  by where 
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Substituting (5.5) into (5.3), we consider first the second 
term in the right-hand side of (5.3). The operator in the 
square brackets in it is applied to the expression that we have 
just calculated in (5.5). Using again the equations of the hier- 
archy, and also the identity 

by straightforward exercises in a game involving arrangement 
of (. . .) + and (. . .) - we bring the second term in (5.3) to 
the form 

We now consider the first term in (5.3), in which the 
summation overs is performed not so directly. First of all, we 
use Eqs. (4.5) in order to represent the first term in (5.3) in 
the form 

It is also not difficult to convince oneself that 

*(p. L ) =  r, Is~')w(sM.p)(s"(6(p,.\) Is0w.(sJ+l; p ) ( s f / .  
.. - 8 .  

(5.10) 

(It  is helpful to note that the 6-function in the right-hand side 
of (5.10) is the projector 

as is confirmed by the formal manipulations 

The operation of taking the lower-triangular part commutes 
with multiplication by a diagonal matrix, so that (5.9) takes 
the form 

Finally, we make use here of Eqs. (4.5) and recall the equa- 
tions of motion (4.16) : 

Then for (5.1 1 ) we obtain the expression 

-((9(p)-+'/z9)6(p, L))-WIui) 

Collecting ( 5.8) and (5.13) together, we observe pleas- 
ing cancellations, after which the result is found to be 

The last step consists in expressing the functions w'" '  and 
w ( ~  ) *  in (5.14) in terms of the compkte wave functions (4.9) 
and (4.10). Here we replace (sip - "  by (sip - B ,  and do the 
same forp" + ' Is'), and also use the following identity, which 
follows from (4.1 ) : 

Then 

As can be seen, it is natural to choose q to be equal to 

which coincides with the value of the background charge. 
Thus, the energy-momentum tensor on the Toda hierarchy is 
given by the following (nonstrictly) lower-triangular matrix: 
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The appearance in 510 of the additional term proportional to 
J 2  - J +  1/6 has already been discussed in Sec. 2. 

The equations (5.18) are the direct analog for the Toda 
hierarchy of our earlier result (2.19). In fact, if we forget 
about the y-times of the Toda hierarchy we can obtain from it 
the KP hierarchy in matrix form (as in Ref. 27). More pre- 
cisely, there arises an infinite set of KP-hierarchy versions, 
shifted with respect to each other by a Schlesinger transfor- 
mation [the latter effects a shift along the discrete "zero time" 
s (Ref. 29) 1. The energy-momentum tensor (5.18) then cor- 
responds to that for the KP hierarchy from Eq. (2.19). In Sec. 
7 we obtain a completely different correspondence between 
the Toda hierarchy, subject to Virasoro constraints, and one 
version of the KP hierarchy, also subject to Virasoro con- 
straints; here the discrete parameter s goes over into the con- 
tinuous first time x = t ,  of the KP hierarchy. 

5.2. The (')-part 

It remains to elucidate what happens with the second 
dressing matrix W'O'. As before, we vary the 7-function, as 
indicated in (5.1 ). We now write Eqs. (4.13) in the form 

where 

eqt ( s ;  x, y ) = t  (s+l;  x,  y) , eqa,e-q=ao-l, 

This time, T(x,;l - ' ) commutes with Y(p) --T(p;x);  then 

1 
e q r ( p ) e - q = 9 " ( p )  +a,+ - V (w)+ p a'(x' . (5.19) 

2 9 P 

Hence, 

i a 
- ( ~ - T ) p - + a o + l ] ~ ( p , x ) w ( o ) ( s ; x , ~ ; ~ )  a P 

+ ( a 0 + v  ( p , x ) l n  T ( s ) + P  a'(x1 ' )  ) w(o) (s ;  r ,  y; A ) .  
all 

(5.20) 

From the hierarchy equations (4.17) we now have 

V ( p ,  x )W(O)(x ,  y ) = ( I P ( p ) + - 1 )  W(O)(x,  y ) .  (5.21) 

Here it is very convenient to replace Y (p) + by S(p,L) +. 
We then obtain 
p26 W'O' (I ,  y ) I ua) 

and, after a number of cancellations, 

I 
6 W'" ' uA> = - - 2 p-2w'o' 1 ua) 

whence follows the structure of the energy-momentum tensor 
acting on W ' O '  . As before, q = W - 1 is found to be the most 
natural choice, and, as before, we observe a generalized struc- 
ture of the type (1 - J)db.c - Jb.dc. 

6. THE N-PERIODIC TODA HIERARCHY 

Of interest in itself, and also useful for what follows (see 
Sec. lo),  is the N-periodic reduction of the action (calculated 
in Sec. 5)  of the Virasoro algebra. We recall2 that the N-peri- 
odic Toda hierarchy arises when the objects introduced in 
Sec. 4 are additionally subjected to the conditions 

These conditions "freeze" the evolutions along the times 
x,, ,yNi (i) 1 ) , so that these times can be omitted. 

Is the action of the Virasoro algebra limited to the sub- 
manifold of those matrices W that satisfy (6.1 )?  As we shall 
see now, only some of the Virasoro generators preserve the 
conditions (6.1). For this we shall learn how to single out 
individual generators from the energy-momentum tensor 
(5.18). (We again concentrate on the '"'-sector; for the "'- 
sector the treatment is analogous.) The expansion 

is easy to affect explicitly, by inserting into (5.14) Eq. (5.10) 
and the identity 

As a result, we find 

A 
We now calculate the commutators of the vector fields 

2, that correspond [according to (3.8) and (3.9), with ob- 
vious changes for application to the Toda hierarcky] to the 
operators (matrices) En with the vector field %', corre- 
sponding to the constraint 
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which follows from (6.1 ) . We find 

where the expression 

should thus vanish. This, however, freezes the evolution along 
the times xN+. and, in this sense, is not compatible with the 
equations of the Toda hierarchy. Only in the case when 
n = Nj UEZ) do no additional restrictions arise. Thus, only 
the generators 

can act on the N-periodic Toda hierarchy. The normalization 
in (6.6) has been changed in such a way that the generators 
2( .  , form their own Virasoro algebra. 

Turning to the explicit form for the generators QW, we 
note that, as can be seen from (6.4), the term proportional to 
J is equal to 

and does not give a contribution to the variation of the opera- 
tor L (4.8) and so can be omitted. Thus, the Virasoro genera- 
tors on the N-periodic Toda hierarchy have the form 

1 e,,, = T ( u - a - m ( p  7 C ~ x . . \ ~ ) . \ ~ ~ w ~ - ~ ) - ~ )  - . (6.7) 
r i a l  

rf 0 mod 9 

The N-periodic Toda hierarchy admits an alternative de- 
scription in terms of the current algebra 
?(n)-sl (n,C[f,f ' I ) ,  which is extremely important for 
the geometrical interpretation and generalizations of this 
hierar~hy.~' .~ The connection with the cc x cc matrix formal- 
ism is furnished by a homomorphism2 
- 
sl (N) -sl ( w ) ,  (6.8a) 

such that 

where, obviously, A,al(N). In particular, the matrix A in- 
troduced in (4.1 ) turns out to be the image, under (6.8), of 
the element 

The key point is that, by virtue of the conditions (6.1 ), 
all the ingredients of the N-periodic Toda hierarchy lie in the 
image of the homomorphism (6.8). Therefore, in particular, 
there exists an element L (f)cSL (N) of the form 

with a certain Wkm)(x,y;<)&L(N) such that its image under 
(6.8) is L = W(")AW(" '- ' .  Here, if 

.V - 1 

then 

N- 1 

w(-'(x, y) = 7 7, 7, I S  + Nk)wj (s)  ( S  + N k  1 A-;. 
k€ j > O  s=O 

In this formulation it is natural to call the N-periodic Toda 
hierarchy the sl(N) Toda hierarchy. 

However, it is obvious that the operator$ in (6.7) does 
not lie in the image of the homomorphism (6.8). Neverthe- 
less, as already emphasized above, the Virasoro commutation 
relations for the generators of the form (6.7) are based on the 
formal commutation relations between the operators$ and A. 
This defines the following "reduced version" of the operator 
j: 

where h, are arbitrary constants. Thus, the derivative with 
respect to the spectral parameter, which was introduced ad 
hoc in Ref. 35, appears here for the first time. 

The Virasoro generators (6.7) can now be realized by the 
following operators, acting from the left on the current matrix 
Wkm)(<)CTL(N): 

It is important to note that (. . . ) can now denote either 
of two operations (cf. Ref. 3): (i) singling out of the negative 
powers of the matrix AN ( f ) ,  in accordance with the fact that 
any matrix can be represented in the form 
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or (ii) singling out of the negative powers of the spectral pa- 
rameter (. The generators (and the flows of the hierarchy) 
obtained in these two ways turn out to be gauge-equivalent 
[the gauge group consists of matrices of the form (6.15) with 
M = O ] .  

7. CONTINUUM LIMIT OF THE TODA HIERARCHY 
RESTRICTED BY VIRASORO CONSTRAINTS 

We intend now to apply the technique developed to the 
analysis of problems that arise in "matrix models," which are 
a nonperturbative method of description of two-dimensional 
quantum gravity and the matter interacting with it. To be 
precise, we shall proceed to an analysis of the Virasoro con- 
straints on integrable hierarchies and to the study of hierar- 
chies restricted by Virasoro constraints. As was noted in the 
Introduction, the Virasoro constraints on the partition func- 
tion of a matrix model are fulfilled, as Ward identities, even 
before the continuum limit,' when the T-function is represent- 
ed in the form of a matrix integral. In this section we shall 
start from the Virasoro constraints on discrete hierarchies 
and consider their scaling limit. 

Namely, starting from the constraints ( 1.8) 

on the Toda hierarchy, we first of all carry them over to the 
phase space. Then, according to (6.4), we obtain the con- 
straints 

We recall that the expansion of K(p)  in modes follows easily 
from the "bosonized" form of the energy-momentum tensor 
on the phase space. From an abstract point of view, the role of 
J in  (7.2) reduces to taking the order of the operatorsi and An 
into account. 

Our aim is to elucidate how the constraints (7.2) can be 
related to the "continuum" Virasoro constraints from Refs. 6. 
The correspondence will be established in two stages. As the 
first step we shall realize the scaling limit of the Toda hierar- 
chy restricted by Virasoro constraints. (We stress that the 
entire hierarchy is subjected as a whole to the scaling.") This 
scaling is none other than the "hierarchical" variant of the 
double scaling limit that lies at the basis of the method of 
matrix models.425 After the limit is taken, a KP hierarchy 
restricted by Virasoro constraints arises. Here, the Virasoro- 
algebra generators turn out to be exactly the same as those 
that we had in Secs. 2 and 3. In the second step we perform the 
reduction of the resulting Virasoro-constrained KP hierarchy 
to the generalized KdV hierarchies that, in essence, were dis- 
covered in Refs. 5 (see Sec. 9).  

Since we shall consider below only the '"'-part, we omit 
the superscript ( cc, ) in the notation. 

7.1. Redefinitions 

We shall start from a certain notational modification 
that is convenient for the subsequent scaling. First of all, in 
view of the commutativity of the flows of the hierarchy there 
is freedom in the choice of linear combinations of flows, and 

hence of the corresponding times. We introduce new times 2, 
( r>  1 ) that are more convenient for performing the scaling. In 
general, a redefinition of the times has been employed in the 
literature (in particular, in Ref. 33) to establish the connec- 
tion between two formulations of the one-dimensional Toda 
hierarchy, so that the use of one or other choice of the times 
depends on the desire to simplify the formulation of one or 
other group of properties of the hierarchy. In the situation 
under consideration, we set 

,2 

where ( E  ) are binomial coefficients and the Z,, after the scal- 
ing, become the new times. Furthermore, there is also free- 
dom in the composition of the linear combinations of the con- 
straints (7.2) themselves. Forp>O we define 

If the (. . .) - projection were absent in (7.2), it would 
not be difficult to calculate the sums that arise when (7.3) and 
(7.2) are substituted into (7.4). However, the presence of the 
(. . . ) _ projection is extremely important, and this somewhat 
complicates the calculations that we have to perform. We 
shall start from a reinterpretation of the operator A. Namely, 
we shall regard the vectors B, ls)v(s) (see Sec. 4) as functions 

defined on the integers Z. Then A can be formally identified 
with the operator ea, where d, also formally, is a /as. Thus, 

The operator introduced in (4.1 ) can now be transformed 
into multiplication by the argument: 

Abusing the notation, we can writes instead of j .  The dressing 
operator and its inverse now look like 

where w, ( . ) are functions ~ w ,  (s) acting by dot multiplica- 
tion. 

7.2. The scaling 

We shall apply scaling in order to transforms into a con- 
tinuous variable. We set 

t , s = -  d 
, $=ell. D=- E -0. 

E d t ,  ' 
(7.9 

It may be assumed that E has the dimensions of length, so that 
t, has the same dimensions. The operator A takes the form 

We shall also change the scale of the constraints Ii3 introduced 
above, replacing them by 

" 
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The algebra of the vector fields 5 associated with the opera- 
tors has the form 

It would be premature, however, to conclude from this that in 
the limit E -+O the commutation relations of the Virasoro alge- 
bra arise, since this limit presupposes certain infinite changes 
of scale and, inioing so, touches upon the construction of the 
mapping 2, ;2,, and even of the space itself on which the 
vector fields 2, act. In other words, the bracket in the left- 
hand side of (7.12) carries a certain dependence on E when 
the scaling limit is taken. Nevertheless, of course, Eq. (7.12) 
is a favorable sign. 

The main content of the continuum limit is the following 
scaling ansatz for the coefficients [introduced in (4.3) and 
(4.4)] of the operator W E  W'"': 

( - I  ) .  j 2 1 .  Li" = rri 

2 1  
I -  I 

The ki will be found below to be the coefficient functions of 
the KP operator K, which are denoted by wi in (2.2). From 
(7.13) it follows that 

where 

Analogously, for certain k 2 we set 

Finally, let x, = t,, , /E'+ ' for r> 1, so that 
xe 

(in the same way, as a supplement to (7.17a), we also have 

In addition, we shall have to redefine the time t ,  as follows: 

We shall assume that in the limit E + O  all the k, and k 
are finite functions of the new times. We then obtain 

and the bilinear relation WW - '  = 1 in the limit E + O  gives 
the bilinear relation KZ = 1 for the IC, Diff operators, whence 

We now proceed to elucidate what happens to the con- 
straints (7.11) as a result of scaling. The answer is written in 
Eq. (7.38) below. As already noted, a delicate aspect is the 
allowance for the (. . . ) _ projection onto the lower-triangular 
matrices. After the scaling, for the KP hierarchy Virasoro 
constraints arise in which (. . . ) - denotes an entirely different 
operation on the IC, Diff operators, namely, projection onto 
the integral part. The two projections appear to be in no way 
related, and so we shall start from direct use of the definition 
of the matrix operations ( . . . ) - in the formulas for the Toda 
hierarchy. Here, we shall go over to a gauge (see Ref. 33) in 
which (. . .) - includes the diagonal part as well. Thus, we 
rewrite the equality (7.2) as 

and into the left-hand side of (7.20) substitute (7.13) and 
(7.16), and also (7.17) for the timesx, after which we go over 
to the constraints defined by Eqs. (7.11 ). The number of 
summation symbols grows in this procedure, and one should 
exercise the usual care in the order of the summation; all the 
finite sums are calculated first, and the summation of the infi- 
nite series in powers of eED is performed last of all. 

We shall consider a typical contribution to gp - , , propor- 
tional to ( r  + 1 )t,+ , with r> 1. After all the substitutions 
enumerated above, the factor multiplying ( r  + I ) t ,+  , turns 
out to be equal to 

where the condition i + j>n + s is what singles out the 
(. . .) - part. 

First, we shall perform the summation over all i and j for 
which i + j = 6, with a temporarily fixed 6. Here we need the 
identity 

In an analogous way we perform the summation over values 
of n and s satisfying the condition n + s = a: 

r n  
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Thus, Eq. (7.21) takes the form of the difference of two 
expressions: first, 

in which we have replaced indices as b - a = k, and, second, 

The central point is that the alternating sum over a of the 
two binomial coefficients in (7.24) is equal to 

and is nonvanishing only for 1 + m - 1 >p + r. In fact, the 
condition for this to vanish follows from the identity 

In this way, the range of the summation over 1 and m is re- 
stricted by the condition 

Completing the calculation does not present any difficulty 
now: The sum over k in Eq. (7.24) is brought to the form 

The finite sum over k does not give zeros or poles for 
E-+O, and so can be replaced by its E -0 limit, equal to 

This gives directly for (7.27) the answer 

so that the expression (7.24) takes the form 

Here, finally, the E-0 limit is simply equal to 

where (. . .) - now refers to the algebra of the y3 Diff operators 
and denotes the projection onto the purely integral part. We 
recall that we have calculated the coefficient multiplying 
( r  + 1) t,+ We have thereby obtained a contribution to the 
(p - 1)-th Virasoro constraint in the continuum theory, 
equal to 

In the equality (7.2) it remains to consider the term con- 
taining the operatorj, and also to take into account the con- 
tribution made by the expression (7.25). We start from the 
term containingjAn . As before, we substitute (7.13), (7.16), 
and (7.1 1 ) into the sum over i and j in (7.20). We first sum 
over i and j with a fixed value of i + j = a: 

As the next step, in accordance with the definition of the con- 
straints e, we must perform the summation over n. We note 
that the (. . .) - projection denotes a>n. Setting a = n + k, 
from the last equation we obtain 

As before, the value of 1 + m is found to be bounded by the 
relation I + m>p orp + 1. The series in k is summed as above, 
and the leading singularity as E -+O arises from 

We recall now that we shall also have to subtract the contribu- 
tion of the terms (7.25) (appearing in the sum 
2,,, ( r  + l ) t ,+ ,  ... ). Repeating the steps (7.27)-(7.29), we 
obtain 

which it is necessary to add to (7.34). But when the expres- 
sion (7.17b) for s is substituted into (7.34), the sum (7.35) 
cancels with all terms in (7.17b) except the first. To sum up, 
the contribution to Qp- is found to be equal to 
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Combining Eqs. (7.3 1 ) and (7.36), we arrive at the set of 
Virasoro constraints 

These conditions are indeed Virasoro constraints: the Vira- 
soro algebra is fulfilled for the vector fields (on the space of 
the operators K) associated with the left-hand sides of (7.37) 
[and not only for n = p - 1 > - 1, but also for the generators 
for p€Z that are defined by the left-hand side of (7.37)]. 
Moreover, the Virasoro generators obtained coincide in es- 
sence with the ones that we had in Secs. 2 and 3, i.e., with 
those that follow from the "bosonized" representation for the 
energy-momentum tensor (3.6). The latter statement, how- 
ever, needs to be made somewhat more precise. The most 
general form of the Virasoro generators on the KP hierar- 
chy " includes an arbitrariness associated with the choice of a, 
in Eq. (2.16): 

[the operator P was defined in (3.7)]. Here, N=a, + 1, and 
the geometric meaning of this parameter is explained in Ref. 
11. The choice of one or other value of N is unimportant. In 
Sec. 2 we set N = 0 for simplicity. As a result of the scaling 
limit, the Virasoro generators (7.38) with n> - 1 and N = J 
were obtained. 

In the next two sections the resulting constraints 
2AKP' = 0 (n> - 1) are investigated in more detail. 

8. VlRASORO CONSTRAINTS ON THE KP HIERARCHY AND 
TOPOLOGICAL THEORIES 

The Virasoro-constrained KP hierarchy can be defined 
directly by imposing the constraints 

on the T-function. In accordance with the results of Secs. 2 
and 3, this can be rewritten in the form of the constraints 

on the dressing operator. For us it is important that these very 
constraints have been obtained by means of the scaling limit of 
the Virasoro-constrained Toda hierarchy. In particular, the 
origination of the Virasoro constraints (8.2) from matrix 
models has thereby been established. We shall consider them 
in more detail. 

The constraints (8.2) can be summed to give the follow- 
ing generating expression: 

This equality is an operator relation of the form of a loop 

equation or recursion equation for the correlation func- 
tion~,", '~ and 1 plays the role of a loop parameter-the 
length.s.16,~s,34 (The reduction to the generalized KdV equa- 

tions is performed in a similar way to the reduction consid- 
ered in Sec. 9.) As regards consistency between Eqs. (8.2) or 
(8.3) and the KP hierarchy, by applying thederivativesa /at, 
to Eqs. (8.5) we see that they all vanish by virtue of the equa- 
tions of the KP hierarchy. 

One can view the constraints (8.3) in approximately the 
same way as one views the constraints that single out the gen- 
eralized KdV hierarchies3 from the KP hierarchy. In the lat- 
ter case one imposes the constraint (KD NK - ' ) - = 0, i.e., 
the operator A = KD NK - should be a purely differential 
operator. This operator parametrizes the independent degrees 
of freedom, and, in this sense, "relaxes" the constraints. In 
our case we also introduce a differential operator A and re- 
write the Virasoro constraints in the form 

An obvious possibility here is 

and hence there appears the requirement 

[ K ,  P+JL] =o. (8.6) 

More generally, suppose that for some concrete model the 
times t ,  are nonzero only for r<N + 1. Then the order of the 
operator A is equal to N ( A  = Z;=,aiD'), and Eq. (8.4) is 
transformed into extremely restrictive conditions that state 
that the argument x of the $ Diff operator K is translated by 
means of differential operators of order N. Namely, for Kas in 
Eq. (2.2), we obtain 

The coefficients ai are easily determined from (8.7) and (8.8) 
in terms of the first n coefficient functions in K as 
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etc. The remaining conditions, given by Eqs. (8.9) with the 
values of a, substituted into them, impose serious restrictions 
on the dependence of the operator K on the times of the hier- 
archy (and on x ) .  

We note the following interesting system of nonlocal 
evolution equations that is satisfied by the operator 
A = A(x,I;D)E Diff: 

d A  
-= Q(x)+'A-AQ(x+l)+'. (8.13) 
at, 

Similar nonlocal hierarchies have been studied recently in 
Ref. 21, in which it was suggested that they be viewed as the 
result of "quantization" of the spectral parameter in ordinary 
(local) integrable hierarchies. A similar ideology ("quan- 
tum" Riemann surfaces) was also developed earlier in Ref. 
35, also in connection with Virasoro constraints on integrable 
equations. Expanding the operator A in powers of I, we find 
that its modes A,, which are differential operators of order 
n ( r )  = 1 + r(n ( 1 ) - 1 ), also satisfy the Virasoro algebra. 

Equation (8.13 ) can evidently be placed at the basis of an 
alternative formulation of the Virasoro-constrained KP hier- 
archy. Apart from its direct relationship with "nonlocal hier- 
archies," Eq. (8.3) can be rewritten in the form 

where the operator 

has arisen because of the noncommutativity of K and x.  Equa- 
tion (8.14) is a prototype of the loop equations for the case of 
an infinite number of "primary fields." In view of their infi- 
nite number, we may also expect that the "higher" loop equa- 
tions will be fulfilled. Indeed, we shall derive them as a conse- 
quence of the gigantic symmetry of the Virasoro-constrained 
KP hierarchy. 

It is not difficult to derive the complete algebra of the 
symmetry admitted by the Virasoro-constrained KP hierar- 
chy now that we have at our disposal the explicit form of the 
Virasoro generators. The latter have the structure 
2, = (KI,K - I )  - , which may be expressed by saying that 
2, is the dressing of the operator 1,. We now consider the 
expression 

Whenp and q label generators that appear in the set of Vira- 
soro constraints, both factors in the right-hand side are found 
to be of the pure (. . .) + type, and so the overall (. . . ) - gives 
zero. Continuing in the same spirit, we obtain 

We recall once again that the commutator algebra of the vec- 
tor fields associated with the generators 2 is isomorphous to 
the "bare" algebraofthe operators I,, ,...,Ips [see (3.9) 1. Thus, 
the algebra generated by the Virasoro constraints on the KP 

hierarchy turns out to be simply the associative algebra gener- 
ated by the generators 

Its structure becomes comprehensible if we consider first the 
subalgebra sI(2) generated by the generators X!., and 2,. In 
the representation (8.17) they have a Casimir operator equal 
toR = J- J 2 ,  and thereby generate, by means of (8.16), the 
algebra36 

which is defined as the factor algebra of the universal wrap- 
ping algebra sI(2) with respect to the ideal generated by the 
relation 

(Casirnir) =h. 

Such algebras BA are of interest in themselves: They have 
appeared, in particular, in the study of massless higher-spin 
fields in 2 + 1 dimensions. The generators BA lie inside the 
wedge - s + 1 <rigs - 1 (Ref. 36). As regards the Virasoro 
conditions, it is obvious that even the generator I, "protrudes" 
out of the wedge. On the other hand, the addition of just I, 
leads to the appearance of all the other I,,, . Thus, we obtain a 
"Borel" subalgebra of the algebra W, ( J ) .  The latter is the 
bosonic part (more precisely, half the bosonic part) of the 
super-Wm (J) algebra constructed recently in Ref. 24. A 
"Borel" subalgebra implies that we retain only the generators 
IF' for which n> - s+  1. 

The system of W, constraints can be written compactly 
in a form analogous to (8.3). We note first of all that we can 
get rid of the dependence on J by including in the dressing the 
conjugation eJ' D . . . e -  J'D, thereby reducing everything to the 
case J = 0: Indeed, Eq. (8.3) can be rewritten in the form 

But in the case J = 0 we find that the Wm constraints have a 
very simple form: 

and can be summed to give the generating expression 

( K ( e z P -  l )e 'DK-')-=O (8.19) 

or, equivalently, 

or, finally, 

where K[D + z ]  denotes the same as K but with D replaced 
by D + z; z here is a formal parameter. The equations we have 
written out are a complete system of W, constraints on the 
KP hierarchy, and, at the same time, turn out to be the proto- 
type of the leading loop equations. As was noted above, these 
equations pertain to the situation with an infinite number of 
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"primary fields." Theories with a finite number N of primary 
fields follow as a result of N-reduction of the Virasoro-con- 
strained KP hierarchy. 

9. SYMMETRIES AND REDUCTIONS OF THE VIRASORO- 
CONSTRAINED KP HIERARCHY 

9.1. N-reduction of the Virasoro generators 

We recall that the N-reduction of the KP hierarchy itself, 
without Virasoro constraints, is achieved by requiring that 
the Nth power of the Lax operator be a purely differential 
operator: 

Then, in the standard way, the evolutions along the times 
t, ( k )  1 ) become trivial, and these times themselves can be 
set equal to zero. It is convenient to rename the remaining 
t imeas?, ,  =tNi+. ( i ) l , a =  1 ,..., N-  1). 

We shall examine first whether the action of the Virasoro 
algebra is reduced in the framework of this scheme, and then 
discuss the possibility in imposing Virasoro constraints. Thus, 
the Virasoro generators are given by the left-hand sides of Eq. 
(8.2), in which r runs over all integer values (&). Now, 
however, the operator P is expressed by the formula 

By virtue of (9.1 ), not all powers of the differentiation D give 
a contribution to the dressed operator P: Writing r in the form 
r = N j + p ( P =  (0,b) =0,1, ..., N -  I ) ,  weobtain 

a + b t O  mod .Y 

(9.3b) 

[We note that for b = N - 1 the term containing t ,  r x  is al- 
ways present in the right-hand side of (9.3b): 

since K does not commute with x.] 
Up to now we have only rewritten the formulas for the 

generators, and there are no grounds to expect that the action 
of the Virasoro algebra on the KP hierarchy will be consistent 
with the N-KdV reduction. The consistency is verified most 
simply by commuting the vector fields %ssociated with the 
left-hand sides of (9.1) (see Sec. 3) with 2,. As already men- 
tioned more than once, these commutators are determined by 
the "bare" commutators [cf. (3.9)]. Thus, we convince our- 
selves that consistency of (9.3b) with the N-KdV reduction 
requires the conditions 

which freeze the evolution along the times tbj + , . The only 
Virasoro generators that are consistent with the reduction 
turn out to be those written out in (9.3a). Furthermore, the J- 
dependent part of these generators for negativej transforms K 
as K-K + J M K p J  (j < O), which is part of the allowed 
"gauge" freedom and can be omitted (in other words, such 
transformations do not affect either the Lax operator Q, in 
view of the fact that SQ = JNjK[D N',D ] K - ' = 0, or, as will 
be shown below, the T-function). After a change of normali- 
zation, these generators form their own Virasoro algebra. 
Thus, the "inner" N-KdV generators are 

Thus, the Virasoro-constrained N-KdV hierarchies are 
obtained by imposing the condition (9.1) on the KP hierar- 
chy and requiring that the generators (9.5) forj> - 1 vanish. 
The relationship to the Virasoro-constrained KP hierarchy is 
as follows: Starting from the KP  hierarchy restricted by Vira- 
soro constraints 2 ,  - , , we first weaken these constraints to 
QNi (i>O). This gives 

Apart from this, however, afer the imposition of the con- 
straint (9.1) it turns out to be possible to require in a consis- 
tent manner that, as well, 

This is none other than the KdV generator 2( ,, , so that, 
finally, we obtain the N-KdV hierarchy restricted by the Vira- 
soro constraints 

The analysis of the associative algebra generated by the 
operators Qu, proceeds in the N-reduced case in a similar 
manner to the analysis considered above for the KP hierar- 
chy. As we have just seen, the surviving constraints do not 
contain J-dependent terms, and so one can assume that, for- 
mally, the N-KdV reduction presupposes that J = 0, and this, 
in its turn, determines the zero value of the Casimir invariant 
for the sl(2) subalgebra generated by the operators 2 , ,  , , and 

2 0 ,  - 
For J = 0 the associative algebra generated by the con- 

straints takes an especially simple form, and is generated by 
the operators 

(Of course, it is after dressing that these expressions strictly 
become constraints.) In fact, for the product of two "bare" 
Virasoro generators we have 

If both indices j here are non-negative, the second term in the 
right-hand side is again a Virasoro generator that vanishes 
after dressing. Continuing in the same spirit, we successively 
obtain  pi^ N U ,  + ... + I i )  + i , until the operator 

p N D N ( j , +  . . t j ~ ) + N  

432 Sov. Phys. JETP 74 (3), March 1992 A. M. Sernikhatov 432 



appears. Writing the corresponding dressed constraint in the 
form 

where L is a differential operator, we finally obtain 

which is what gives the third line in (9.7). If, however, a 
sufficient number of indices j are equal to - 1, so that 
Nj + i < 0, we obtain the second line in (9.7). 

The constraints can be summed to give a generating 
expression analogous to ( 8.19 ) : 

(K [exp (zPD'-~)  -11 exp (lDN)K-')-=O. (9.9) 

(If we preserve the interpretation of I as a length, we should 
correspondingly redefine the dimensions assigned to the times 
of the hierarchy. ) Expanding (9.9) in powers ofz, we obtain a 
set of loop equations, and thereby establish a connection with 
the field-theoretical description. We note also that the fact 
that in the "kernel" exp IDN the differentiation D is present 
only in the form D singles out in the sum 

the first N - 1 terms, which correspond to primary fields. On 
the other hand, by defining (in a similar manner to that used 
by Dijkgraaf, Verlinde, and Verlinde in Ref. 17, but slightly 
differently) the derivative (d /dl) by means of 

we can rewrite Eq. (9.9) in the form 

where the term with i = 0 and a = 1 is absent from the sum 
I*. 

We note the "symmetry" (or, rather, even the duality) 
between Eqs. (9.6) and (9.15), which is emphasized by the 
commutation relation 

so that it appears to be rather natural to forget about the initial 
motivation (the study of the Virasoro constraints in the form 
in which they have arisen, up to now, in matrix models) and 
study the diverse possibilities of imposing on the integrable 
hierarchies constraints that are constructed by dressing ex- 
pressions composed of P and D. 

In Secs. 2 and 3 we noted formal analogies between the 
description of the Virasoro algebra on integrable hierarchies 
and the structures of conformal field theory [compare Eqs. 
(2.19) and (3.1 ) 1. In the N-KdV case the "energy-momen- 
tum tensor" also repeats the "generalized structure (3.1 ) ." 
To be precise, we take the Virasoro generators Su,, where j 
runs over all integer values, and, setting l= p, "fermionize" 
the following "energy-momentum tensor" on the KdV hier- 
archy: 

We recall that S(z,D) is the projector on to the subspace of the 
eigenvectors of the operator D with eigenvalue z. It is then 
obvious that 

The right-hand side of (9.11) thereby takes the form [where 
we omit the two-differential ( d ~ ) ~ ]  

Here we have introduced the wave functions [cf. Eqs. (2.7) ] 

N j + b  
E(.) ( t ,  z )=  'F t b ,  jza 

1.6' 

(and analogously for the conjugate wave functions). In rea- 
lity, they must be regarded as functions of a parameter EEGP'. 
We recall that the spectral parameter of the N-KdV hierarchy 
lives on a complex curve specified in C2 3 (z,E) by the equa- 
tionzN = P(E),  where Pis a polynomial. The projection on to 
CP' 3 E  is an N-sheet covering, as a result of which new wave 
functions $'"' (t,E) arise. 

Calculating explicitly now the (. . .) _ part of the S- 
operators in (9.1 1 ), we obtain the N-KdV "energy-momen- 
tum tensor": 

The similarity with two-dimensional field theories is 
thereby preserved as before: As in conformal field theory on 
Z, curves, the energy-momentum tensor is given by a sum 
over sheets of a covering on GP' (Ref. 37). 

This also explains, in particular, the Z, twist (see Refs. 
6, 22, and 23) of the Virasoro generators that act on the T- 

function in the form of differentiations with respect to the 
times, as in (2.16). In fact, the variation of the T-function is 
restored from the variation of the wave function in the usual 
way, starting from res K = - a log T, whence 

The residue of the operator 5 (z) follows rapidly from its "fer- 
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mionized" representation (9.15). To the combination of 
wave functions which then arises we apply the formula38 

(which follows without difficulty as a result of applying the 
vertex operator exp X,, , l,(z -' - u ' ) a  /at, to a bilinear 
identity for the KP hierarchy' and calculating the integral as a 
sum of residues). From (9.17) we see that the expression of 
interest to us is equal to 

This expression, which applies in essence to the KP hierarchy, 
does not yet give the answer, since we still have to perform the 
summation over c after the replacement zttz, in accordance 
with (9.15). For this we recall that 6 and V are defined by the 
formulas 

The sum over c with weight ef = exp (27~-/~)2c plays 
the role of the projector on to the singlet in the group of the 
Nth roots of unity, so that from (9.18) we obtain 

d'r ( t )  
dt.,,dtx-a,, 

Next, we shall relate the singling out of the modes Y,", 
from the energy-momentum tensor acting on the T-function 
to the expansion of the KdV hierarchy in powers of the spec- 
tral parameter 6 = zN. Restoring the two-differential (dzl2 
that appeared as a factor in the right-hand side of (9.24) and 
then expressing it in terms of (d6)2 and again omitting 
we expand in powers of 6 and thus arrive at the virasoro gener- 
ators 

3 - 1  n-1  .,.,,=';r, Y, d : 

iv - ,=, at,,ats-,,-,-, 
R-1 

These operators, acting on the T-function of the N-KdV 
hierarchy, have been written in inner terms of this hierarchy. 
We have introduced them as a result of N-reduction from the 
KP generators (2.16). We note, however, that the prescrip- 
tion for this derivation follows automatically from the preced- 
ing analysis of the Virasoro generators in terms of the dressing 
operators. 

When we attempt to include in the analysis the J-depen- 
dent part of the generators (9.3a), we obtain a zero result at 
the point at which we sum over c [see (9.19) ] : 

N-I 

which confirms the unimportance of the J-dependent part of 
(9.3a). 

9.2. The sl(/V) currents on the space of the dressing operators 

The above formulas, which display remarkable analogies 
with theories on the world sheet, suggest the following con- 
struction, which repeats the structure of currents with values 
in the Kac-Moody algebra:39 

Ybt E )  =~y) ( t ,  ~ ) ~ ~ - l ~ , p l . ( f .  E ) ,  (9.22) 
h 

The associated vector fields 5"' do indeed satisfy the current 
algebra sl( N) , as is most simply verified by first rewriting the 
"currents" (9.22) in the form 

Using (3.91, we find 

(the appearance of the Kronecker symbols reflects the fact 
that two points can coincide only if they are on the same sheet 
of the Riemann surface). The commutation relations (9.24) 
are supplemented by a tracelessness condition of the type 
(9.21). 

The sl(N) Kac-Moody symmetry obtained in this way 
can turn out to be extremely important in the context of W- 
gravity and can reflect hidden symmetry of the latter.40 But in 
application specifically to constrained integrable hierarchies 
as well, the presence of the symmetry under the current alge- 
bra makes it possible to introduce hierarchies subject to the 
corresponding constraints. To be precise, as well as satisfying 
the [ [ , I  1 commutation relations (9.24), the currents also 
commute in the standard way with the "energy-momentum 
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tensor" (9.15) [see (3.21) 1,  so that it is possible to impose 
dominant-weight constraints with respect to the Kac-Moody 
algebra and the Virasoro algebra simultaneously. This possi- 
bility is illustrated by the general procedure that we are pro- 
posing: to reject the matrix formulation of the matrix models 
and, as the initial object for the description of nonperturbative 
quantum gravity, to consider integrable hierarchies subject to 
the appropriate constraints. 

The origin of the sl(N) currents is also made clear from 
the point of view of the reduction from the KP hierarchy. The 
ymmetries2%f the latter are represented by the vector fields 
D(u,v), where B(u,v) is given by Eq. (3.20). In thereduction 
to the N-KdV hierarchy, of course, one must verify that these 
symmetries are consistent with the constraint (9.1). The ver- 
ification again reduces to the calculation of the commutator 
of the corresponding vector fields, which is found to be pro- 
portional to the expression 

so that one requires that 

u=u exp ( k --- 2"Yi:- ), k ~ ( 0 .  I.. . . . N - I ) ,  

and the "bilocal operators" (3.21) are thereby restricted to 
B (z, ,zb ) , in agreement with (9.23 ). 

We note that the "hierarchical" analog of non-Abelian 
bo~onization~~ would be the representation of the "currents" 
Xab in the matrix formalism of Drinfel'd and Sok~ lov ,~  in 
which, of course, it is natural to expect the appearance of the 
sl(N) current algebra. 

10. NxNFORMULATlON OFTHE VIRASORO CONSTRAINTS 
AND OFTHE STRING EQUATION 

10.1. Virasoro generators and constraints on the sl(N)-KdV 
hierarchy 

Besides that used in Sec. 9, the N-KdV hierarchies also 
have another, extremely important formulation3 in terms of 
jrst-order differential operators with matrix coefficients. 
This formulation is the basis both for generalizations to arbi- 
trary semisimple Lie and Kac-Moody algebras and for dis- 
playing the geometrical nature of the equations under consi- 
deration (Hamiltonian reduction) and establishing the 
connection with other physically important structures-pri- 
marily, with W-algebras (see footnote 4). 

It is important, therefore, to construct a "raising" of the 
action of a Virasoro algebra from scalar to matrix differential 
operators. This will make it possible, in particular, to apply 
the apparatus of Ref. 3 to extend the construction that gives 
the action of the Virasoro algebra to generalized (m)KdV 
hierarchies associated with Kac-Moody algebras other than 
V1 

sl(N). (We recall that the "simply" N-KdV hierarchy with 
which we have worked up to now turns out to be associated 
with the current algebra sl(N), and so we shall now call it the 
VI 

sl(N)-KdV hierarchy.) As we have already seen, the con- 
struction that we have developed of Virasoro generators in 
terms of dressing operators permits us to make advances in 
the analysis of hierarchies restricted by Virasoro constraints. 
It is obvious that the Virasoro-constrained Z!-K~V hierar- 
chies obtained from the matrix formulation by replacing the 
algebra sl(N) by Z! will describe the interaction with gravity 

of the corresponding minimal models from their ADE classifi- 
cation.41 (We note in this connection the work of Yen.23) 

To construct the Virasoro generators in the sl(N) for- 
malism, we shall use the experience gained in Sec. 6, in which 
the Virasoro generators on another hierarchy associated with 
the current algebra sl(N) were found. Although, from the 
standpoint of Sec. 7, thesl(N)-Toda hierarchy belongs to the 
"discrete" hierarchies, while the N-KdV hierarchy is un- 
doubtedly "continuous," which is important for us now is 
only the formal structure of the Virasoro generators on hier- 
archies associated with thesl(N) current algebra. It turns out 
that this structure can be copied from the sl(N)-Toda to the 
sl(N)-KdV hierarchy in such a way that both consistency 
with the flows and the Virasoro commutation relations will 
hold.'' 

We recall that the equations of the sl(N)-KdV hierarchy 
are imposed on the differential operator 

where L has the form (6.1 1 ) . There exists a matrix W of the 
form 

N-I 

such that 

where theA are scalar functions. Transformations of the form 
( 10.2) form a group of gauge transformations. 

The flows of the sl(N)-KdV hierarchy are induced on 
gauge-equivalence classes by the following equations: 

Here, to within the gauge equivalence, it does not matter 
which of the two possibilities-negative powers of AN ( 5 )  or 
negative powers of c-is chosen as (. . .) - . 

The times taxi are labeled in the same way as in the scalar 
variant: a~{1,2, ..., N - 1) (i>O). It is important, however, to 
note that we do not now identify the lowest time t , ,  with the 
variablex. The flow corresponding to this time "is trivialized" 
[cf. (2.4) ] only on the gauge-equivalence classes, but not di- 
rectly in terms of the matrices with which we are working. 

The flows ( 10.4) are induced by the following evolution 
equations on the dressing operators: 

Introducing 

where Cis an ordered exponential-the solution of the equa- 
tion 

we achieve fulfillment of the equality 
8 C ' = O .  

after which 
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also satisfies the condition 

This is one of the equations of a "generalized linear system" 
(cf. Ref. 35). Besides (10.7), we also have 

d l -  - =- ( W c ' . \ ~ ( b ) ~ W - ~ ) - y  
dt.,, 

The Virasoro transformations have the form 

6,1i7=E IL'. ==- f i  p= [ Q  . 91 ( 10.9) 

where 

[cf. (6.13) 1. The condition for the transformations ( 10.9), in 
which zj = ( WI, W - ') , to be consistent with the flows 
( 10.10) reduces, in the standard way, to 

d 1 [ (  w(-+[cl.v. a t , ,  4 1 )  W - I ) . P ] = ~ ,  

which is fulfilled for ( 10.10). Just below, we shall show that in 
the "red~ction"~ to scalar (pseudo)differential operators the 
Virasoro generators ( 10.10) are consistent with those which 
we had in Sec. 9. 

The explicit form of the Virasoro constraints now fol- 
lows, obviously, from ( 10.10). Equating 2, to zero forj) - 1, 
we arrive at the unified equation 

where A + is a certain (. . .) + matrix.' Here the definition of 
(. . .) + in the sense of powers of the spectral parameter c 
turns out to be very advantageous. 

Rewriting (10.1 1) for the matrix \V introduced in 
( 10.6), we have 

Thus, Eq. ( 10.12) gives a refined variant of one of the equa- 
tions of the "generalized linear system" proposed for the for- 
mulation of the string equation in Ref. 35. It should be noted 

that we have obtained ( 10.12) by a direct derivation from the 
Virasoro constraints, whereas in Ref. 35, strictly speaking, 
only the contrary implication was asserted. In addition, the 
more invariant approach that we have developed yields auto- 
matically the generalizations from sl(2) to sl(N) and next, 
with the use of the technique of Ref. 3, to other algebras. 

More important, however, is the following remark: Not 
only is the use in Ref. 35 of the canonical form of the Lax 
operator for the generalizations sl(2) -+sl(N) incorrect in 
view of the fact that his canonical form is not preserved during 
evolution along the flows of the hierarchy (see Ref. 3), but the 
very formulation of the string equation as the condition 
[ 9,2 ] = 1, where 9 and L?? are matrix differential opera- 
tors, is not equivalent to the scalar string equation [P,Q] = 1. 
We shall demonstrate this in the next subsection. 

10.2. Correspondence with the scalar formalism 

First of all we shall elucidate the question of whether the 
Virasoro generators (9.10) and ( 10.5) correspond to each 
other in any sense upon standard "reduction" from the matrix 
to the scalar formalism. 

We shall recall the correspondence between the matrix 
description and the scalar d e ~ c r i ~ t i o n . ~  Suppose, as before, 
that J, Diff denotes a ring of pseudodifferential operators of 
the form 

Suppose also that 3 denotes the space of vectors that are 
columns of height N, the elements of which are formal Laur- 
ent series in [ and simultaneously functions of x. A given 
operator Y of the form ( 10.1 ) makes it possible to define the 
following action of J, Diff on 9, transforming 3 into an alge- 
bra over the J, Diff ring: 

- :$Diff  x 3 -5 ,  
d 

where, in the right-hand side, we have in mind matrix multi- 
plication and the standard action ofthe operator D = d /dx on 
a function of x. Because of the fact that [ Y ,  f ] = df for a 
scalar function f(x),  we have 

whence A,  B€J,Diff 

( A B ) - q =  A,. ( B . q ) ,  
L? 2 '2 

( 10.14) 

so that the action of ( 10.13) does indeed make 7 an algebra 
over J, Diff (Ref. 3 ). 

The correspondence between the matrix operator Y and 
the scalar operator L [see (9.1 ) ] is specified by the formula 

from which L is determined uniquely in terms of the given 9 
and is found to be an operator of the form 
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where the ui are certain functions of x.  
To verify the consistency of the scalar and matrix Vira- 

soro generators, we shall find the total variation of the left- 
hand side of ( 10.15) under the simultaneous action of genera- 
tors of both types. Thus, we shall vary both the "argument" L 
and the operation itself. More precisely, as we shall see, in 
view of the choices of signs made earlier, the transformations 
to be made consistent are now the simultaneous transforma- 
tions 

' ,L=[@jm7 L ] ,  6je=- [gjm, 21, (10.16) 

where the superscripts indicate the scalar and matrix Vira- 
soro generators (9.5) and ( 10. lo), respectively. Thus, we cal- 
culate 

where the u;  are the same coefficients of the unperturbed op- 
erator L as above. Taking into account that [2;ui 1 ,  and also 
using ( 10.15) again, and, of course, ( 10.14), we obtain 

We recall now that the generator 27 appearing here is the sti, 
from Eq. (9.5). To be more precise, we refrain from identify- 
ing the "first" time t ,,, with the variablex, and, using also the 
definition (9.1 ), we write the scalar Virasoro generator in the 
form 

where W is defined precisely by the relations ( 10.13 ) , and 
(...) - in the right-hand side singles out the negative powers 
of AN([). In this way, for the 88 part of the generators 
(10.18) we have 

which coincides with the corresponding part in ( 10.10). It 
remains only to calculate the action of the first term in 
(10.18). 

As shown in Ref. 3, the arrangement of the (...) - 's is 
"equivariant." It remains, therefore, to find the xj from the 
formula 

1 - N ( K X D ~ ~ + ' K - ~ ) .  q0 = X,lo. ( 10.21) 
ie 

The pseudodifferential operator from the left-hand side satis- 
fies the commutation relation 

so that for xj the following equality should be fulfilled: 

which determines xj in the form 

where the hi are arbitrary scalars, as in (6.13). 
Thus, combining ( 10.20) and ( 10.22), we obtain 

where the ellipsis (...) denotes the terms hiAN(f) - '  from 
( 10.22). Choosing the latter to coincide (and even to be equal 
to zero), both in the definition (7.13) of the matrix ii appear- 
ing in ( 10. lo),  and in ( 10.22), we see that the expression in 
the curly brackets in ( 10.17) vanishes and the variation of the 
equality ( 10.15 ) takes the form 

6:o' ( L . % - 6 q o ) = 0 ,  ( 10.24) 
I 

where 6:"' includes the variations ( 10.16) and also the usual 
("reparametrization") action of the Virasoro algebra on the 
complex parameter: 

i3,b=ljt=fj". ( 10.25) 

This result gives an exhaustive answer to the question of 
the consistency of the Virasoro action on the N-KdV hierar- 
chy in the scalar formalism and in the Drinfel'd-Dokolov for- 
malism. 

There is an important difference between the matrix de- 
scription and the scalar description in regard to the string 
equation. In the literature (see, in particular, Ref. 35), it has 
been assumed that the string equation in the matrix formalism 
is obtained, as in the scalar case, by equating to zero the com- 
mutator of two operators, one of which is the Lax operator 
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( 10.1). We recall that, in view of the structure (9.5) of the 
Virasoro generators, the constraint B'z , = ( 9 " )  implies 
that the operator 9"' is a purely differential operator. Then, 
trivially, 

[ L ,  PC] =I ( 10.26) 

where L = KD NK - is the Lax operator (also a differential 
operator!). But in application to the matrix formalism the 
condition ( 10.26) implies that 

where, again, ( 9 " )  - = 2". This equation has a different 
structure, since, contrary to the scalar case, 6 is not an eigen- 
value of the Lax operator 2, and, generally speaking, 
[Y,Prn1 # 1. 

A similar comment also applies to the analogous matrix 
constructions for other Kac-Moody algebras. In the next sec- 
tion we also encounter, albeit in an entirely different context, 
a situation in which the string equation requires, as a mini- 
mum, further commentary. 

11. SUPERSYMMETRIZATION OF THE VIRASORO 
CONDITIONS 

Up to now we have considered models for which the 
correspondence with the matrix formulation is known. The 
situation with supersymmetric theories is somewhat different. 
While the naive matrix formulation can be t r i~ ia l ized ,~~ it is 
undoubtedly true that both supersymmetric theories interact- 
ing with supergravity and, of course, supersymmetric hierar- 
chies themselves exist. In this situation it is in fact extremely 
natural to postulate Virasoro constraints on dressing opera- 
tors as a "first principle," if, or course, this can be done in 
agreement with the equations of the hierarchy. We note that, 
precisely because of the (odd) flows of the hierarchy, it has 
turned out to be impossible to manage with just one analog of 
the string equation.42 At the same time, we shall see that the 
dressing-operator formalism makes it possible to impose in an 
entirely satisfactory manner Virasoro constraints subordinate 
to all flows of the super-KP hierarchy. 

Thus, we shall introduce the super-KP hierarchy by ex- 
tending the space of $ Diff operators to super-$ Diff opera- 
tors. We shall describe the version of the supersymmetric KP 
hierarchy due to Manin and R a d ~ l . ~ ~  The Mulase-Rabin var- 
iant44 admits an analogous analysis. Let f be the superpartner 
of the variable x, and let 

a 0 =- d +ED, V 2 = D  E- 
a t  a t '  

The dressing operator is now represented as 

where {w,) are functions ofx and 6. Next, we introduce even 
times {t,, j> 1) and odd times {T~,+ , j>O) .  The even times 
are the ordinary times of the KP hierarchy, relabeled as t, - tv 
since the odd indices are now used for the odd times. 

The flows of the super-KP hierarchy have the form 

where we have introduced the vector fields 

and (...) denotes taking only the negative powers of the odd 
differentiation V. We note that in the supercase the variable 6 
is not identified with any of the odd times T ~ ,  + , . For symme- 
try of the entire formalism, we also refrain from identifying x 
with the lowest even time t,. (Thus, [D,t ,]  = 0.) 

On the basis of our previous experience, it is natural to 
expect that the super-Virasoro generators on the space of the 
operators K will be given by left multiplication on a purely 
(...) - super-$ Diff operator of the form ( K  ... K -- ' ) _ . The 
"bare" generators can be found be requiring, first, satisfaction 
of the Virasoro algebra, and, second, consistency with the 
equations of the hierarchy. Thus, we arrive at the following 
Neveu-Schwarz generators: 

where m d  and 

is, obviously, the superextension of the operator (3.7), while 

is its superpartner. Furthermore, the operator 

commutes with V. If we insist on a rigorous formulation of all 
the operators as elements of a ring of superdifferential opera- 
tors in V, we ought to express 7 a2 V - 2fv2. 

Commuting the vector fields 8 corresponding to the gen- 
erators 8 with each other, we find the even Virasoro genera- 
tors 

These, obviously, are the superextension of the generators 
(8.2) [with a more subtle (...) - operation!]. 

It is now not difficult to verify that infinitesimal defor- 
mations of the dressing operator that have the form 
SK = 2, K and 63, - , ,,,, K are tangent to the manifold of 
solutions of the super-KP hierarchy. 

Thus, the Virasoro-constrained super-KP hierarchy can 
be defined by the equalities 

@,,,-U=O, m20, (11.10) 
En=@ n2-1. 

The entire previous analysis of the algebraic structure and 
symmetries of the Virasoro-constrained KP  hierarchy can be 

438 Sov. Phys. JETP 74 (3), March 1992 A. M. Sernikhatov 438 



carried over without difficulty to the supercase, since it is 
based wholly on the algebraic structure of the "bare" genera- 
tors, i.e., on the commutation relations between the operators 
P, D, n and V, V. 

As regards the string equation, we note that, of course, 
the operator 

which is a super-dlflerential operator by virtue of the con- 
straint 2 - , = 0, satisfies the equality 

in which 

is a Lax operator. On the other hand, if we attempt to find the 
superpartner of this string equation we discover that, al- 
though the equality '3 - ,,, = 0 is precisely the condition for 
the operator 

to be a superdifferential operator, nevertheless its commuta- 
tor with the Lax operator ( 1 1.12) is not too comprehensible, 
and, generally speaking, is not equal to 1. It turns out that not 
Q, but another operator 

satisfies the equality 

In reality, there is no need to insist on the string equation 
as the first principle in the description of supersymmetric 
models interacting with gravity. Postulating that the object 
that is actually needed is a Virasoro-constrained (super) hier- 
archy, we see that, in the supercase as well, it is natural to 
define such hierarchies with the use of the more powerful 
technique of dressing operators. We note at the same time that 
less important here is the correspondence with the description 
in the language of the T-function (which, in fact, would give 
rise to further complications in the supercase). 

An analysis of the super-KP hierarchy and of the Vira- 
soro constraints on it from a somewhat different ("Grass- 
mannian") standpoint has been performed by Schwarz in 
Ref. 45. There is no doubt that the supervariant of the tech- 
nique developed in Ref. 46 will make it possible to make the 
results of Ref. 45 just as explicit as in our above analysis, and 
the equivalence of the Grassmannian approach of Ref. 45 to 
the above-described "(super)pseudodifferential" approach 
to Virasoro superconstraints on supersymmetric hierarchies 
will thereby be established. 

12. CONCLUDING REMARKS 

We shall look once again at the Virasoro constraints with 
which we have worked; in the Introduction these constraints 
were written out for the toda hierarchy, and so now we let the 
KP case play the role of the example: 

The fact that the times of the hierarchy appear explicitly in 

this only linearly is essentially what determines the relative 
simplicity with which the continuum limit and N-reduction 
were implemented above. The simplifications that have arisen 
are the essence of the dressing method. In fact, we shall con- 
sider the "bare" Virasoro generators, i.e., 

In view of the commutation relation 

[D. P ] = l  (12.3) 

this is none other than the usual representation 

d J(n+1)0"+tln+'-- 
dtl 

of the diffeomorphisms of a circle. The corresponding dress- 
ing of this simple construction leads to Virasoro generators 
(on the hierarchies) that are no longer so banal. The dual role 
[emphasized by the commutation relation ( 12.3) ] of the op- 
erators P and D, is related, as was suggested in Ref. 47, to the 
(p ,q )  symmetry of the minimal models; in a recent paper 
(Ref. 48; see also Ref. 45) this has in fact been established. 

The approach that we have developed makes it possible 
to introduce Virasoro-constrained hierarchies without refer- 
ence to the presence of the T-function, directly in terms of 
dressing operators. We had such examples in Secs. 10 and 11. 
Also, when the continuum limit of discrete hierarchies is tak- 
en, and/or reductions are performed, the question of the T- 

function corresponding to, say, the reduced hierarchy be- 
comes secondary: First one performs the reduction in the 
language of the dressing operators, and only then is it possible 
to seek, if one wishes, the 7-function corresponding to the new 
hierarchy obtained. 

Non-Abelian symmetries of the Virasoro type have been 
known to experts for some time as "mastersymmetries" of 
integrable h ie ra rch ie~ .~~ 

I am grateful to I. M. Krichever, W. Oevel, T. Takebe, 
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mention the helpful discussions with L. D. Faddeev, B. Gato, 
E. Guadagnini, V. Kats, M. Minchev, E. Sorace, and A. S. 
Shvarts, and their interest in the work. 

"Any reasonable number of the corresponding references that would be 
admissible within the framework of the present article, which is not a 
special review, would be inadequate. 

"Referring to Ref. 11, we have in mind, strictly speaking, only the KP 
hierarchy; however, one of the principal observations of the present paper 
consists precisely in the universality of the construction for & (and hence 
of the statements that follow below in the text) for a whole series of 
integrable hierarchies. 

"We refrain here from considering the subtleties associated with the fact 
that a natural interpretation of the flows of integrable systems is achieved 
in terms of the co-adjoint action of one of the subalgebras associated with 
the given r-matrix; see Ref. 13. As in most other applications, we assume 
the presence of an isomorphism between the Lie algebra and its dual 
suace. 

4'  In relation to the citing of papers devoted to W-algebra in quantum field 
theory, and also to applications of the method of Drinfel'd and Sokolov to 
the study of these algebras, as well as to the field-theoretical interpreta- 
tion and quantization of the Drinfel'd-Sokolov approach itself, we again 
find ourselves in the situation described in footnote 1. 
In the classic papers (see Refs. 9 and 30 and the further bibliography in 
these papers) on algebro-geometric solutions, the T-function and wave 
functions are true functions. Variants in which the wave function is a 

439 Sov. Phys. JETP 74 (3), March 1992 A. M. Semikhatov 439 



cross section of a bundle of J-differentials [or ( 1 - J)-differentials, for 
$* 1, and also the forms of the corresponding T-functions, have appeared 
comparatively recently in a number of papers; see, e.g., the derivation of 
these objects from the operator formalism in Ref. 3 1. 

6'For information on other approaches to the continuum limit of discrete 
hierarchies, see Ref. 20. 

"A possible formal reason for this is the consistency' of the sl(N)-Toda 
hierarchy and the mKdV hierarchy: The mKdV flows along the "third" 
set of times t, preserve the sl(N)-Toda equations, and so it is natural to 
assume the existence of Virasoro transformations consistent with all xyt- 
equations. 
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