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We have investigated the effect of spacetime curvature on the relative position angle A between 
the direction of maximum elongation of a radio source and the direction of the integrated plane of 
polarization for emission that has propagated from a source to the observer. A more detailed 
analysis has been carried out for a cosmological model with global rotation (Godel-type metric). 
In contrast to recent ideas about the origin of the dipole anisotropy in A first proposed by Birch 
and ascribed by him to the global rotation of the universe, we have found that such rotation 
cannot induce the sort  tani isotropy described by Birch, with A a cos8 (8is the angle between a 
ray and the rotation axis) Instead, we expect anisotropy with A cc sin2 0. We therefore conclude 
that the Birch effect, if real, cannot be due to the rotation of the universe. 

1. INTRODUCTION 2. REPRESENTATIVE BEAM AND ITS PROPERTIES 

Cosmological models with rotation have been discussed 
in the recent literature. The impetus for interest in such 
models came from the observations of Birch,' who discov- 
ered in a sample of 94 radio galaxies that there is a notable 
asymmetry in the angle A between the dominant direction of 
a source's magnetic field and its maximum elongation (here- 
after we refer to A as the relative position angle, or RPA), 
which depends on the location of the source relative to a 
certan plane in space. The dipole anisotropy identified statis- 
tically by Birch-with A a cos0 (8 is the angle between the 
direction of a ray and the anisotropy axis)-he ascribed to 
the global rotation of the universe at a rate - rad/yr. 
Various opinions about the reality of the Birch effect were 
subsequently voiced,"' but to this day the effect has not been 
convincingly refuted. 

Because the emission from radio sources is generated by 
the synchrotron mechanism, A is in fact the angle between 
the dominant direction of the radio polarization vector and 
the direction of maximum source elongation. In most radio 
sources, that dominant polarization vector is either parallel 
or perpendicular to the direction of source extension,' con- 
sistent with astrophysical models of radio sources (see, e.g., 
Ref. 7).  For the sake of convenience, then, we may redefine 
A at the source to be zero. If an observer were to detect some 
nonzero RPA, that would then suggest the existence of some 
mechanism-possibly even cosmological rotation-leading 
to rotation of the polarization vector, the direction of elonga- 
tion, or possibly both, as the radiation traveled from the 
source to the observer. 

It has recently been shownX that the polarization vector 
does indeed rotate (relative to a local coordinate basis) in 
rotating cosmological models, and that the rotation behaves 
in a manner similar to that proposed by Birch. This rotation 
results from deformation of the beam of rays defining the 
image of the source as it propagates in curved space.9 There 
is no such effect in a Friedmann space, but it can show up in a 
rotating space, so the results obtained by Korotkii and 
Obukhov8 still beg the question of what happens to RPA in a 
rotating universe. Our purpose here is to provide an answer 
to that question. 

To analyze variations in the RPA, we introduce a mod- 
eling beam ( a  representative beam, or RB) that carries the 
image of the source, and we investigate the behavior of the 
so-called optical scalars that characterize the beam geome- 
try. Bearing in mind the simple optical analogy of rays trav- 
eling down a telescope, we construct the RB using on- and 
off-axis rays leaving all source points and focused by the 
telescope objective. In the geometrical optics approxima- 
tion, such a beam will yield the same image of the source, in 
terms of its geometry, as the actual beam. Other properties of 
the RB are: 

1 ) the beam is a narrow one, by virtue of the small size 
of the source relative to the distance to the observer, and to 
the radius of curvature of space; 

2)  the beam is comprised of nonrotating rays; we ne- 
glect rotation internal to the source; 

3) for simplicity, the beam geometry is assumed to be 
elliptical, with principal semiaxes a and b; we call the corre- 
sponding directions the extremal directions of the beam 
cross section. 

The RB thus defined is parametrized by specifying the 
affine parameters for the rays (s = so = 0 at the source and 
s = s, > 0 at the observer), and the two parameters 
yA (A = 1,2 ), which number the rays; kp = dxp /ds is an iso- 
tropic vector tangent to the rays. Since we are dealing with a 
pencil beam, the location of any ray in the RB relative to the 
fiducial ray (f = 0)  can be specified by the connection vec- 
tor g l '=  dxx"/ dyA (s,f = O), where AyA is constant for a 
given ray. The four-velocity up is also defined at any point 
along a ray. As a rule, world lines of observers are the t 
coordinates of curves in four-space. The parameters s and fl 
are chosen such that l p k ,  = 0 at any point on a basis ray, 
andgpup =Ofo r s=Oands=s , .  

In addition to the connection vector lp along a basis 
ray, we also specify the (complex) polarization vector 
p = 2-112 (P + ihp ), which is comprised of the unit vec- 

tors e and h collinear with the field vectors E and H. For r" , 
the geometrical optics approximation yields 
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and we may also assume that tp up = 0 at s = 0. 
As we noted above, the beam properties are described 

by the optical scalars 

where the overbar denotes complex conjugation. The pa- 
r ame te r~  is the relative rate of change of the cross-sectional 
area AS of the beam, 

and a is the rate of deformation of the beam cross section 
(see Ref. 10 for a more detailed account of the geometrical 
meaning of p and a ) .  In the Newman-Penrose formal- 
ism,'O9 ' ' the equations for p and a are 

where R,, is the Ricci tensor, and CuBvs is the conformal 
curvature tensor. At the initial times = O,p, and o, are gen- 
erally nonzero, withp, > 0 if the beam is manifestly conver- 
gent. At s,, the location of the observer and the point at 
which the rays come to a focus, p (s , )  = co (which follows 
from AS(s, ) = 0) and a(s,) = 0. In view of the importance 
of the latter equality, we outline a proof. From the second of 
Eqs. ( 1  ), 

o = ~ z ( S )  + j vo(sl ) P ( s l ) e l  1, ( 2 )  
0 

where 

Since PO, F2 ,  and a, are bounded, we have 

C 
a (s) ---+ - 

8-a, Fa (s) ' 

From the first of Eqs. ( 1 ) and the fact that @,, is bounded, 
we find that nears = s f ,  

Since AS(s,) = 0, F(s , )  = 0, and it can be shown that 
F(s) -O(s, - S) and s-s,. This asymptotic behavior is in- 
compatible with ( 3 )  as long as c is nonzero. We thus con- 
clude that 

., 

&,=-I Yo (s)FZ (s)ds 
0 

and 

Equation (4)  is the basic equation that describes the effects 
of the curvature of spacetime on the characteristics in ques- 
tion (source image geometry, RPA). 

3. EQUATIONS FOR THE CONNECTION VECTOR AND RPA 

The properties of the connection vector lp make it pos- 
sible to derive the expansion 

From ( S ) ,  16 1'- - l P l p  = \ui2. The phase $ of u 
X ( U  = / u 1 e'+ ) is the angle between the connection vector 
and the real polarization vector @ ($ is reckoned in the 
direction from ep to hp ) . 

Next, we deal with the connection vectors, which are 
produced to the boundary of the RR. Points on the boundary 
of the two-dimensional beam profile are parametrized by the 
single angular parameter p. The quantity 11 becomes a func- 
tion of s and p .  Making use of the laws of transport of P and 
gpalong k p  ( t rvkv  = 0, {yvkv = k rvl "), it is straightfor- 
ward to obtain the transport law for u along the beam. With 
the definitions 

we have 

The formal solution of (6)  is 

where the 2 x 2 matrix s ( s )  is equal to the matrix Â  to an 
integer power, whereupon B,, = B,, and B,, = B, ,. Fur- 
thermore, 

We will be interested in the extremal connection vectors, 
which are produced to the extremal points of the beam con- 
tour. The corresponding values of p may be obtained from 
the equation d luI2/dp = 0, where 1 uI2 is given by (8)  (u, 
depends on p ) .  We have assumed that the RB is initially 
elliptical in cross section, with semiaxes a and b; we may also 
assume, with no loss of generality, that the polarization vec- 
tor@ is initially parallel to the major axis of the ellipse. Then 
by virtue of the fact that the vector lp is initially orthogonal 
to up, we can write 

Sd"a cos cp.eo"+b sin cp. how. 

This then implies that 

uo=a cos cpf ib sin cp, ( ~ a  Iz=a2 cosZ cp+bZ sinZ cp. (9)  

Differentiating 1 uI2 with respect to p and making use of (9) ,  
we find that the angle p, corresponding to the extremal con- 
nection vector for given s is 

where X = B l l  + B,, and Y = B, ,  - B,, satisfy 
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The RPA is the angle between the polarization vector 
d and the connection vector produced to the extremal 
point. As noted above, it equals the phase $ of u. In the 
present instance, we must take u at given s and with 
p = p, (s). For the tangent of the RPA, which we denote by 
A, we than have 

Using ( lo),  some manipulation of ( 12) yields 

Ifp and a are known, then ( 13) and ( 11 ) together complete- 
ly solve the present problem, specifically, finding a quantity 
that properly corresponds to the one utilized by Birch. 

4. COSMOLOGICAL MODEL WITH ROTATION 

Equation ( 13) will now be used to calculate the effect of 
interest in a rather general cosmological model with rota- 
tion, which is described by the metric 

where a ( x l )  = exp(mxl), k >  0,m > 0, andp  are constants, 
and t = x". The metric ( 14) is a natural time-dependent gen- 
eralization of Godel-type cosmological models. One obtains 
the Godel metric when R is constant and k / p  = - 1/2. It 
can be shown that when k > 0, the model has none of the 
closed timelike curves that exist in the Godel metric. In the 
model represented by ( 14), the local rotation of matter and 
observers comoving with it at four-velocity up = 6: may be 
characterized by the rotation tensor 

and the angular velocity 

Rather than working with the metric (14), it will be 
more convenient to use the stationary metric conformal to it, 

where 

We wish to map the RB and all associated structures from 
the space ( 14) to the space ( 15). The basic steps are as fol- 
lows. 

a )  The congruence of rays in the RB is mappeso  the 
congruence of a in such a way that the rays of RB pass 
through thezme  points x" as the corresponding rays of RB. 
The rays of RB will obviously be isotropic. We parametrize 
RB as 

s 

The congruence 
formed into 
= ?(s1, yA) .  

of the rays in the RB, x / ' ( x A  1, is then trans- 
the congruence in RB, xhYs(s'),yA) 

b)  The expression for the tangent vector ,&'"is 

It is not difficult to show that is a geodesic vector field. In 
Ih 

RB, we define the connection vector 

C )  On the basis ray in we define the vector 

f"--Rtv+ b ( 8 )  Rzkr, f,,=R-it,,+bk,, (19) 

where b ( s )  satisfies 

Then ?" satisfies the relations 

f,7%1=0, f,, 3 = O .  

d )  The optical scalars and the scalar Y, transform as 

p=RP [p+(dRlds)R-IkO].  8=uR2, q o = ~ 4 ~ o .  (20) 

The equations forb and 5 retain the same form as ( 1 ), except 
that To  and @,,,, must be replaced by Go and - 
@", = - 1 j j  k kc,& v. 2 P V  

e)  Finally, we have 

Taking (20) into account, the equations for fi retain the same 
form as in (6 ) .  Note that by virtue of (21),  the phase of fi is 
the same as that of u. Since the RPA may be expressed in 
terms of the phase of u, its invariance under a conformal 
transformation makes it possible to work with the simpler 
conformal metric. From here on we work only with the sta- 
tionary metric (15), and drop the tilde. 

In the space ( 15) we choose a reference frame of the 
form 

With this basis set, the only nonvanishing scalar out ofall the 
basis components TA ( A  = 0,1, ..., 4) of the Weyl tensor in 
the Newman-Penrose formalism is 

Here R is the angular velocity at which the space (15) is 
rotating. 

The geodesic equations for k are integrable.x Express- 
ing k in terms of the basis vectors (22), 
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where the q, ( i  = 0, ..., 3) are constants along the geodesic, 
with q, being the frequency of emission as seen by an observ- 
er at rest, and q,/q, is the cosine of the angle between the 
direction of the ray and the x3 axis. 

The components of the real polarization vector P may 
be conveniently written in the form 

Integrating the equation ofparallel transport for P along k'" 
and exploiting the fact that & is a unit vector, we obtain 

where 

4' (goL-qs2) D = -- + q$ cos ( a s - a )  +i  19, I P sin ( a s - a ) ,  
2'"q, 

q, is constant along a ray, and amounts to the cosine of the 
angle between the polarization vector and the x3 axis. The 
angle a in (25) is related to the initial orientation of the 
polarization vector relative to the basis mp . The expansion 
coefficients of the complex polarization vector P in the basis 
(22) ( t F  = c l lp  + c2np + c,mp + c,fip ) are comprised of 
the corresponding coefficients for the vectors & and h p; for 
example, c, = 2-'I2 (c,, + ic,, ), etc. The expressions for 
D, and D, differ by the constant q, and the angle a. The 
orthogonality of P and h p  implies that a, = a ,  
+ ( n-12 sgn 9,. 

Finally, we can use the foregoing results to obtain an 
expression for Y,,, which enters into Eq. (2)  for a :  

km2 -- - (go"-qs2)exp[*2i ( a s - a )  ] = A  exp[f 2i (os -a )  1. 
p+k 

The upper sign in the exponential corresponds to q, > 0, and 
the lower to q, < 0. 

5. CALCULATION OFTHE RPA 

Before calculating the RPA A in the cosmological mod- 
el with rotation, let us analyze the general equation (13). 
The latter implies that A will not vary if the quantities X and 
Yare real, which will be the case [see ( 11 ) ] if the scalar a is 
real; that, in turn will be true when the scalar To is real. In 
particular, the RPA will not vary at all in a Friedmann (con- 
formally flat) universe, for which Y, = 0. Likewise, the 
RPA will not vary in a rotating universe with the metric 
( 14) for k > 0. In the space with metric ( 14) with k > 0, or 
( 15), we will have the same result for ray propagation along 

the rotation axis x3,  where q: = q: . 
Another special case is that in which a ray propagates in 

the equatorial plane and q, = 0; then w = 0 and the scalar Yo 
is a complex constant. Except for those cases in which a = 0 
or + n-/2, the RPA will vary, corresponding to the fact that 
the extremal directions of the source beam lie in the equator- 
ial plane and perpendicular to it. 

We now treat the general case of arbitrary ray direction. 
Here we seek a solution to Eq. (1)  (and taking (4)  into 
account) with \V, given by Eq. (26) and constant @,,,: 

These equations can be solved, in principle, given Y, and 
@,,, but only with a great deal of effort and by analyzing 
many special cases. On the other hand, with R - 10-l3 rad/ 
yr = 3. lo-'' rad/sec, it is perfectly adequate to use the ap- 
proximate solution obtained b assuming that ws14 1. In 
point of fact, in real dimensional units, 

so that even at r- 10'' cm, the foregoing inequality holds. 
Equation (4)  yields 

Strictly speaking, it has been assumed here that the cross 
section of the RB decreases monotonically between the 
source and observer. Then from (26) and (27) we obtain 

This means that in the equation ofp, we can neglect lo/' in 
comparison with @,,. Furthermore, even the contribution of 
@,,top is of order 02s:, SO that it too can be neglected. Thus, 
for p we can use the equation for flat space ( 1 a1 = @,, = O), 
and the solution of that equation leads to the function 
F = 1 - s / s I  Substituting this function into (4)  and bearing 
in mind that A-O(w2) yields to the same order 

Integrating ( 11 ) up to terms that are O(w2s: ) yields the 
functions 

X= (1 - s I s , )  (i+'lsA (sts-s2/2) exp (rQiu) I ,  
(29) 

Y-  ( l -s ls , )  [ l - ' /J  ( s I s - sV2)exp(r2 ia ) ] .  

From ( 13), we finally obtain 

The minus sign in Eqs. (28)-(30) corresponds to q, > 0 and 
the plus sign to 9, < 0. It follows from (30) that A = 0 when 
a = 0 or + 71/2. Further investigation reveals that these 
special cases correspond to one of the extremal directions of 
the source lying in the equatorial plane. 

Note that in the present treatment, the RPA depends on 
specific characteristics of the source-its orientation rela- 
tive to the rotation axis and the size of the semiaxes a and b. 
For example, the angle A increases as a - 6-0 (albeit the 
error in determining A also grows as (a  - b) -I). 
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6. DISCUSSION particles rotates with respect to the coordinate basis in a 

It is immediately obvious that the results obtained here 
are inconsistent with the behavior deduced by Birch from 
the observational data. To see this, we represent (30) in the 
formf, (z)f,(O), where 19 is the angle between the ray direc- 
tion and the rotation axis, and z = Sv/v is the redshift. If we 
retain only those terms in A that are at most quadratic in z, 
then it suffices to find s as a linear function of z. It can be 
shown that s = z(HoRoqoy)-I, where R, and Ho are the ra- 
dius of the universe and the Hubble constant at the present 
epoch, and y = k(k  + p )  - ' ( 1 + p"2q,/kqo). Substituting 
this expression for s into (30) and noting that A is a small 
angle, some rearrangement yields 

2 k 62,' az+bz 
A = T--- zZ - sinZ 0 sin 2a. 

3 p y Z  H,t aa-bz 

In deriving (3  1 ), we have used the fact that q,/q, = cos6; 

is the angular rotation rate of the universe (with the metric 
( 14) ) at the present epoch. In general, y induces an addi- 
tional angular dependence in A.  The signs in (30) and ( 3  1 ) 
mean that the major axis of source's boundary map actually 
rotates in the same direction as the global rotation. Birch,' 
on the other hand, has not specified A cc cose or the z-de- 
pendence of A, and in the metric (14), the polarization vec- 
tor rotates by an angle proportional to Sl~cosO /Ho (Ref. 8 ) .  

The reason for the disparity with Birch's result' is plain 
to see if we consider the situation in which a ray propagates 
along the rotation axis. Taking q, > 0, the complex and real 
polarization vectors are then 

Substituting this expression for t p  into (5),  we obtain 

where a is the phase of v, which is constant for propagation 
along the rotation axis. Equations (32) and (33) imply that 
the connection vector and polarization vector rotate in the 
same direction at the same rate, and f ~ r  a suitable choice of a 
they coincide. 

To put matters differently, we can interpret this situa- 
tion by saying that the rotation of the universe induces local 
coordinate systems, and free particles "fall behind" the ref- 
erence frames. In other words, the direction to one of these 

sense opposite that of the rotation of the universe. This is 
also true of the vector joining two geodesics, and of the po- 
larization vector, which undergoes parallel transport along a 
ray. Extending these results, we might expect that such will 
be the case in any metric with global rotation, and therefore 
that the type of anisotropy discovered by Birch, if it is in fact 
real, cannot be accounted for by rotation of the universe, but 
must arise instead for some other reason (for example, the 
existence of a metagalactic magnetic field). 

Our investigation leads us to believe that a rotating uni- 
verse will give rise to anisotropy of the kind described by Eq. 
(31 ). That anisotropy is greatest when a ray propagates in 
the equatorial plane ( 0  = n-/2), although even then it will 
clearly be small. For example, for Ho = 50 km/( sec .Mpc), 
z = 1, and the assumed value R, = 10-l3 rad/yr, we have 
A -  (SIG/Ho)' = 4.1OP6. 

Let us examine the nature of the anisotropy predicted 
by Eq. (31 ) for a ray propagating either in the equatorial 
plane or at a small angle to it (it also makes sense to consider 
a radio source whose major axis is oriented at a z 4 5 "  to the 
rotation axis). What (3  1 ) means is that the polarization vec- 
tor for any such source will be rotated by an angle A relative 
to the major axis in the direction away from the rotation axis. 
We hope that this prediction will spark the interest of the 
astrophysical community to search for anisotropy induced 
by the global rotation of the universe. 

We thank Yu. N. Obukhov for discussions. 
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