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We employ the method of kinematic virial corrections in the Boltzmann equation to derive the 
equations of motion for the transverse components of the magnetic moment in polarized electron 
systems in the classical temperature range (dynamic polarization by an external magnetic field). 
We also calculate the spectrum of transverse spin fluctuations, study the condition in which 
slowly decaying spin waves can propagate in a degenerate electron gas, and obtain a spatial 
correlation function for the fluctuations of transverse magnetization, which in typical 
experimental conditions has a pronounced quasione-dimensional nature. Finally, we consider the 
possibilities for observing in experiments the related effects in a Maxwellian electron plasma and 
in semiconductors such as InSb, HgCdTe, PbTe, and PbSnTe. 

1. INTRODUCTION 

Electron spin resonance (ESR) studies have not lost 
their significance even today. As a rule, the transverse spin 
dynamics of electrons has been studied in highly degenerate 
systems, such as metals and alloys. For such systems the 
equations of motion for the transverse magnetization are or- 
dinarily derived on the basis of the Landau transport equa- 
tion for a Fermi liquid (see Silin's Appendix in Ref. l ) . In 
the spatially homogeneous case such a description, which 
essentially coincides with the Bloch equations, leads for the 
spin-mode spectrum to Larmor precession of the electron 
spins and a set of cyclotron frequencies. For a one-compo- 
nent electron Fermi liquid, the exchange interaction does 
not lead to renormalization of the Larmor frequency. How- 
ever, for spatially inhomogeneous perturbations of the mag- 
netic moment, electron-electron interactions play a decisive 
role, significantly renormalizing the spin diffusion coeffi- 
cient (the Leggett-Rice effect2). In magnetic fields that are 
not too weak the Fermi-liquid interaction of electrons gener- 
ates slowly decaying spin oscillations, which have been ob- 
served experimentally in alkali  metal^.^ 

The existence of transverse spin waves does not neces- 
sarily require an external magnetic field H. Polarization of 
the electron spins, that is, a change in the symmetry of the 
system, can also be achieved by various dynamical methods, 
such as optical pumping4 and injection of polarized elec- 
trons. An interesting example is the propagation of spin- 
wave fluctuations in an electron system with spontaneously 
broken symmetry, a model of a ferromagnetic metal.5 

Lately, however, there has been a surge of theoretical 
and experimental work on collective magnetic phenomena 
in nondegenerate rarefied systems, such as the Boltzmann 
gases H t, DT,  and 3 H e ~  (see, e.g., Ref. 6).  The short-range 
interaction between the gas particles has proved to be of fun- 
damental importance in deriving the macroscopic equations 
that describe the magnetic dynamics of such systems. Quan- 
titatively, the entire effect of the interaction is expressed in 
terms of the exact two-particle scattering amplitude and, in 
particular, contains terms proportional to the forward-scat- 
tering amplitude. This scheme would seem at first glance to 
be unsuitable for describing an electron gas with Coulomb 
interaction. Indeed, calculation, say, of the second virial co- 
efficient in the Bethe-Uhlenbeck method7 is hindered by the 
divergence of the term containing the zero-angle scattering 

amplitude, which implies, as is known, summation of the 
entire series of loop diagrams and introduction of Debye 
screening. Macroscopically this is expressed in the fact that 
the second virial correction to the free energy of the system is 
proportional to N 3'2 instead of N 2, where N is the electron 
number density. 

Moreover, it is known (see, e.g., Ref. 7) that the ex- 
change corrections in the thermodynamics of an electron gas 
are quadratic in N, as in the case of short-range forces. This is 
direct indication that, notwithstanding the long-range na- 
ture of the Coulomb interaction, the exchange interaction 
between electrons is "local." Since collective phenomena in 
spin dynamics are caused by exchange effects, this raises 
hopes of the possibility of using the conventional gaskinetic 
scheme of Refs. 8 and 9 to describe an electron gas. 

In this paper we apply the method of kinematic virial 
corrections in a transport equation to the dynamics of trans- 
verse magnetization in a Boltzmann electron gas. Hence, we 
are dealing with macroscopic quantum phenomena in a clas- 
sical system of electrons. Here we consider both the dynami- 
cal spin polarization in the absence of an external magnetic 
field and the properties of an electron gas in a constant mag- 
netic field, where the Lorentz force and the orbital motion of 
particles play an important role. We also study situations 
where the exchange interaction between electrons leads to 
slowly decaying spin waves. Finally, we discuss the possibili- 
ties of observing the effects in experiments involving semi- 
conductors and ionized gases. 

2. THE INTERACTION FUNCTION 

The method of kinematic virial corrections consists in 
retaining on the left-hand side of the transport equation of 
the terms responsible for the interaction between the parti- 
c l e ~ . ~  These terms, in contrast to the collision integral, do 
not vanish in the process of deriving the hydrodynamic 
Euler and continuity equations from the transport equation, 
that is, in the process of integrating over the phase space and 
allowing for the conservation of the total number of particles 
and the total momentum. It is these terms that provide the 
virial expansion of the speed of sound propagation in a gas 
when the dispersion law is found via the transport equation. 

Formally, the kinetic virial corrections in the transport 
equation are equivalent to the existence of a self-consistent 
field of the Fermi-liquid type. Here the transport equation 
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can be represented in a form typical of the theory of a Fermi 
liquid, and SP, which acts as the energy of a particle in the 
self-consistent field of the other particles of the gas, in the 
second virial coefficient approximation is also a linear func- 
tional of the distribution function (the density matrix) n,,. 
Since in this paper we are interested only in the dynamics of 
transverse magnetization, which in the linear approximation 
is coupled neither with the density oscillations nor with lon- 
gitudinal spin fluctuations, we can without loss of generality 
restrict our investigation to the spin part of the function Si 
(see Refs. 6 and 9) : 

where 0 are the Pauli matrices. This formula can serve as a 
phenomenological definition of the interaction function 
!~P ,P ' ) .  

From the microscopic view the structure of the interac- 
tion function C(p,p1) in a Boltzmann electron gas differs en- 
tirely from that of a highly degenerate Fermi liquid. Gener- 
ally, ((p,pi) contains not only the forward scattering 
amplitude but terms describing the scattering by arbitrary 
angles and temperature-dependent terms. (Of course, in the 
limit as T+O the whole quantitative description reduces the 
equations of the low-density Fermi liquid the~ry.'O-'~ ) 
Thus, the problem of determining the spectrum of collective 
spin modes is reduced to that of finding <(p,pl) and solving a 
linearized transport equation with the self-consistent field 
(2.1). 

In the case of an electron system there is a temptation to 
attempt to consider an interaction of the Yukawa type (De- 
bye screening) and to use the results of Refs. 6 and 9, appli- 
cable to arbitrary short-range forces, for calculating L(p,pl). 
We will not do this here for at least three reasons. First, 
calculating the exchange corrections in thermodynamics7 
requires no Debye screening since there is no divergence 
even when a purely Coulomb potential is employed. Second, 
strictly speaking, introduction of Debye screening requires 
rigorous substantiation, because the Bethe-Uhlenbeck 
method, used in Refs. 6 and 9, considers the scattering oftwo 
particles in a vacuum in the absence of a background or col- 
lective effects of any type and the final result is expressed in 
terms of the initial two-particle scattering amplitude in a 
vacuum. Third, by considering a purely Coulomb interac- 
tion between two electrons we have in mind the possibility of 
applying some of the results to systems with unneutralized 
electric charge, which at present are being extensively stud- 
ied in experiments. In other words, within the framework of 
the Bethe-Uhlenbeck method we attempt to use a purely 
Coulomb interaction between electrons as the initial interac- 
tion and avoid, as long as possible, introducing screening or 
any other renormalization schemes. The validity criteria for 
such an approximation emerge automatically. 

Note that in Ref. 13 the fluctuations in the transverse 
magnetization in semiconductors with nonequilibrium-ori- 
ented spins were considered on the basis of a model Hamilto- 
nian that essentially corresponded to a delta-like interaction 
between the electrons. The results were applied, among oth- 
er things, to a nondegenerate system of electrons. In reality, 
the transverse spin dynamics of a weakly nonideal Boltz- 
mann electron gas can never be described within the frame- 

work of such a model. Even if we were to allow for Debye 
screening, using a model with point-like interaction would 
presuppose that 

where w, is the electron plasma frequency, and E, the Fermi 
energy. These inequalities cannot, obviously, be met simul- 
taneously. 

The first obstacle encountered when following the 
Bethe-Uhlenbeck method7 is the "irregular" asymptotic 
form of the wave function in Coulomb scattering:I4 

where k and 1 are the wave number and orbital angular mo- 
mentum of the relative motion of two electrons, S, the scat- 
tering phase, and a = fi2/me2 the Bohr radius. Indeed, in 
comparison to the asymptotic form of the wave function for 
short-range potentials, R,, of (2.3) contains an additional 
logarithmic term. But in the intermediate asymptotic region, 
up to exponentially large distances ( 1 kr < exp (ka ) ), the 
logarithmic term in (2.3) can be ignored, which enables us 
to directly use the results of calculations given in Ref. 7. 
Clearly, such a region exists if the temperature of the elec- 
tron gas is fairly high: 

In these conditions we can employ the formulas of Refs. 6 
and 9 that link the interaction function with the two-particle 
scattering amplitude. 

The function {(p,pl) introduced by (2.1) has in this 
case the following form: 

where f + and f are the triplet and singlet scattering ampli- 
tudes for two electrons, and 6 is the scattering angle in the 
center-of-mass frame of reference. It is easy to verify that in 
the temperature range (2.4) we can ignore the contribution 
of the terms quadratic in f+  to the functions A + (q )  of 
(2.5). Bearing this in mind and performing simple transfor- 
mations, we finally get 

where fo(6,q) is the usual scattering amplitude for a charged 
particle in a repulsive Coulomb field,14 

(we have employed dimensionless Coulomb units). 
Thus, in the given approximation the exchange part of 
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the interaction function L(p,pf) is determined by the "back- 
ward" scattering amplitude f0(z-,q). The function f0(6',q) 
has no singularities at 6' = .rr, which is a manifestation of the 
local nature of the exchange interaction and makes it possi- 
ble to do without Debye screening. Performing the same pro- 
cedure in calculating the interaction function averaged over 
the spin directions (of no interest to us here), we would 
obtain, instead of (2.6), an expression containing 
Re fo(O,q). But the Coulomb scattering amplitude is diver- 
gent at 6' = 0, which means that this method cannot be used 
in this case and that screening must be introduced in all the 
approximations of the theory. Note that, for high-order 
terms in Ry/T< 1, we must cut off the Coulomb interaction 
when calculating the exchange function C(p,p1). For in- 
stance, allowing for terms in (2.5) that are quadratic in f + 

presupposes Debye screening of the electron-electron inter- 
action. 

Essentially, condition (2.4) coincides with the quan- 
tum-mechanical criterion for applying perturbation theory 
to a Coulomb potential. For this reason the interaction func- 
tion is determined with a good accuracy by the Born approx- 
imation. Then, combining (2.6) and (2.7), we immediately 
obtain 

This expression for the exchange part of the interaction 
function will be used in what follows to find the spectrum of 
transverse spin fluctuations in an electron gas. 

3. THE TRANSPORT EQUATION AND THE SPIN-MODE 
SPECTRUM 

The dynamical equation for an electron system in the 
long-wave limit can be obtained from the quasiclassical 
transport equation with kinematic virial corre~tion,~ which 
is commonly written as 

where the self-consistent electron energy B contains, among 
other things, terms of the form (2.1 ). As noted earlier, we 
are interested here only in the equations of motion for the 
transverse spin components, which in the linear approxima- 
tion are not coupled with the fluctuations in the electron 
number density. For this very reason we have dropped the 
self-consistent electric field from the transport equation 
(3.1 ), and there is no need to add the Maxwell equations to 
(3. I ) ,  as is commonly done in plasma-wave theory. 

It is easy to see that for a weakly collisional electron gas 
with 

we can ignore the interaction when calculating the group 
velocity dB/& and restrict our attentions to v = p/m. In 
addition to this, with the same accuracy we can igy re  in Eq. 
(3.1) the gradient terms of the form(d2/&). (an/&) in 
comparison to the term V-VA. We must retain, however, the 
homogeneous spin commutator [E,fi],, which, strictly 

speaking, determines the transverse spin dynamics of an 
electron gas. This imposes an upper bound on the size of the 
spatial gradient: 

where k is the wave vector corresponding to the spatial in- 
homogeneity, and we have introduced the degree of polar- 
ization of the electron gas, 

with N +  and N -  the number densities of electrons with 
spins direction parallel and antiparallel to the polarization 
vector. Note that the "hydrodynamic" condition (3.3) auto- 
matically agrees with the quantum mechanical criterion of 
applicability of the quasiclassical transport equation, 
kA ( 1. After the above simplifications have been enforced, 
Eq. (3.1) for the off-diagonal elements of the polarization 
density matrix it (the transverse spin components) takes the 
following form: 

Below we consider the long-wave solutions to Eq. (3.5) 
for various types of spin-polarized electron systems. 

3.1. Quasiequilibrium polarization at H = O  

Methodologically it is convenient to begin with the case 
where the electron spins are polarized by a dynamical meth- 
od of some sort in the absence of an external magnetic field. 
Such dynamical methods may, for instance, be optical 
pumping, injection of polarized electrons, or polarization of 
the system by an external magnetic field followed by rapidly 
switching off the field. Subsequent depolarization of the spin 
system occurs much more slowly than the onset of equilibri- 
um in the electron momenta, since the longitudinal magneti- 
zation varies because of the relativistically weak dipole-di- 
pole interaction, while relaxation in the energies is 
determined by the strong Coulomb scattering. This means 
that in the course of time intervals shorter than the time t, 
that it takes the longitudinal magnetization to relax we have 
a spin-polarized system of electrons, that, as far as the mo- 
mentum distribution is concerned are in a state of thermody- 
namic equilibrium. In other words, the electron gas is de- 
scribed, to within fluctuations, by an equilibrium 
Maxwell-Boltzmann distribution function. In certain cases 
this situation can be realized directly in the process of dy- 
namical polarization (say, during optical pumping). 

The diagonal elements of the polarization matrix ii are 
the occupation numbers for electrons whose spins are direct- 
ed parallel and antiparallel to the magnetization vector. 
These numbers are determined by the attained degree of po- 
larization a and must be assumed given, since in the linear 
approximation the perturbations of the off-diagonal ele- 
ments of ii have no effect on the occupancy of states with 
different spin projections. The matrix fi is, of course, a linear 
operator of the Pauli matrices, but only its spin part contrib- 
utes to the equations of motion for transverse magnetization. 
Accordingly, the spin part of fi can be written as 
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where the first term corresponds to the equilibrium state, h, 
describes the perturbation in the transverse components of 
the spin, m is the unit vector directed along the vector of spin 
polarization, and n:' is the Maxwellian distribution func- 
tion, 

"(2%")" ( p 2 )  n;")=- - exp -- 
2 mT 2mT ' 

The fluctuating macroscopic magnetic moment M can easily 
be calculated as 

where p is the electron magnetic moment. 
Substituting ( 3 . 6 )  into (2.1 ), we find the spin part of 

the self-consistent electron energy, which provides the only 
contribution to the commutator [.2,fi], in the transport 
equation ( 3 . 5 )  : 

Then for H = 0  Eq. ( 3 . 5 )  can be transformed into 

d3p' 
-n!j? [ ~ h , ]  I------;- = St h,. 

( 2 n h )  

The linearized transport equation ( 3 . 1 0 )  together with de- 
finition ( 3 . 8 )  constitute the basis for the "hydrodynamic" 
description of the transverse dynamics of macroscopic mag- 
netization. 

To determine the spectrum of transverse spin fluctu- 
ations we have found it expedient to look for the solution to 
Eq. ( 3 . 1 0 )  for monochromatic perturbations of the distribu- 
tion function in the form 

where w and k are the frequency and wave vector of a spin 
model. Combining this with ( 3 . 1 0 )  and ( 3 . 1 1 )  immediately 
yields 

where we have introduced the circular variable 
A- =A, - iA,. The common approach to considering re- 
laxation processes in an electron system is to employ the 
Landau local collision integral,15 which imposes additional 
requirements on the size of a spatial gradient 

where r, is the Debye screening radius. If the degree of po- 
larization of the electron gas is fairly high, that is, if 

then Eq. ( 3 . 1 2 )  with the local collision integral St A - ( p )  is 
valid only if conditions ( 3 . 1 3 )  are met. In the opposite case 
where 

condition ( 3 . 3 )  serves as the criterion for the applicability of 
the results, and this automatically presupposes that inequal- 
ities ( 3 . 1 3 )  are satisfied. 

For the transport equation ( 3 . 1 2 )  with a local collision 
integral we seek the long-wave solution via the Chapman- 
Enskog method. In the given case we can apply the results of 
Refs. 6  and 8 to the distribution function ( 2 . 7 )  and arrive at 
the following dispersion law for transverse spin fluctuations: 

where Do is the coefficient of spin diffusion in the absence of 
polarization, and the exchange parameter y of the theory 
depends only on temperature, 

The numerical factor A is determined from the following 
system of integral equations: 

~ = 2 n  s'g ( s )  erp (-s') ds, 

ss' 
- g ( s ' ) ]  d3s,=1, 
s2 
exp ( - s f ' )  

K  (8 , s ' )  = 
(s-s1)2 . 

In establishing the solution to ( 3 . 1 8 )  it has proved conve- 
nient to use the following relation: 

8 

K ( s ,  s f )  dSs'=2nK exp( -s2)  e x p ( t Z ) d t = @ ( s ) .  ( 3 . 1 9 )  
A. 0 

Numerical integration of ( 3 . 1 8 )  yields A s  2.5 1. The spin 
diffusion coefficient Do can be defined as the coefficient of 
self-diffusion in a two-component mixture of electrons with 
spins "up" and "down." In the simplest gaskinetic approxi- 
mation, l5 Do can be calculated by the following formula: 

Equation ( 3 . 1 6 )  immediately makes evident the differ- 
ence between the spectrum of transverse-magnetization 
fluctuations and the purely diffusion mode ( - iD,k 2 ) ,  the 
latter emerging only if we completely ignore exchange ef- 
fects. The measure of this difference is the parameter 

which, to within the Coulomb-logarithm term, is density in- 
dependent and, hence, reflects the fact that the electron ex- 
change interaction is local. If the temperature is sufficiently 
high, that is, if 

the real part of the spectrum ( 3 . 1 6 )  is found to be much 
greater than the damping Im w,  and instead of diffusive 
spreading we have weakly damped oscillations of the trans- 
verse magnetization with the following dispersion law: 
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It is easy to see that although the spin waves are "hydrody- 
namic" in nature (small wave vectors), within the range of 
applicability of (3.23) defined by the inequalities (3.3) and 
(3.13)-(3.15) there exist high-frequency zero-sound 
modes, for which w.re % 1, where re is the electron relaxation 
time. 

The presence in the electron system of collective spin 
modes automatically implies the existence of long-range 
transverse-magnetization correlations, notwithstanding the 
local nature of the initial exchange interaction. We define 
the correlation function for the fluctuations of the transverse 
magnetic moment in the ordinary manner: 

Actually we are interested here only in the simultaneous cor- 
relator Sik (0,r). 

The appearance of a macroscopic variation SM, ( r )  in 
the electron gas leads to an increase in the total free energy, 
and the size of this increase can be written as 

At high temperatures the fluctuations may be considered 
classical.' Therefore, averaging (3.25), we immediately get 

where S,, (k)  and p ( k )  are the Fourier components of 
Sik (0,r) and p ( r ) ,  respectively. The function p ( k )  is 
uniquely determined by the spin-mode spectrum: 

Combining (3.231, (3.26), and (3.27), we find the structure 
factor Sik (k)  and, performing the inverse Fourier transfor- 
mation, we finally get 

Thus, we have found that over large distances the transverse 
spin correlations in an electron gas fall off very slowly. As r 
grows, (3.28) decreases in a manner similar to the magneti- 
zation correlations in a cubic ferromagnet with localized 
spins, which is a direct consequence of the quadratic disper- 
sion law for spin waves. 

The spectrum of spin fluctuations and the correlations 
of macroscopic magnetization were considered here using 
the transport equation with kinetic virial corrections. When 
the Born approximation (2.7) is valid, such an equation can, 
of course, be obtained "microscopically" within the pertur- 
bation-theory framework, as suggested in Ref. 16. 

3.2. Electron gas in a magnetic field 

It is much more interesting from the practical view to 
study the case where a system of electrons is in an external 
magnetic field and the degree of polarization of the spins is 
determined by the field strength. In thermodynamic equilib- 

rium we, obviously, have the following formula for the de- 
gree of polarization: 

Here we study the possibility of slowly decaying spin waves 
propagating in an electron gas placed in an external magnet- 
ic field. If the requirements (3.22) are met, the collisional 
dissipation terms can be ignored, with the result that the 
spectrum of transverse-magnetization fluctuations is deter- 
mined by a collisionless transport equation, that is, Eq. (3.5) 
in which we must put St A = 0. Of course, there is also colli- 
sionless Landau damping, which, however, is exponentially 
small in the range of wave vectors specified by (3.3) and 
(3.13). 

The transport equation (3.5) must incorporate in the 
self-consistent energy i. not only the terms of the form (3.9) 
but also the Zeeman energy of the interaction of the electron 
spin with an external magnetic field, 

In finding the spin-mode spectrum it has proved convenient 
to introduce cylindrical coordinates, p, , 4, andp,, with thez 
axis directed along the magnetic field. After performing 
transformations similar to (3.6) and (3.9)-(3.12), from Eq. 
(3.5) we get 

where we have introduced the Larmor frequency 
fl, = 2DH/fi and the cyclotron frequency SZ, = eH/mc.  
For a gas consisting of free electrons the frequencies 0, and 
fl,, of course, coincide. However, bearing in mind that we 
are interested in applying the results to semiconductors, 
where the charge carriers and hence the cyclotron frequency 
are characterized by the effective electron mass rather than 
the "bare" electron mass, we will distinguish between fl, 
and 0,. Solving Eq. (3.31) by the method of successive ap- 
proximations in powers of the small wave vector k (see, e.g., 
Ref. 6) ,  in second order we get 

It is absence of a magnetic field, the spectrum of spin 
waves (3.23) is isotropic, that is, independent of the direc- 
tion of the wave vector k, which is a direct consequence of 
the exchange approximation. By switching on the external 
magnetic field we introduce relativistic terms related to the 
Lorentz force, which invariably leads to an anisotropy in the 
dispersion law. In view of this, it is useful to look for the 
distribution function (in our case the function fk ) in the 
form of a sum of the exchange, "isotropic," part and the 
anisotropic additional term zk due to the external magnetic 
field: 
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Here the function g(s)  is defined in Eqs. (3.18) and substi- 
tuting the first term in (3.33) into (3.32) leads to the ex- 
change formula (3.23). Combining (3.32) and (3.33) also 
immediately results in the following expression for z,: 

Performing an order-of-magnitude estimate of the various 
terms in Eq. (3.34), one can easily see that because of the 
presence of the small parameter 

which is characteristic of an electron gas, the integral terms 
in (3.34) are always small and can be ignored to lowest order 
in y< 1. This automatically leads to 

and, hence, 

Substituting (3.37) into (3.32) finally yields 

The exact solution of Eq. (3.32) and the calculation of high- 
er-order terms in the expansion of the spin-wave spectrum 
w ,  in a power series in y 4 1 can be found in the Appendix. 

Thus we have found the highly anisotropic spectrum of 
transverse magnetization fluctuations in an electron gas 
placed in an external magnetic field. In the principal approx- 
imation, as the result (3.38) clearly shows, this spectrum 
has a pronounced one-dimensional nature, which, of course, 
greatly affects the behavior of the correlation function for 
the macroscopic magnetic moment. Calculations similar to 
(3.24)-(3.28) yield 

In contrast to (3.28), we have found correlations only paral- 
lel to the magnetic field, and these decrease exponentially 
rapidly as the distance along the z axis grows. The correla- 
tion radius, however, proves to be extremely large, r,  &. r,, 
under the natural conditions fin, 4 T, so that the correla- 
tion zone always contains a macroscopically large number of 
electrons. 

4. EXPERIMENTAL POSSIBILITIES 

To observe macroscopic quantum effects in a classical 
electron gas, an example of which is the propagation of col- 
lective spin waves, is highly intriguing. Experimentally this 
appears possible. Phenomena similar in their physics and 
related to exchange interaction have been observed even in 

experiments involving low density gases of neutral parti- 
c l e ~ ' ' - ~ ~  (NMR studies of gaseous H T and 3He t and dilute 
3Hef -4He solutions). These experiments studied the fluctu- 
ations in nuclear magnetization, which required higher sen- 
sitivity from the measuring apparatus. Nuclear spin modes 
have also been observed in liquid 3Het in both damped and 
long-lived Various magnetic resonance meth- 
ods, such as NMR in the gradient of an external magnetic 
field, spin echo, and spin-mode excitation in a nonuniform 
variable field, have been employed in detecting collective 
modes. Similar approaches can be used in EPR to record 
spin waves propagating in electron systems. Spin waves in 
the degenerate electron Fermi liquid in metals have been 
discovered in ingenious experiments in which light was 
transmitted through thin films of alkali metals.3 Thus, there 
exists a fairly large number of experimental methods that 
allow identifying spin oscillations in an electron gas. 

Much more important is whether a sample suitable for 
the experiments can be chosen. Qualitatively, exchange re- 
normalization of the transverse spin diffusion coefficient 
takes place for all values of the parameters characterizing 
the state of the electron system (as is generally the case with 
all paramagnetic liquids and gases). Hence, we cannot ex- 
clude the possibility that the effects considered here may 
manifest themselves in a broad variety of conducting media. 
However, it would be preferable by far to have a sample that 
satisfies the criteria of applicability of the theory constructed 
here, since it would then be possible to estimate the expected 
effects quantitatively. The criterion for the validity of our 
calculations imposes a stringent lower bound (2.4) on the 
temperature of the system. An electron plasma is certain to 
satisfy these conditions because the ionization potential of 
all the atoms is on the order of, or greater than, Ry. From the 
practical view this means such high temperatures that high 
values of the degree of polarization a remain in doubt. For 
this reason, in ordinary conditions the parameter DJVcry of 
(3.2 1 ), which serves as a measure of the effects, is small, and 
this interferes with the experimental identification of the 
phenomenon (although it does not make it impossible). 

The situation may be quite different, however, for the 
system of charge carriers (electrons and holes) in semicon- 
ductors. The electrostatic screening of the Coulomb interac- 
tion and the renormalization of the carrier mass (effective 
mass) make the criterion (2.4) considerably less stringent. 
Indeed, instead of (2.4) we obviously have 

where m* is the effective carrier mass, and E the dielectric 
constant. Hence, by selecting a semiconductor with a maxi- 
mum possible value of E and a minimal m* we can have a 
temperature range defined by (4.1 ) that is suitable for ex- 
periments. Such semiconductors abound. Some of the more 
common examples with a fcc lattice (so that all the calcula- 
tions for an isotropic electron spectrum are applicable) are 
InSb ( m * ~ 1 . 3 ~ 1 0 - ~ m ,  ~ ~ 2 0 )  and HgCdTe 
[ m * ~ ( 2 ~ 1 0 - ~ - 1 , 1 ~  10-2)m; ~ , -20 ] . ' ~  For these cases 
the size of Ry*, which determines the temperature range 
where the theory is valid, is Ry*(InSb) = 10 K and 
Ry* (HgCdTe) = 2-9 K, respectively. Such weak tempera- 
ture restrictions make it possible to achieve fairly high values 
of the parameter D&a y of (3.2 1 ), which provides a fairly 
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good chance for experimental studies of exchange collective 
effects in transverse spin dynamics. It even becomes possible 
to detect weakly decaying spin waves (magnons), which, of 
course, is the most interesting consequence of the theory. 
For instance, in semiconductors with Ry*z2  K at T = 12 
K, the criterion (3.32) for spin fluctuations to decay slowly 
(where Ry should be replaced by Ry*) reduces to the condi- 
tion H) 6 T, which raises hopes that magnetic oscillations 
with the spectrum (3.38) will be discovered. 

There is a sizable group of semiconductors with a still 
lower value of Ry*. Unfortunately, these often possess a dif- 
ferent crystal symmetry, so that the formulas for the disper- 
sion law of the spin modes cannot be applied directly and 
must be found for each given electron spectrum separately. 
But the criteria for the applicability of the theory, (2.4), and 
smallness of collision absorption, (3.22), can in the majority 
of cases be used for order-of-magnitude estimates. For in- 
stance, numerical estimates for PbTe (m*z0.2m; &-- 1O2- 
lo3) and PbSnTe ( m * z  m; E Z  lo2) crystals yield 
amazingly weak restrictions on the temperature: 
Ry * ( PbTe) z 6 X 10 - 2-6 K and Ry* (PbSNTe) ~ 0 . 3  K, re- 
~pect ively.~~ In these conditions the slowly decaying spin 
waves could propagate in PbSnTe at T z  3K and in magnetic 
fields H% 1 T. In samples with Ry* =: 6 X 10 - K, long-lived 
magnons could appear at Tz0 .6  K and H s 0 . 3  T. Some data 
on collective spin waves in a Maxwellian electron plasma 
was given by the present authors in Ref. 24. 

All the results listed here for semiconductors refer to 
pure samples without magnetic impurities. Hence, the ef- 
fects are related to a purely electron-electron interaction. 
But if the sample contains a large number of magnetic im- 
purities, new branches of collective spin modes may appear 
due to exchange effects resulting from the scattering of band 
charge carriers on i m p ~ r i t i e s . ~ ~  
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APPENDIX 

It is obvious from the transport equation that at kJJH 
the cyclotron terms generated by the Lorentz force have no 
effect on the dispersion law for the spin modes, so that we 
again have the former spectrum (3.23) augmented by the 
Larmor gap R, at k = 0. Hence, the "anisotropic" part 
zk (p) of the distribution function (3.33) must be propor- 
tional to k, . It is conveniently written as zk (p) = k, v, u (s),  
withp2 = 2mTs2, after which Eq. (3.34) assumes the form 

where the functions Q(s) and g(s)  have been defined in Eqs. 
(3.18) and (3.19) and we have introduced the dimension- 
less parameter 

Expanding u (s) r u (s, ,s, ,p) in a Fourier series in the vari- 
able e, and allowing for the structure of the kernel in the 
integro-differential equation (A1 ), we can easily see that 
only the first harmonics (terms of the exp( f ip) type) pro- 
vide a nonzero contribution to the solution. Moreover, the 
spin-mode spectrum is determined by the zeroth harmonic 
(the "isotropic" part) and the first harmonics off, (p) .  
Hence, without loss of generality, we can find the function 
U ( S )  in the form 

u (s) =x (s,, sL) eiQ+ y (s,, s,) e-'@. (A3 

Substituting (A3 ) into (A1 ) , we get 

1 -- 
2 g(s)si-x (s,, sl)si=o, (A41 

p@ (s) y (sZ, sL) sl-p j K (s. s f )  y (sZf. S ~ ' ) S * ' ~ S '  

exp (-s") 
K (s, s t )  = - i=x, y. 

(5-s')~ ' 

The range of the variable i can be broadened to incorporate 
three variables, x ,  y, and z, without adding new solutions. 
This makes it possible to write (A4) in a more symmetric 
form, 

1 
p@ (s)xs2-p K (s, s')xfss'd3s~ - - g(s)s2-x~'=O, 

2 

i 
p@ (s) ys2- p JK (., a') yrsarbsf + - g (s) s2+ ys2=0, 

2 

with the same K(s,sl). The new equations are isotropic un- 
der rotations of vector s, whereby we can look for the solu- 
tion in the isotropic form x = x(s) and y = y(s). Going over 
to the function z = x + y, we finally arrive at the integral 
equation 

The energy spectrum (3.32) then assumes the form 

where the numerical factor A is determined via Eqs. (3.18) 
and is approximately equal to 2.5 1. 

Equations (A5) and (A6) determine the spectrum of 
transverse spin waves generally for an arbitrary degree of 
polarization and in the presence of an external magnetic field 
(i.e., also for quasiequilibrium polarization at H #O and 
Hllm). In the most interesting case of thermodynamically 
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equilibrium polarization, where a is given by formula 
(3.29), Eq. (A6) simplifies somewhat. Indeed, in this situa- 
tion the parameterp is always very smal1,p 4 1 .  ForpH4 T, 
the value ofp  coincides with the small parameter y specified 
in (3.35), and a further increase in H makesp even smaller. 
Expanding (A5) and (A6) in powers ofp, we find that 

In the principal approximation in p 4 1 the results of (A5) 
and (A7), naturally, coincide with (3.38). 

When quasiequilibrium polarization occurs at H #O in 
a fairly weak field, that, when 

P, h,. 
-<a-gI, 
or. 5" 

the situation with p )  1 may be realized. In this limiting case 
the approximate solutions of (A5) and (A6) take the form 

Naturally, the results (A7) and (A9) have meaning only if 
the degree of polarization, a, which enters into parameterp, 
meets the criterion (3.22). 
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