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With the help of the dispersion relation for electromagnetic waves in a semiconductor crystal in a 
strong magnetic field, taking into account the production of Wannier-Mott excitons, we show 
that under certain conditions photon trapping and scattering by a curvilinear magnetic field are 
possible. 

1. Under certain conditions the optical properties of a 
medium are strongly affected by the singularities of the per- 
mittivity tensor of the medium. In Refs. 1 it was shown that 
in vacuum the singularities arising in the polarization opera- 
tor owing to photoproduction of electron-positron pairs in a 
magnetic field result, in particular, in the fact that the energy 
of the photon (wave packet) is channeled along the lines of 
force of the magnetic field. 

In the case of curvilinear lines of force this effect can 
result in "capture" of a photon (motion along lines of force 
of the field) and in the process the photon is converted adia- 
batically into a free electron-positron pair (Ref. 2 )  or into a 
positronium atom (Fig. 3). On the basis of quantum electro- 
dynamics, such effects become important in the study of pul- 
sar magnetospheres and there is indirect experimental evi- 
dence for them.3v4 

Similar optical effects were found previously in Ref. 5 in 
a study of a semiconductor crystal in a strong magnetic field. 
In this case these effects appear owing to the formation of a 
square-root singularity in the permittivity, calculated taking 
into account the photoproduction of free electron-hole pairs 
in a magnetic field. In this paper we calculate the permittivi- 
ty of such a crystal by treating the possibility of production 
of Wannier-Mott excitations (Coulombically bound elec- 
tron-hole pairs); in this case, the singularities of the permit- 
tivity are poles. We shall discuss the deflection of the trajec- 
tory of a photon (more precisely, a polariton-the mixed 
state of a photon and an exciton) by a magnetic field in a - 
crystal and the optical properties of the medium which fol- 
low hence. We specially study the possibility of photon cap- 
ture by a constant curvilinear magnetic field and photon 
scattering by a nonuniform magnetic field. 

The paper is organized as follows. In Sec. 2 the permit- 
tivity of a semiconductor crystal in a uniform external mag- 
netic field is calculated taking into account the possibility of 
photoproduction of Wannier-Mott excitons. For this, we 
first calculate the wave function of a Wannier-Mott exciton 
with arbitrary momentum in a constant magnetic field. In 
Sec. 3 we study the dispersion equation of electromagnetic 
waves in an isotropic cubic semiconductor crystal in a uni- 
form magnetic field; in this case, the dispersion equation 
contains poles associated with the production of Wannier- 
Mott excitons. We show that the poles affect the way electro- 
magnetic waves propagate and we present a qualitative pic- 
ture of the propagation of a wave packet in a nonuniform 
field with a special configuration. In Sec. 4 we describe in 
detail photon capture by a circular magnetic field and in Sec. 

5 we describe photon scattering by a nonuniform field. We 
calculate the capture radius and the maximum penetration 
depth into the central region of the field. In Sec. 6 we discuss 
the limits on the magnitude of the magnetic field. 

2. In order to determine the permittivity we first need 
the wave function and the self-energy of an exciton in an 
external magnetic field. Although the problem of calculat- 
ing the wave function of an exciton (or, which is actually the 
same thing, the wave functions of a hydrogen atom) in an 
external magnetic field has been quite well studied, here we 
need to discuss some details, since for our purposes we can- 
not use the standard quantum numbers and we need the 
wave function of an exciton with arbitrary momentum. 

In a constant and uniform magnetic field, described by 
the vector potential A,,, , in the effective-mass approxima- 
tion the exciton wave function \V is determined by the follow- 
ing Schroedinger equation: 

efi d e A  d 
- i - Aex, (r,)- + i - (r2)- m , ~  dr,  m , ~  a rz 

Here m,, r ,  and m,, r, are the effective mass and radius 
vector of an electron and hole, respectively, and ?t is the 
empirical value of the permittivity. 

In Ref. 6 it was shown that in a constant magnetic field 
B = curl A it is possible to introduce a vector operator 

which is the exciton momentum operator. Introducing the 
new variables R = ( m , r , + m , r , ) / ( m , + m , )  and 
r = r,  - r, (SO that R is the radius vector of the center of 
mass of the exciton) andAchoosing A,,, (x) = [B,x]/2, we 
can rewrite the operator P as 

We seek the solutions of Eq. ( 1 ) that are simultaneous- 
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ly eigenfunctions of the operator (2') (i.e., they describe an 
exciton with a definite momentum). The corresponding 
wave function $;, can be represented in the form 

After the substitution 

and the translation r' = r + c [P,B]/eB ,, Eq. ( 1 ) assumes 
the form 

hZ az ieh d e2 
[B, r']- + -[B, r'I2 

dr' 8pc2 
eZ c -1  .. 1 

--1.1--(P,B] x eBZ I } $ ( ~ ' ) = ( E - - ( P B ) ~ ) $ ~ ( ~ ' ) ,  2 M P  

Now the Schroedinger equation is written in a form 
such that the motion of the exciton as a whole (with momen- 
tum P )  is manifested only in the shift of the energy and the 
Coulomb potential (note that while the dependence of the 
wave function and energy on the projection 
Pi = (P.B)'/B of the momentum in the direction of the 
field is trivial, the dependence on the component orthogonal 
to the field P : = [P,B] '/B is not trivial). 

The equation (4)  cannot be solved exactly, and in order 
to find *;, (r ')  we proceed as follows. We assume that the 
field B is oriented along the z axis, and we transfer to a cylin- 
drical coordinate system r = (p,p,zj, where p2 = x2 + y2. 
We now represent the wave function $ as an expansion in the 
functions vnIn2 (p,p), which are the z-independent, where 
z = z, - z,, solutions of Eq. (4)  without the Coulomb 

[i.e., the functions vnln2 (p,p) describe a pair of noninteract- 
ing charged particles in an external magnetic field in the 
center-of-mass system] : 

m 

n,! 
~ = t n z ( ~ ,  q)= (-) '" exp(i(n,-h)q) 2nL2n, ! 

Here L = (&/eB) is the Larmor radius, n, and n, 
enumerate the Landau levels of the electron and hole, re- 
spectively, and L :; "'(x) are Laguerre polynomials (for 
n, - n, <O, as usual, an analytic continuation must be 
made). The functions r],,,? form a complete orthonormal 
basis. 

Substituting the expansion (5)  and (6)  into Eq. (4) ,  

left-multiplying the obtained equation by 7,1:,,~ (p,p), and 
integrating over p and p, we obtain the following equation 
for the expansion coefficients pnln2 (z): 

1 n,! E,! 
- - ( - ) Ih  drp 5 d k e q  [i(n,-n2-fi,+&)rp)e-A 

2 n  n,!Z,! 

The integration in Eq. (7)  is effectively limited to the 
region 0 < A S  1. If the condition 

is satisfied, then it makes sense to expand the potential VP 
(p,p,z) in Eq. (7) in a series in powers of p(z2 
+ L 4p:fi-2)-112. In the zeroth order of the expansion the 

potential does not depend on p and p and the integration in 
Eq. (7)  is trivial: 

where B is the Coulomb binding energy: 

Carrying out the obvious summation in Eq. (9)  we can see 
that the system of equations (7)  has been reduced to a de- 
coupled form, and each term in the expansion (5 ) becomes a 
particular solution of Eq. (4)  with a definite momentum. It 
also follows from Eq. (9)  that in the approximation em- 
ployed the one-dimensional functions pnlnZ (z) do not de- 
pend on n ,  and n,, so that in what follows we shall omit these 
indices from p (z) . 

We now return to the condition (8).  It is easy to see that 
for P, L 2fi - ) 1 the potential can be expanded in a rapidly 
converging series for any value of z. If, however, this condi- 
tion is not satisfied, the inequality ( 8) holds only for z2, t2, 
where Z2 = max{O,L ( 1 - Pi L '6 - *), and it is not satisfied 
for z2 < 2'. Nonetheless, if2 is much less than the Bohr radius 
a, = xfi2/,uez, Eq. (9)  holds almost in the entire region 
where the wave function is concentrated and we can extrapo- 
late Eq. (9)  into the region z 5 Z [although strictly speaking 
Eq. (9)  cannot be employed in so doing, this assumption is 
considered to be satisfactory 10*1' . If, however, the inequality 
Zga, is not satisfied, then Eq. (9)  describes only the peri- 
pheral region. [Note that the condition t g a ,  can also be 
interpreted differently: It means that the Coulomb binding 
energy of the exciton is small compared with the cyclotron 
precession energy of the particle and hole. The condition (8)  
is an extension of the adiabatic condition L <a; to the case 
P, # O  (Refs. 10and l l ) . ]  
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Now, solving Eq. (9)  similarly to the manner in which 
this was done in Refs. 9 and 12, in the region of the discrete 
spectrum, described by the quantum number n,, 
n, = 0,1,2, ..., we obtain the following values of the wave 
function p (z )  at the point z = 0, which are the only wave 
functions we require below: 

The binding-energy eigenvalues are 

where a = e2/fic is the fine structure constant. 
In the calculation of Eqs. ( 1 1 ) and ( 12) it was assumed 

that In (a, /L 2Pfi ) ) 1. Moreover, if L 2P : fi - (< 1 holds, 
then regularization is required; this consists of replacing the 
termL2P,fiJi1 inEqs. (11) and (12) by ( L 2  + L4P:fi-') 
(Ref. 9).  

We now evaluate the permittivity tensor. Using the 
standard procedure,13 we can write the general expression 

16n F : ' )  (-k)F;') (k) 
eij(o. k)=e0aij - - . 

V o-o(l)+iO (13) 

Here V is the volume of the crystal, I is the set of quantum 
numbers (defined below), w"' is the frequency of the transi- 
tion from the valence band into the conduction band, E, is 
the background permittivity, and the vector potential A(r,t) 
of the perturbing field is taken in the form 

Eo A (r, t) = -sin (ot-kr) . 
o 

For Fl" (k )  we must take the function 

which is the amplitude for photoproduction of a Wannier- 
Mott exciton (generally speaking, not lying on the mass 
shell, 02/c2 # k2). 

In Eq. ( 14) U,,(R) and U,,(R) are Bloch functions of 
the edges of the valence and conduction bands, 
I = (n,,n2,nc ,P), m is the electron mass, and ,n lnc  (R)  is 
the wave function of an exciton with momentum P, taken at 
r, = r2(r  = 0):  

i 
IP.:.,,, .(R)= exp (- RP) q...,(p=o, c p ) ~ ;  ( ~ ~ 0 )  ( 15) ti 

[see Eqs. (6)  and ( 1 1 ) 1. In the integration in Eq. ( 14) there 
appears a Kronecker delta function S,,,, which relates, via 
the law of conservation of momentum, the momentum of the 
exciton with the momentum of the photon. 

We confine our attention to cubic isotropic crystals. Al- 

though it is not obvious, the permittivity tensor can be ap- 
proximately represented in the form E~ (o,k)  = S , ~ ( o , k )  
even in the presence of an external field. 

We clarify this. Since Jy,  U To ( R )  U,,(R)d R = 0, 
where Vo is the unit-cell volume, and the field A,,, ( R )  does 
not vary much within the cell, the contribution of the term 
proportional to A,,, (R )  in the expression ( 14) can be ne- 
glected. Then the second term in Eq. (13) will be propor- 
tional to g i g j ,  (Ref. 5 ) ,  where 

But in an isotropic cubic crystal the tensor gig, is proportion- 
al to 6, (see Ref. 13, Sec. 13). 

This approach is different from the common approach, 
when spatial dispersion is related primarily to the nontrivial 
tensor structure of cij Here, however, spatial dispersion is 
manifested in the fact that the scalar part of E~ depends not 
on Ikl but rather on two components of the momentum- 
parallel and orthogonal to the field: ~ ( w , k )  = &(o,k fi ,k : ). 

This approximation is sufficient for our purposes. If, 
however, one attempts to take into account the tensor struc- 
ture of au more accurately, then the results presented below 
will be valid for each mode of the electromagnetic wave. 

Finally, for s(w,k) we obtain the following expression: 

The energy kn,n2nc (k )  of a transition from the valence 
band into the conduction band is equal to 

eBh eBfi h2k,,2 
horn,,,, (k) =E, + -(n,+'/,)+ ~ ( n ~ + ' / ~ ) +  - 

mic mzc 2M 

where E, is the energy gap between the valence and conduc- 
tion bands in the absence of a field. 

Thus taking into account the Coulomb interaction be- 
tween the electron and the hole has resulted in a singularity 
stronger than the square-root singularity obtained in the 
case of photoproduction of a noninteracting pair.5 The pole 
character of the singularity is explained by the appearance of 
the bound state, which has a smaller number of degrees of 
freedom than a free (noninteracting) pair. 

3. In the case&, (o,k) = S u ~ ( o , k ) ,  thedispersion equa- 
tion assumes the form k2 = (02/c2)&(o,k).  Near a reso- 
nance, described by the quantum numbers n,, n,, and n, 
[i.e., when the corresponding term dominates in the sum on 
the right-hand side of Eq. ( 13) 1, we have 

xo2 - k 2 =  hn,n,nc (k12) 
c2 oh - onln.n, (k) ti + i - 0  ' (18) 
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FIG. 1. Dispersion curves of a polariton (solid lines) in a neighbor- 
hood of a separate resonance n,n,n, in the (k  : ,k ) plane. The dashed 
and dotted lines represent the dispersion curves of a bare exciton and a 
bare photon, respectively. 

where x is the background permittivity, which includes all 
terms on the right-hand side of Eq. ( 13) (including E, ) ,  ex- 
cept for the singular term on the right-hand side of Eq. ( 18). 
We assume that x has the same value as in the expression for 
the Coulomb binding energy. The equation ( 18) describes a 
polariton (or "photon in a medium9')-a mixed state of a 
photon and an exciton. 

Note that a separate resonance n,n2n, can be studied in 
Eq. (13) only if n, is sufficiently small-it is evident from 
Eq. ( 12) that as n, increases the bound states become more 
dense [En< + , - En -01 and at some value n, = f i ,  a quasi- 
continuum  form^.^.^ 

Figure 1 shows the solutions of Eq. ( 18) in the ( k  :,k ) 
plane, w = const, which we shall call the dispersion curves of 
the polariton. On each branch it is possible to distinguish a 
region where the dispersion curve is close to that of the bare 
photon, xw2/c2 - k : - k = 0 (photon-dominant region), 
and a region close to the dispersion curve of a bare exciton, 
w = (k)  = wn,,2nc ( k  :,k ) (exciton-dominated re- 
gion ). 

If the group velocity V r  of the polariton is calculated 
along the lines of force and in a direction orthogonal to the 
field, then it turns out that in the exciton-dominant region 
(as k, + oo for the upper branch and k, -0 for the lower 
branch) the following relation holds: 

(the complete expression is given in Ref. 9a), i.e., in the 
vicinity of a resonance a polariton moves along the lines of 
the magnetic field (this is completely natural, since near res- 
onance the polariton is in the exciton-dominant state and 
consists of a pair of charged particles). It also follows from 
Eq. (20) that the momentum k of the polariton does not 
always indicate the true direction of propagation of the po- 
lariton. Such a situation, when the phase velocity is different 
from the group velocity, can arise if a photon propagating in 
a magnetic field comes into resonance, i.e., 
(w - Zn,n2nc ( k  ) - ?ik i/2M) becomes small. In the pro- 

cess, the trajectory of the photon bends along the field lines. 
We illustrate this for the following example. 

We introduce a constant magnetic field B(r) ,  where 
IB(r) / = B = const, for which the lines of force form con- 
centric circles and the z axis is the symmetry axis (it is suffi- 
cient that these conditions hold in a bounded region of the 
crystal). A semiconductor placed in such a field is, on the 
basis of the geometric-optics approximation, a medium with 
spatially variable permittivity. The subsequent analysis is 
performed in this approximation (it is admissible if the mag- 
nitude of the magnetic field satisfies certain restrictions). 

We now study a polariton propagating in a plane or- 
thogonal to the z axis in a semiconductor crystal in such a 
field (in view of the symmetry of the problem k, remains 
equal to zero and the projections kl, and k, of the momen- 
tum, which lie in this plane, vary with time). If the distance 
between the center of the wave packet and the z axis in- 
creases, the projection k, of the momentum increases and 
the point on the upper branch of the dispersion curve (see 
Fig. 1) shifts to the right and down along this branch. 

Suppose that initially the polariton was in the photon- 
dominant state (upper left-hand part of the curve). With 
time, instead of reaching in momentum space the point k 
= 0, k : = xw2/c2 (as would happen if the polariton 

evolved along the dispersion curve of the bare photon 
xw2/c2 - k = k : in momentum space and corresponding- 
ly propagated rectilinearly in configuration space), it shifts 
along the top branch of the dispersion curve in Fig. 1 to the 
exciton-dominant region k : - +  OO, ,k a - (2M / A )  [w - ZnlnZncc ( cu ) 1. This process can be inter- 
preted as trapping of a photon by a curvilinear magnetic 
field: to the extent that the photon moves adiabatically, it 
transforms, via the formation of a mixed state, into an exci- 
ton and at the same time its trajectory bends along the lines 
of force of the field (since V, - 0 and VII - const). 

4. We now give a quantitative description of this pro- 
cess. In the geometric-optics approximation the differential 
equation describing refraction, as also the equation of mo- 
tion of a wave packet, is the same as in vacuum:2v3 

Here r,, and p are the polar coordinates of the center of the 
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wave packet, and the origin of the coordinates is also the (Because of the definition V? = (aw/&, ),,,, vP;' 
center of the lines of force. = (dw/dkll)kl, this equation can be rewritten as 

After simple substitutions into Eq. (21 ) we obtain first rg,dkll + kll dr,, = 0, which expresses conservation of angu- 
lar momentum.) 

rer VLg' 
dr -- dk,. Now, using Eq. ( 15 ) we obtain the following solution of 

- Vllerkll the system (21): 

Here r,, p, and the time tare given as functions of the param- The conclusion that the photon is captured is valid if 
eter k f ,  determining the position of the polariton on the two conditions are satisfied: xw2/c2 > (2M/fi) 
upper branch of the dispersion curve (see Fig. 1 ), the initial (w - ~ , , , 2 , c  (0)  ) (indicating the existence of a photon- 
values are designated with an index (O), and the function dominant region on the upper branch of the dispersion 
k { (x2) has the form curve) and [ a - G  (co) ]>O (i.e., kl l (k:+co)>O),  

It follows from Eq. (21) that for 
w - w,,,,,~,,~ (k  : -r cc ) > O,kIl does not vanish on the upper 
branch of the dispersion curve for any value of k, and the 
point kil (k  : - cc ) lies above the abscissa axis. The integrals 
in Eq. (22), determining p and t, grow without bound as 
k, -r W ,  while the radius vector approaches a finite limit: 
r,, ( 00 = rg'k hO'/kll ( co ) - - #o)k gr 1, (0) [(2M/fi) 
X (a - G n,,l,c ( cc ) ) ] -'I2. This dependence of p ,  t ,  and r,, 
on k, indicates that the motion of a point corresponding to 
the state of a polariton to the right and downwards along the 
top branch of the dispersion curve corresponds to motion 
along a spiral, converging to a circle of finite radius r,, ( oo ) . 

This effect can be realized with the following very sim- 
ple scheme: A photon is incident normally on a flat surface of 
a semiconductor, placed in a field with the configuration 
described above (the z axis lies in this plane, so that k, = 0). 
Then, at first (in the photon-dominant state) the wave pack- 
et propagates almost rectilinearly, and then (at the transi- 
tion into the exciton-dominant state) its trajectory becomes 
curved. 

which was assumed when the figure was constructed. A de- 
tailed analysis showsga that in a real semiconductor both 
conditions are satisfied only for n, > 2. This means that in 
order for trapping to occur the initial state of the photon 
must lie in the gap between two neighboring Coulomb levels, 
for example, w - Gn2n23 (0) <fik i/2M <W - Gn,n22 (0) (in 
order to decrease the value of n, at which the inequalities 
have a simultaneous solution, it is necessary to take a semi- 
conductor for which the relation x E  i / M  is maximum9). It 
was assumed above that E, = 1.5 eV, x = 2 0 ,  
m, = m, = 0.08m, and m is the electron mass. 

In the case when the inequality w - G, ,,, ( co ) < 0 , - 
holds, the top branch intersects the abscissa axis at some 
point k y ,  kll (k  y )  = 0. Then the integral determining 
the time diverges, when the upper limit of integration ap- 
proaches k y ,  and the integral determining the angle p ap- 
proaches a finite limit p ( k y ) ;  rgr with kll = 0 also ap- 
proaches infinity. This behavior means that for 
w - Gn,n2,c ( co ) < 0 the photon is deflected by a finite angle 
(greater or less than 2A). 

5. Another effect related to the pole in the dispersion 
equation is photon scattering by a nonuniform magnetic 
field. Let the lower branch of the dispersion curve in Fig. 1 
intersect the abscissa axis in the photon-dominant region 
and let the initial state of the polariton lie in this region. If the 
polariton moves so that the distance between the center of 
the wave packet and the z axis decreases (our arguments 
refer to the field configuration described above), the corre- 
sponding point in the momentum space shifts up and to the 
left along the bottom branch of the dispersion curve (see Fig. 
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1). However this branch becomes more level as k : de- 
creases, so that the linear growth of k i, which would corre- 
spond to rectilinear motion in the configuration space, is 
impossible. Instead, k increases to some maximum value 
(k  f ),,, = k (k: = 0), less than xw2/c2. After the point 
(0, (k f ),,, ), at which, according to Eq. (20), V y  = 0 is 
reached and the point r,, reaches its minimum value, the 
polariton evolves along the same branch of the dispersion 
curve down and to the right until the photon-dominant re- 
gion is reached. 

Thus the process described above is nothing more than 
photon scattering by a nonuniform magnetic field. It is de- 
scribed quantitatively by the same equations as photon trap- 
ping [see Eq. (22) ], but here k ( k  : ) is determined by the 
relation (23) with the opposite sign in front of the braces: 

M 2hn,nro  (k,? M 1% -- ( s n , n , n c  ( k L 2 )  - a)] + 
ti" 

The maximum penetration depth into the central region 
of the field (r,,),, and the scattering angle o(7.) can be 
calculated as a function of the impact parameter 7.: 

It follows from Eq. (25) that in the limit ? - D O  [or, which is 
thesame thing, (k  /1°')2-.0] a(7.-+0) #O, i.e., a shadow with 
the angle 2o(0) forms behind the center of the field lines 
(behind thez axis). This result is formal, since it falls outside 
the limit of applicability of geometric optics. 

6 .  In our calculation of the permittivity and derivation 
of the equation of motion (21 ) we made some assumptions 
(we assumed that the states of the exciton are stationary, we 
employed the geometric-optics approximation, etc. ) . Their 
validity is ultimately determined by certain restrictions on 
the intensity of the magnetic field and the curvature of the 
field lines (for given values of the parameters of the semicon- 
ductor). 

In Sec. 2 we already discussed the adiabatic approxima- 
tion. For x = 20 and m, = m, = 0.08m the condition of 

adiabaticity reduces to the requirement B > lo4 G. Further, 
the effective-mass approximation gives an upper limit on the 
field: B < lo7 G. 

We likewise assumed everywhere above that the states 
of the exciton are stationary. In reality, however, the lifetime 
of the exciton is equal to 10W5-10-7 s. This can be taken 
into account by introducing instead of the term i -0  in the 
denominator of Eq. ( 18) the factor iT ( Breit-Wigner broad- 
ening) and assuming that o is a complex number. The argu- 
ments about the evolution of a point in the momentum space 
along the dispersion curve are valid if the broadening can be 
neglected, i.e., when I' is much less than the minimum dis- 
tance between two branches of the dispersion curve. For 
B > lo3 G this condition is ~atisfied.~" 

The condition for the validity of geometric optics can be 
formulated as follows: the time interval T, corresponding to 
bending of the trajectory (transition of the polariton from 
the photon-dominant into the exciton-dominant state), 
must be much larger than w - ' . If the radius of curvature of 
the field lines is equal to 1 mm and longer, T) w - ' for field 
intensity greater than lo3 G (a detailed analysis is given in 
Ref. 9a). 

Summarizing these restrictions, we find that photon 
capture and photon scattering in a nonuniform magnetic 
field are theoretically possible for B = lo4-lo7 G, and the 
lower limit depends significantly on the characteristics of 
the semiconductor. 

We are deeply grateful to V. L. Ginzburg, E. G. Maksi- 
mov, V. N. Nishanov, 0. A. Pankratov, and V. P. Silin for 
useful discussions. 
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