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The elastic moduli of flux-line lattices in anisotropic superconductors are investigated. In 
addition to the well-known bulk, shear, and tilt moduli we observe moduli that relate 
deformations in the basal plane of the lattice to vortex tilt. These moduli vanish when the 
superconductor is magnetized along the axis of anisotropy. The vortex structure continuum 
realized in this case has identical bulk and shear moduli and different tilt moduli. A hexagonal 
flux-line lattice is realized in superconductors with "easy axis" anisotropy when a weak magnetic 
field is applied. When the field H is applied in the ab-plane of the crystal the lattice becomes an 
oblique lattice with orthorhombic symmetry. This results in a sharp growth of its elastic moduli 
and the induction in the sample. Vortex chain structures are the only stable structures in "easy 
plane" superconductors. The elastic moduli characterizing the rigidity of an isolated chain are 
exponentially large compared to the moduli describing interchain interaction. The tilt moduli 
may reverse their sign when His  oriented near the axis of anisotropy c for strongly anisotropic 
superconductors. In this case, the vortex structure and all related elastic moduli undergo a 
discontinuous irreversible change. 

1. INTRODUCTION 

Since their discovery high- T, superconductors have be- 
come the principal focus of investigations of the supercon- 
ducting state. The most evident feature of the new materials 
is the strong anisotropy of the superconducting states. Its 
characteristic manifestations include anisotropy of the criti- 
cal fields and current as well as asymmetry of the flux-line 
lattices (FLL) . 

There are also a number of features in the magnetiza- 
tion of anisotropic superconductors. In many respects such 
magnetization is analogous to the magnetization of a ferro- 
magnet whose principal processes in an external magnetic 
field H include displacement of the domain boundaries and 
rotation of the spontaneous magnetization vectors. Such 
processes also determine the reversible magnetization curve 
B(H)  in anisotropic superconductors. The magnetic flux in 
fields H exceeding the first critical field penetrates the super- 
conductor as a FLL, with the vortex concentration rising 
with increasing H. A change in the induction B in the sample 
(vortex concentration) is analogous to displacement of the 
domain boundaries in a ferromagnet and is the only process 
in isotropic superconductors that determines the form of the 
curve B(H).  

Generally the orientation of isolated vortices in aniso- 
tropic superconductors does not coincide with either the 
crystal axes or the direction of field H. Reference 1 was the 
first to identify the rotation of magnetic vortices in an in- 
creasing field H. For H = 0 the fluctuation vortex lies along 
the axis of symmetry with the lowest effective electron mass 
F (Ref. 2). In the threshold field H,, such a vortex is orient- 
ed in the direction fi  - 'H (Ref. 3) .  The vortices rearrange 
into a FLL and rotate towards H with increasing field mag- 
nitude. Only when H is oriented along one of the crystal axes 
do the equilibrium direction of the vortices in the supercon- 
ductor coincide with H. In the case of an arbitrary field ori- 
entation, the vortices asymptotically rotate toward the vec- 

tor H yet do not coincide with this direction with any finite 
H (Ref. 3 ) .  This conclusion is entirely consistent with the 
analogous result for ferromagnets. 

The FLL elastic moduli represent an important charac- 
teristic of vortex structures. An array of elastic moduli can 
be used to describe the fluctuation part of superconductor 
energy attributable to FLL deviation from equilibrium and 
to determine the stability of an equilibrium FLL. The elastic 
moduli can also be employed to express the critical current 
and the anomalies on the I-V characteristic of the supercon- 
d u c t o r ~ . ~  The dimensions of the short-range order domains 
in FLL's are also determined by the elastic m ~ d u l i . ~  

The structure and elastic moduli of FLL's have been 
exhaustively analyzed in isotropic superconductors."8 
Equilibrium F L L ' S ~ , ~ , ' ~  and magnetization for 
anisotropic crystals have only been described for layered su- 
perconductors (these also include the new high-T, super- 
conductors). The elastic moduli of FLL's in superconduc- 
tors of arbitrary anisotropy have not yet been investigated; 
Ref. 13 only reports the shear moduli of dense FLL's. 

This paper is devoted to a description of equilibrium 
vortex structures and their elastic moduli in anisotropic su- 
perconductors. Section 2 contains the equilibrium equations 
for the FLL parameters together with expressions for the 
elastic moduli and descriptions of the FLL structure in iso- 
tropic superconductors. Superconductor magnetization 
along one of the axes of anisotropy is considered in Sec. 3. 
Section 4 contains a description of sparse FLL's and their 
elastic moduli in uniaxial "easy axis" superconductors, 
while Sec. 5 provides the same information for "easy plane" 
superconductors. The elastic moduli of dense FLL's are dis- 
cussed in the conclusion. 

2. EQUILIBRIUM EQUATIONSAND ELASTIC MODULI 

1. The thermodynamics of a system of rectilinear vorti- 
ces uniformly distributed in space is determined by the de- 
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pendence of the density of the Gibbs potential on H (see, for 
example, Refs. 1, 3 ) 

0 0 1 IS=.,-[H.,-HV 4n +-I 2 8, 6(qv)~h\ .  (1)  

The Gibbs potential is written in terms of the longitudinal 
(parallel to the total magnetic flux v )  Fourier-component of 
the vortex field2 

and the structure factor of the FLL 

The anisotropy of the superconducting properties is ex- 
pressed by the electron effective mass tensor mfi (detfi = 1 ). 
The following notation is used in Eqs. (1)-(3): 
H,, (v )  = H:, (vfiv) is the first critical field in an aniso- 
tropic superconductor, H:, = (@,/4rA ,)ln(A /g) is the 
first critical field in an isotropic material; a, is the flux quan- 
tum; and S(q) is the delta-function. Let us assume that the 
vortices are uniformly distributed in space, are parallel, and 
oriented in the direction of v. This structure is described by 
the two-dimensional vectors {x} perpendicular to v and 
forming a regular two-dimensional lattice. It is specified by 
the translation vectors A, and A, (see Fig. 1 ). These vectors 
are used to express the vortex concentration 
n, = (VIA, AI ] ) - in the lattice. 

Therefore a regular system of parallel vortices is repre- 
sented by six independent parameters: the unit vector v, the 
length of the translation vectors A ,  and A,, and the angles I 
and r determining the orientation of the translation vectors 
in the basal plane (Fig. 1 ). Their equilibrium values are de- 
termined from the minimum of the potential ( 1 ). 

2. Let us write the Gibbs potential ( 1 ) as an expansion 
in the small deviations of the vortices from equilibrium. We 
represent the vortex displacement from the lattice sites by 
the distortion tensor uij = aui/dxj. The indices i, j = 1, 2 
label the Cartesian coordinates of the vectors in the basal 
plane perpendicular to v. The deviation Sv of the vortices 

FIG. 1 .  Vortex lattice cell in a supelconductor in external field H: A, and 
A, are the translation unit vectors in the basal plane x ,  , x ,  perpendicular 
to the vortex direction v; c is the axis of anisotropy. 

from the equilibrium direction v is determined by the two- 
dimensional vector o = [ v ~ v ] .  We then obtain 

G = G p + K ~ + ~ i ~ ~ i ~ + ' l z T i ~ o i o j  
+ ' / z C i j n r ~ i j ~ k ~ + D i j n ~ i u j k .  

(4)  

Here the torque is equal to 

and the elastic stress tensor takes the form 

Summation is implied over all repeating vector indices. 
The equilibrium configuration of vortices is determined 

by the vanishing of the torque and the stress fensor: 

We examine the equilibrium equations in greater detail be- 
low for various magnetic field orientations with respect to 
the crystal axes. 

We provide the second derivatives of the potential Gin 
Eq. (4)  in equilibrium. The tensor components of the tilt 
moduli take the form 

The elastic shear and bulk moduli are equal to 

The tilt-compression and tilt-shear moduli are cast as 

Labush7 was the first to expand the FLL elastic energy for 
an isotropic crystal for the case of spatially homogeneous 
strains and Brandt8 was the first to carry out this procedure 
in the spatially inhomogeneous case. Note that the last three 
terms in potential (4)  can be recast equivalently as 

In this case the Greek subscripts a and f l  run over values of 
1,2, 3 so we have u,, = w ,  , while u,, = 0,. 

3. One anomaly of an anisotropic crystal is the appear- 
ance of "tilt-compression (shear)" terms in the expansion of 
Gibbs potential (4)AThese terms are proportional to the 
tensor of rank three D. The FLL elastic strains in the basal 
plane uij are related to vortex tilt o by the dependence of the 
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magnetic field configuration of a: individual vortex on its 
orientation v. The elastic moduli D=O in the isotropic case. 
In an anisotropic crystal the torque 

is manifested not only upon vortex tilting but also upon 
strains in the basal plane. Elastic stresses in the FLL 

likewise arise not only from FLL strain (as in the isotropic 
case) but also due to vortex tilt. 

The last three terms in relation (4)  represent the fluctu- 
ation energy of the Gibbs potential caused by FLL deviation 
from equilibrium. Arbitrary fluctuations are conveniently 
described by the six-dimensional vector 
6 = Cull ,uI2 ,u2, ,u2, , a1  ,w2 1. :he fluctuation part of the en- 
ergy is then cast as 8G = f C X ~ ,  where the 6 x 6 matrix is 
given in block form: 

h 

4. The tensor T is a symmetrical tensor in the general 
case of a biaxial superc%nductor and has three independent 
components; the tensor Cis symmetrical under permutation 
of the first and last pair of indices and has t e ~  independent 
elements; all eight components of the tensor D are indepen- 
dent. 

The orthorhombic symmetry of the FLL will reduce the 
number of nonzero components of the matrixa in a uniaxial 
superconductor. The presence of this symmetry can be di- 
rectly determined from the general equations al, = o,, = 0 
in Eq. (7).  Indeed, for uniaxial superconductors it follows 
from K,  = 0 in Eq. (7)  that the anisotropy axis v and the 
magnetic field H always lie in the same plane. By placing the 
axis of the Cartesian coordinate system in this plane we see 
that the Fourier component of the vortex field 

0 0  l+qZF8s ' 

h(q)=- 
(2nh) ( I + q 2 y )  (l+ql2p.+q'z2p,,) (12) 

is an even function of q, and q, (here p, = p; and pa are 
the principal values of the tensor fi parallel and perpendicu- 
lar to the axis of anisotropy c)  . 

The structure factor S(q)  from Eq. (3)  must be even 
with respect to q, and q, for the nondiagonal components of 
the tensor & in Eq. (7)  to vanish. An FLL symmetrical un- 
der the substitution x, - - x, , x, - - x, will have such a 
structure factor. This means that the unit cell is a rhombus 
whose diagonals lie along the x,  and x, axes, perpendicular 
and parallel to the projection of the axis of symmetry c in the 
basal plane (see Fig. 1 ) . 

This additional symFetry element causes the 2on- 
diagonal components of T and the components of C in 
which the indices 1 and 2 appear an odd number of times to 
vanish identjcally. This leaves six linearly independent com- 
ponents of C. 

h 

The components of tensor D do not follow the symme- 
try of the field h given by ( 12), but rather the symmetry of its 
derivatives: ah /dv, a q: , while ah /av, a q, q, . The corre- 
sponding evenness of the derivatkes ah /dv guarantees that 
only four of the eight moduli of D are nonzero. 

The fluctuation part of the FLL energy in a uniaxial 
crystal can therefore be given as SG = f 6 '2'6 ', where the 
matrix a from Eq. ( 1 1 ) after permutation of the rows and 
columns becomes block diagonal 

the coupled fluctuations f ' = {u,, ,u,, ,w, ,u,, ,u,, ,a, > rep- 
resent noninteracting combinations of FLL compression di- 
lation and vortex tilt in the plane containing the axis of ani- 
sotropy c and H as well as shear strains and vortex deviations 
from this plane. 

5. The elastic modulus matrix ( 13) becomes substan- 
tially simpler in the case of an isotropic crystal. In such a 
crystal the vortex direction v always coincides with H. This 
follows directly from the equilibrium equations (7)  with K 
from Eq. (5). Indeed, in the isotropic casefi = 1 holds, while 
the vector ah /dv in integrals with (qv) = 0 is parallel to v. 
Hence the only identically nonzero term in Eq. (5 )  for K is 
the term proportional to [Hv]  . 

Aside from the two relations used so far equilibrium 
equations (7)  with B from Eq. (6)  also contain two relations 
for the diagonal components of B: a,, -o,, =0,  
a,, + a,, = 0. Consider the first relation: 

3 = 

We show that square and hexagonal FLLs satisfy this condi- 
tion. For this purpose let us introduce the polar coordinate 
systems x ,  + ix, =pei'P, q, + iq, = Qe'? Using this nota- 
tion, we rewrite Eq. ( 14) as 

' Cllll C1122 Dlll 

Czzii C 2 2 2 2  Dl22 O 
Dill Dl22 T I ,  

Cizi2 C1221 Daiz 

0 CZllZ C2121 4 2 1  

@ ilS dS 
ol,-oz2=nL2J 4n d@dQ Qh(Q) ( c o ~ 2 q 1 . Q ~  - sin -) 

a* 

\ D212 D221 T22 J 

(13) 

=inL"j 4n dip dQQ ' l r ( Q )  Z e x p ( i Q p  cos $) 

x cos ($+2cp) =o. 
We have taken account of the fact that the field h is only 
dependent on Q = (q: + q: )"I in the isotropic case, while 
the sum over the FLL sites in the structure factor (3)  has 
been decomposed into a sum over the coordination spheres 
of radiusp and a sum over sites lying along the circle of given 
radiusp and having the azimuthal angle p .  It is easily deter- 
mined that the sum Z,cos($ + 2p) is equal to zero in Eq. 
( 14a) with an arbitrary $ for only two FLL's: a square FLL 
and a hexagonal FLL. 

The last equation o,, + a,, = 0 in (7 )  in the form 
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determines the magnetic field dependence of the unit cell 
size of the FLL. 

Let US now consider the elastic moduli. In the isotropic 
case D-0 since the vectors v and dh /Sv are parallel with 
(qv) = 0 in the integrals. 

The rotational axis of symmetry in the fourth or sixth 
order FLL will cause the following elastic moduli to coin- 
cide: C :, , , = C :,,, , C :,,, = C :,,, . The "zero" superscript 
here denotes the values in an isotropic superconductor. 
Moreover, the fact that vectors v and H are parallel results in 
an additional symmetry element: the entire crystal can be 
rotated by an arbitrary angle flllH about the direction of H. 
Such a rotation corresponds to a deformation of the flux-line 
lattice 

d 
u,, = ----[xQ], 

dx, 
as well as a shift by SG= (C:,,, - C:,,, )O in the FLL 
energy. The relation 

~,~P,,=c,z",, 

follows from the constancy of the Gibbs potential. 
The FLL rigidity in an isotropic crystal is therefore de- 

termined by four elastic moduli. 
An important feature of an isotropic crystal is the iso- 

morphic transformation of the FLL under a varying magnet- 
ic field: the lattice period A changes, while the angle = re- 
mains constant. This property of the FLL can be attributed 
to the fact that the elastic stresses a,, - a,, in relation 
( 14a) turned out to be zero for the vortices of each coordina- 
tion shell. By virtue of the isomorphism of the FLL the de- 
rivative of tke structure fac tz  S with respect to q in the 
relations for Tin Eq. (8)  and C in Eq. (9) can be expressed 
through the derivatives with respect to B = n, Q, : 

as as q---= -2B-. 
a dB 

This relation allowed Labush7 to express the elastic moduli 
of a hexagonal FLL in terms of the characteristics of the 
equilibrium magnetization curve B = B, (H) : 

Note that the Cauchy relation 

holds for a hexagonal FLL.^With low-level induction 
(n,A < 1 ) the elastic moduli C are similar in magnitude, 
C:,,, z C Y,,, zf C y ,  , , and are exponentially small, 

The tilt modulus considerably exceeds the moduli ? 

The compression moduli C , , , and C Y,,, are comparable in 
magnitude to the tilt modulus T:, = H ,/477 with increasing 
induction (n,A *)  % 1) and substantially greater than the 
shear modulus8 

The positive definiteness of the block diagonal matrix ( 13) 
determines the stability of the hexagonal FLL; in this matrix 
all diagonal elements and the minor of rank two are positive 

The minor of rank 2 

is identically equal to zero due to the degeneracy of the FLL 
energy under rotation in the basal plane. 

A square FLL is un~ tab l e .~  It is unstable against com- 
pression-dilation strains. The minor A, in Eq. ( 19a) is nega- 
tive across the entire field range. With low-level induction 
(n,A 4 1) it is exponentially small 

while with high a level induction (n,A 2> 1) it is equal to 

1% both of these cases the principal terms in the func- 
tions C(B) cancel and the sign of the minor A, (19a) is 
already determined by small corrections to the fundamental 
relation. This statement once again confirms the well known 
fact that the energies of hexagonal and square FLLs differ by 
a negligible a m o ~ n t . ~ . ' ~  

6. In the general case of an anisotropic~u~ercond~ctor 
all 21 linearly-independent elastic moduli C, T, and D are 
nonzero. The minor of rank two A, in Eq. ( 19b) is nonzero 
and describes the rigidity of the FLL with respect to unit cell 
rotation. 

3. MAGNETIZATION IN THE SYMMETRICAL DIRECTION; 
DEGENERATEVORTEXSTRUCTURES 

1. We first determine the equilibrium orientation of a 
rectilinear isolated vortex. We can determine from Eqs. ( 7 )  
with K from Eq. (5 )  that for H = 0 the vortex lies along the 
axis of symmetry with the lowest value of the tensor ,ii 
(henceforth we label this the a axis). In this case, the self- 
energy of the vortex Q,H,, /47r is minimized. 

For magnetization along the c axis (the "hard" axis in 
accordance with the value o f p )  v rotates in the ac plane as 

In this case v rotates from a to c in the field range from zero 
through 

348 Sov. Phys. JETP 74 (2). Februaly 1992 Grishin etal. 348 



The vortex is stationary in fields exceeding I? and ori- 
ented along H. 

The moduli 2 and are identically equal to zero for an 
isolated vortex. The tilt moduli behave as follows: 

Here thex, axis perpendicular to v rotates in the ac plane for 
H < k ,  while the axis is directed along c for H>B. The x, 
axis is parallel to the b axis of the crystal. Magnetization of 
the crystal in the direction of the "intermediate" b axis is 
also described by Eqs. (20)-(22) in which the indices b and 
c are transposed. 

If the crystal is magnetized along the a axis, the vortex is 
always oriented parallel to H and we have 

Tli=Tbb= (B14n) H,,p,lp., Tzz=T,,= (B14n) H,,P~/P.,. 

2. Let us now consider FLL formation in a supercon- 
ductor magnetized parallel to the c axis by an external mag- 
netic field of magnitude exceeding B. To describe a crystal in 
the intermediate direction b or the "easy" plane a it is neces- 
sary to carry out the cyclic substitution of indices 
a - b - c + a  in all preceding equations. 

First of all, note that taking account of vortex interac- 
tions has no effect on the equilibrium orientation of the vor- 
tices for H >  Hcl . This orientation remains unchanged from 
the case of an isolated vortex: YIIHIIc. This follows from the 
zero value of the integral in Eq. (5)  since we have ah /dvllv 
for vllc. 

The results obtained for an isotropic superconductor 
can be employed to describe the FLL structure in fields 
H >  Hcl. Indeed, for vllc the expression for h in Eq. (2)  is 
simplified significantly: 

The basal plane anisotropy in the integrals with respect 
to q in Eqs. (6)  and (9)  can be accounted for by means of the 
scale transformation: 

The structure factor S(q)  in Eq. (3)  remains unchanged 
under this transformation if a scaling transformation of the 
coordinates in the basal plane is carried out in conjunction 
with the transformation (24): 

X , ' = X , ~ ~ - ' ~ ,  X ~ ' = X ~ ~ , - ' ~ .  (25) 

The expression for the Gibbs energy ( 1 ) in the primed 
coordinate system retains virtually the same form as in an 
isotropic crystal. The only difference lies in the additional 
m ~ l t i p l i e r p ~ / ~  in front of the integral with respect to q in Eq. 
( 1 ), the expression for the lower critical field H,, = H :, p:/* 
and the expression for the vortex concentration: 

A stable FLL in the primed coordinate system is a hex- 
agonal structure with A ; = A ; = A ' and E' = ~ / 3 .  The 
unit cell parameters are independent of its orientation in the 
basal plane. The superconductor induction B and the field H 
are related by 

in terms of the reversible magnetization curve of an isotropic 
superconductor B, (H /H El - 1 ) . 

3. FLL degeneracy is one of the characteristics of vortex 
structures in an isotropic crystal. The energy G and the unit 
cell remain unchanged as the cell rotates about v. Basal 
plane anisotropy exists in a biaxial crystal and pa #pb holds. 
Nonetheless, when a biaxial superconductor is magnetized 
in the symmetrical direction FLL degeneration is also pres- 
ent. However, the unit cell shape depends on its orientation 
with respect to the crystal axes. To confirm this we use the 
inverse coordinate transform associated with (25 ) . The pa- 
rameters A,, A,, and H of the flux-line lattice are expressed 
in terms of the parameters A ' and 3' = ~ / 3  of a hexagonal 
FLL in the primed coordinate system by 

Here the relation A '(H) is described by relations that are 
standard for a hexagonal FLL: 

Relations (27) permit an unambiguous determination 
of FLL structure in an anisotropic crystal. In these relations 
7 = (pb/pa ) characterizes the basal plane anisotropy, 
while the angle T gives the unit cell orientation relative to the 
crystal axes (see Fig. 1 ). 

The FLL energy in equilibrium is independent of the 
angle T. Indeed, n, = B /@, is a function only of magnetic 
field (26). As follows from the transformation (24) and 
(25), the structure factor does not depend on the angle T. 
This means that the continuum of FLL's that continuously 
transform into one another with varying r have the same 
energy. This conclusion was initially derived in Ref. 9 for 
uniaxial superconductors. 

4. The FLL unit cell can easily be plotted in graph form 
(see Fig. 2).  An ellipse with semiaxes and p:l2 is drawn 
in the basal plane ab. The vector A, is determined by the 
intersection with the ellipse of a ray running from the center 
of the ellipse at an angle r relative to the x ,  axis. As we see 
from Fig. 2, the second vector A, is found by plotting the 
chordpp' parallel and equal in length to the vector A,. The 
vector A, connects one end of the chord to the center of the 
ellipse. 
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FIG. 2. Method of plotting the unit cell of a flux-line lattice in a supercon- 
ductor magnetized along the c axis for a given angle T. The chord pp' is 
parallel and equal in length to the vector A , .  

As r goes from 0 to 27~ the FLL's transform continu- 
ously so that each structure repeats six times. All topologi- 
cally nonequivalent structures can be obtained by varying 
the angle on the interval [O,tan - ' (31/2/7) 1. 

Figure 3 provides a convenient illustration of the pa- 
rameters of an anisotropic FLL. This figure shows how the 
ratio A, /A2 depends on the angle E between them for differ- 
ent values of the anisotropy parameter 7. A hexagonal lat- 
tice (point A ,  /A2 = 1, E = a/3 in Fig. 3) corresponds to 
the isotropic case v =  1. The closed curve in Fig. 3 corre- 
sponds to the FLL continuum for a specific value of 7. It 
describes the family of structures that are continuously 
transformed into one another. Each point on the closed 
curve corresponds to a specific value of r. We can easily 
observe motion along the closed curve as T varies. Curve I in 
Fig. 3 is the locus of points with r = 0 and different values of 
7. Line I1 is r = tan - ' (3'/2/77). In this orientation the unit 
cell is a rhombus (A, = A, ) for any values of 7. Curve I11 
corresponds to r = a - tan - ' (3'/2/17). Therefore, 
counter-clockwise rotation of A, in Fig. 2 corresponds to 
clockwise motion of a point along the closed curve in Fig. 3. 

A 180" rotation of the vector A, corresponds to tracing the 
curve in Fig. 3. A 

5. The elastic m%duli C in Eq. (9)  can be expressed in 
terms of the moduli Co(B) from Eq. (16) for an isotropic 
lattice in the case Hllc by means of the scale transformation 
(24) and (25): 

c , ,~,  (B) = p , ~ ~ ~ ~ ~  (BIPC'~) I 

C,,,, (B) = p , - 2 ~ ~ k ( ~ ~ ~ . ' " ) ,  

C,,,, (B) = C,,,, (B) = pC~t:tz (B/P;"). (28) 

Therefore the elastic moduli in an anisotropic crystal 
magnetized in the symmetrical direction only depends on 
the induction B. The equilibrium relation of B and H is deter- 
mined by expression (26). 

As in the case of an isotropic crystal we can easily see 
from Eq. (28) that the minor ( 19b) will always be zero. Thz 
tilt-compression (shear) moduli2re zero. The tilt moduli T 
cannot be expressed in terms of T o  in Eq. ( 16) by the scale 
transformation (24) and (25) Lor an isotropic superconduc- 
tor. This is because the moduli T do not reflect the symmetry 
of the field h itself, but rather the symmetry of its derivatives 
with respect to v. The expression for the principal compo- 
nents of the tilt moduli can be represented in quadrature 
form 

Here the integral term describes the dependence of the 
tilt moduli on the FLL unit cell orientation in the basal plane 
(the angle T ) .  The moduli T, reach their extremal values for 
values of T where the unit cell is a rhombus. In this case, one 
of the tilt moduli is a minimum while the other is a maxi- 
mum. The moduli TI and T, vary in antiphase as the angle r 
changes: an increase in one modulus is accompanied by a 
decrease in the other. In both limiting cases (high and low 
induction levels) we can neglect the last integral term. 

6.  A continuum of FLL's is therefore realized when the 
crystal is magnetized along the axishof symmetry.hSuch 
FLL's have identical energies, moduli C, and moduli D-0, 
and diiferent moduli T, and T,. Such FLL degeneracy is 
eliminated as H deviates from the axis of symmetry. The 
resulting FLL transformations differ in the case of easy axis 
and easy plane crystals. We consider these cases separately 
based on sparse FLL's in uniaxial superconductors. 

4. OBLIQUE MAGNETIC FIELD: HEXAGONAL FLUX-LINE 
LATTICE IN EASY-AXIS CRYSTALS (pa > 1) 

FIG. 3. The length ratio of the translation vectors A ,  / A ,  versus the angle 1. Let us consider the magnetization of a uniaxial super- 
E between them for different anisotropy parameters v =  (p,,/,u, The 
corresponding values of the angle T are noted on the closed curve for (pa = p b  > P C  = p L  ') by an 
q = 5 .  at an angle 8 to the axis of anisotropy c (see Fig. 1 ) . 
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In the second section we obtained the most general solu- 
tions of the equilibrium equations (7)  in uniaxial supercon- 
ductors. That is, the vectors c, H, and v that always lie in the 
same plane while the FLL unit cell is a rhombus: 

In this section we obtain the remaining solutions of the equi- 
librium equations for easy-axis crystals, write out the elastic 
moduli, and investigate the stability of the resulting solu- 
tions. We start by solving Eq. (14), a,, - u2, = 0, which 
determines the relation E(B), and then determine from 
a,, + a,, = 0 and K, = 0 the equilibrium magnetization 
curve B(H) .  

The structure factor S(q)  is a rapidly oscillating func- 
tion with a period q z i l  /A, 4 1 for a sparse FLL (n,A 24 1 ). 
In this case, the Fourier component h ( 12) can be used to 
obtain the asymptotic forms of the vortex field h (x)  at large 
distances. It contains two terms with different damping 
rates.lv3 The first term which is proportional to 
exp( - ~/p: /~)  is determined by the pole of Eq. (12) for 
q2 = - 1/11, and dominates for virtually all vortex direc- 
tions y #?r/2, where y is the angle between the vortex v and 
the axis of anisotropy c. The asymptotic forms of the mag- 
netic field at large distances therefore correspond to the 
Fourier component of the form 

When the vortex is located in the ab plane ( y + 77-/2) the 
tensor componentp,, = p,sin2y + p, 2~os2y  is comparable 
top,. It is demonstrated below that y - ?r/2 holds only when 
the external field H is applied in the ab-plane (for 8-?r/2). 
In this case the pole corresponding to the vanishing of the 
second factor in the denominator of Eq. ( 12) makes the pri- 
mary contribution to the asymptotic form of the vortex field 
at large distances. This means that the asymptotic limits of 
the field are determined by the Fourier component 

The damping rate is anisotropic and the vortex field is pro- 
portional to exp [ - p, ( x :  + p; 3x: ) 'I2] . 

The constant-field lines h(x)  are circles in the case of 
Eq. (30) and ellipses in the case of Eq. (31 ) and hence all 
equilibrium equations 6 = 0 can be reduced to isotropic 
form by transforming the coordinates q and x. The field h (q)  
in Eq. (30) differs from the isotropic case solely in the multi- 
plier p, for q2. This means that the FLL differs from the 
isotropic case by compression of the coordinates by a factor 
~ f p : ' ~  in the basal plane. As in an isotropic crystal the solu- 
tions of the equation a,, - a,, = 0 with oij from Eq. (6)  are 
the hexagonal and square FLL's: 

The equilibrium vortex structures for the field distribution 
(3 1) are described in Sec. 3. The orthorhombic symmetry of 
Eq. (29) selects from the FLL continuum those lattices with 
unit cell angles 

E=2 arctg ( 3 ' " ~ ~ - " ) ,  (33a) 

- n=2 arctg (3-"p,-"), 

8=2 arctg (p.,-"). 

FLL rearrangement and the transition from solutions (32) 
to (33) occur near the angle 0 = 7/2. The size of this inter- 
val is dependent on the induction: 

Figure 4 shows the results from a numerical calculation 
of the dependence of the angle ,' on the vortex tilt angle y for 
fixed induction values. 

Simultaneous solution of the equations K, = 0 and 
a,, + a,, = 0 yields the equilibrium vortex orientation in 
the lattice (the angle y)  as well as the equilibrium vortex 
concentration B ( H ) .  For a hexagonal FLL the angle y has 
the following dependence on the external parameters Hand 
8: 

The first term in Eqs. (35) determines the orientation of an 
isolated vortex.' It is clear that the vortex lies in the ab plane 
( y-v/2) only in the limit 8-r/2. The second term ac- 
counts for the additional vortex rotation induced by the 
nearest neighbor field. 

The equilibrium induction of the hexagonal structure 
(32a,b) 

1 H cosZ 0 (pa3 + tgZ 8) " 
= -.. [P. (- 

Fa H,,O (~.l .~+tg~ e ) I h  
I ) ]  (36) 

FIG. 4. The angle I of the unit cell of the flux-line lattice plotted as a 
function of the tilt angle y of the vortices to the axis of anisotropy of an 
easy axis superconductor. The curves are plotted for different inductions 
B: I-B/Z '/Cp0 = 0.001; 2-4.01; 3-4.1. The primes represent relation 
(52) for a dense lattice, BA '/ao, 1. 
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is expressed through the reciprocal magnetization curve of 
an isotropic superconductor. When H is oriented in the ab 
plane the induction of the oblique structure (32a,b) is 

It is clear from Eqs. (36) and (37) that the induction jumps 
sharply by a factor ofp? in the immediate vicinity A0 given 
by (34) of angles 0 near n-/2 as a hexagonal FLL [Eq. (32) ] 
becomes an oblique FLL [Eq. ( 33 ) 1. 

2. The strongest of the elastic modug of a sparse FLL 
[see the matrix ( 13) ] are the tilt moduli T: 

here Tii denotes t&e diagonal element of the matrix ? 
The moduli D are exponentially small in the function B 

and hence are due to interaction between the vortices: 

3 1 sin 0 cos8 3/4 
D,,, = - --7- --- 

2 pa'/' sinZ 0+,uOfi cosL 0 

The explicit dependence of the difference (Hv)/H,, (0)  - 1 
on the external parameterzHand 0 is contained in Eq. (36). 
A property of the moduli D is that they vanish in the isotrop- 
ic limit pa -+ 1 and when H is tilted with respect to the sym- 
metrical directions (0+$,n-/2). 

The elasti~moduli C have the same dependence on H as 
do the moduli D 

although they never vanish. 
The induction jumps sharply when H is applied in thz 

ab plane in the interval A0 given by (34), while the modgi T 
grows simultaneously by a factor of p y .  The moduli C in 
this interval grow by a fa2or of 
a [H/H,, (n-/2) - 1 ] 2 .  The moduli D vanish as cos0 as 
0-n-12. 

3. The positive definiteness of the matrix (13) deter- 
mines the stability of the solutions (32). Since the conditions 
C,,,, , C,,,, > 0 and T S D  hold for all the solutions (32), the 
stability of the solutions (32) will only depend on the sign of 
the minors of rank 2, A, and A, given by Eqs. (19). 

The minor A, of ( 19a) is negative for a square FLL [see 
( 3 0 ~ )  I 

A =.. 
npZ12 BOO3 4@ 

--- exp [- (+) "1 
(2pa6+tg2 612 ( 2 4  h6 P B ~  

and is positive for both hexagonal structures (32a,b). The 
minor A, of (19b) has a different sign for the hexagonal 
structures of (32) : 

for the solution (32a) and 

for the solution (32b). 
4. Therefore the only stable structure of the sparse vor- 

tices in "easy axis" superconductors is hexagonal FLL 
(32b). Unlike the case of an isotropic superconductor, the 
FLL unit cell has a fixed orientation in the basal plane. The 
long diagonal of the rhombus lies in the plane formed by the 
vectors c, H,  and v. When Hi s  applied along the ab plane the 
hexagonal FLL is abruptly transformed into an oblique lat- 
tice with angle Z from (32b). This process occurs within the 
narrow range of angles (34) A8 a [H/H,, (1~/2) - 1 1. The 
induction and the tilt moduli jump skarply (by a factor of 
p2'2) when E changes. The moduli C grow by a factor of 
[H/H,, ( ~ / 2 )  - 1 ] 2 .  When H is oriented along the sym- 
metrical direction Ilc or l c  the moduli for the coupled "tilt- 
compression (shear)" fluctuations are moderated, the mi- 
nor A, (43) vanishes, and the hexagonal (oblique) FLL 
generates the degenerate continuum of vortex structures de- 
scribed in Sec. 3. 

5. VORTEX CHAINS IN "EASY PLANE" CRYSTALS (p, 4 1) 

1. Let us consider magnetization of an "easy-axis" un- 
iaxial supercond~ctor:~' pa = pb <p,  = p; 2. 

In the preceding sections in solving a,, - u2, = 0 [Eq. 
( 14) 1 which determines the equilibrium angle Z we reduced 
the problem to the isotropic case by a scale coordinate trans- 
formation. This method is based on the fact that in an iso- 
tropic superconductor the constant field lines h (x)  are cir- 
cles, while in a biaxial crystal in the case Hllc and in a 
uniaxial crystal with pa > 1 such lines are ellipses that be- 
come circles under a scale coordinate transformation. The 
distribution h ( x )  is qualitatively different from the isotropic 
case in "easy-plane" superconductors (pa < 1 ) . In this case, 
as demonstrated by analytical and numerical calculations, 
the vortex field can have both positive and negative  value^.^ 
This inversion of the longitudinal vortex field h (x )  will pro- 
duce a special type of structure, vortex chains. 

The nucleation threshold for isolated vortex chains H,, 
lies below the nucleation threshold of individual vortices, 
H,, (8) < H,, (0) .  A numerical calculation of this field as 
well as the vortex chain parameters a,, (8)  (the distances 
between vortices) and y,, (8) (the tilt angles of the vortices) 
is carried out in Ref. 3, with the results from this paper 
shown in Fig. 5. The curves in Fig. 5 demonstrate the exis- 
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tence of magnetization hysteresis in the range of small tilt 
angles 8  of field H. Here, the functions H,, ( O ) ,  y,, ( 8 ) ,  and 
a,, ( 8 )  are ambiguous and change suddenly and irreversibly 
as 8  varies. 

2. The only nonzero moduli for an isolated vortex chain 
are the tilt moduli T I ,  and T,,, the compression C,,,, and 
shear C,,,, m ~ d u l i , ~ '  and the tilt-compression D,,, and 
shear-compression D,,, moduli. 

The tilt moduli are expressed through the equilibrium 
parameters y,, ( 8 )  and H,, ( 8 )  of an isolated chain shown in 
Fig. 5: 

BHCh sin 0  
T z u  = - ----- . 

4n sin y,h 

It follows from these expressions that only solutions 
with a positive slope of the relation y,, ( 8 )  and negative 
signs of y,, and 8  ( v  and H lie on the same side of the axis of 
anisotropy ) are stable against deviations of v  from equilibri- 
um. This is a significant fact for strongly anisotropic super- 
conductors such as Bi-Sr-Ca-Cu-0 superconductors in 
which the ambiguity domain of the parameters y,, also en- 
compasses the negative angles 8  (Ref. 3 ) .4' 

The dependence of the elastic moduli C and D on the 
orientation 8  of the field H  has been obtained numerically 
and is shown in Fig. 6. The moduli C,,,, ( 8 )  and C,,, ,  ( 8 )  
are always positive and determine the chain stability relative 
to its compression and rotation in the basal plane. Moreover, 
on the entire interval of angles 8  the minor of rank two 

is positive. The other minor 

can reverse sign in the magnetization hysteresis domain due 
to the modulus T I , ,  which changes sign. The modulus T I ,  is 
exponentially greater than the moduli C,,,, -Dl, ,  for small 
values of the induction B. Hence the minor (46 )  becomes 
negative in the immediate vicinity of the points where 
dych/d8+ oo . Hence the angles 8  where the minor (46 )  van- 
ishes are nearly identical to the boundaries of the hysteresis 

A 

FIG. 6. Angular dependence of the elastic moduli Cand $of an 
isolated vortex chain in a superconductor with pa = 0.25. The 
moduli are listed in units of B@, (277-1) - '. The solid line, primes, 
and dashed line correspond to the same states as in Fig. 5. 

domain cited in Ref. 3. Within this domain two equilibrium 
vortex chains with different structures and nucleation field 
magnitudes H,, ( 8 )  correspond to each value of angle 8. The 
chain with the lower value of H,, has the lower energy. 

3. As the field H rises slightly above the threshold value 
H,, in the superconductor it gives rise to a two-dimensional 
structure of converging vortex chains: vortex rows. The 
weak interaction between chains produces an exponential 
change in the structure of each chain. The parameters a ( H )  
and y ( H )  have only small corrections distinguishing them 
from the parameters of an isolated chain:3 

4B IH-Hch (0 )  I 
a ( H )  = a,, ( 0 )  - a,h (0 ) -  cos (ych-0). 

jlCazzz ( 0 )  

Clearly the intervortex distance in the chain decreases 
little with increasing H, while the angle y ( H )  changes only 
at the boundaries of the hysteresis domain where T I ,  -0. 

FIG. 5. The parameters a,,, , l / , h ,  H,, versus theangle 0 
for a vortex chain in a superconductor with pCL. = 0.25. 
The curve regions labeled by the dashed line corre- 
spond to unstable solutions. The states represented by 
the solid line result for 8 = const and H = H,, (0) ,  
while those labeled by the dashed line result when 0 
and H = H,, ( 8 )  change simultaneously. 

rad 
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The length of the translation vectors A ( H )  is the vortex 
structure parameter that changes most rapidly with the field 
H (see Fig. 1 ) 

thereby producing a sharp increase in sample induction: 

4. The elastic moduli of the chain rows retain all the 
properties of the moduli of an isolated chain. This is due to 
the fact that the chain structure changes little for Hz Hch. 
The principal terms of the moduli T,, , T,,, C,,,, , C,,,, , 
D,,, , and Dl,, of the chain rows coincide to the analogous 
moduli of an isolated chain. The remaining moduli are posi- 
tive and exponentially small due to mutual chain repulsion: 

h h 

The exponentially small moduli C and D have no effect on 
the change of sign of the elastic modulus matrix ( 13). There- 
fore, rows of chains are as stable as an isolated chain. 

The elastic properties of chain rows have a number of 
significant anomalous properties compared to FLL's in iso- 
tropic superconduc~ors a%d in "easy axis" superconductors. 
The elastic moduli C and D in the latter are of the same order 
of magnitude cc exp [ - (2@,J3112pa~/Z ,) ",I. This simi- 
larity of the moduli guarantees virtually identical rigidity of 
the FLL's with respect to compression and shear in any di- 
rection. Strains can be divided into two types in chain rows. 
Certain strains break up the vortex position in the chain. In 
this case, the rigidity of the chain rows is maximized and 
proportional to the moduli of an isolated chain. In the other 
case, strains alter the relative configuration of chains whose 
structure remains unchanged. The exponentially small in- 
teraction between chains a exp( - pa @,/Bllach ) makes 
the structure very flexible relative to shear strains along the 
chains and compressive strains in the perpendicular direc- 
tion. Overall the lattices in "easy plane" crystals will be less 
rigid than in "easy axis" crystals or isotropic superconduc- 
tors. 

The hysteresis associated with magnetization of "easy- 
plane" superconductors causes all elastic moduli to undergo 
a sudden change. The sudden changes in moduli are attribut- 
able to both changes in the internal chain structure (the in- 
sert to Fig. 6 demonstrates the change in the moduli of an 
isolated chain) and to changes in the sample induction [see 
Eq. (4811. 

5. The equilibrium equations (7) formally permit solu- 
tions describing sparse "two-dimensional" FLL's for "easy- 
plane" superconductors. The constant field lines h (x) with- 
in narrow ranges of directions x near the axis x,  are identical 
to the lines of ellipses, which is responsible for the existence 
of these solutions. The vortices located in these regions (and 
not along x,, as in the chains) make the primary contribu- 
tion to the interaction in a sparse FLL. In this case we can 
carry out a scale coordinate transformation in the equilibri- 
um equation (7),  and the resulting solutions will be similar 
to the results of the preceding section. The difference 

y = tan - ' (pi 3tan8) between the vortex orientation v and 
the orientation of an isolated filament is exponentially weak 
in sparse FLL's. FLL's can only exist in fields of intensity 
greater than H,, (O), while the angle E is independent of H: 

8=2 arctg [3-" (cos2 y+p.,' sin2 T) - '~ ]  (49b 

However, both of these solutions are unstable. An FLL 
with Z taken from (49a) collapses under compressional de- 
formation: 

Solution (49b) is unstable against shear deformation 

6.  The only stable solution of equilibrium equations (7) 
in "easy plane" superconductors is a vortex chain structure. 
Isolated vortex chains appear in a field H,, (8) < H,, ( 6 ) .  
The chains merge as the field increases, and transform into a 
two-dimensional lattice. When the field H is tilted relative to 
the symmetrical direction (Ilc or l c )  or asp,  tends toward 
unity, the field inversion domain goes to infinity from the 
vortex core, the chains become increasingly sparse, 
Hch ( 8 )  +H,, (8),  and we obtain in the limit the vortex 
structure described in Sec. 2 (for pa = 1) or Sec. 3 
(8 = 0,77/2). 

6. CONCLUSION 

1. The FLL structure in anisotropic superconductors is 
essentially different from the hexagonal structure in the iso- 
tropic case. The vortex orientation v does not coincide with 
the direction of magnetic field H, but rather the anisotropy 
of the vortex field h (x )  in the basal plane produces oblique 
FLL's and vortex chains. A regular FLL is given by six pa- 
rameters in equilibrium: two translation vectors and two an- 
gles determining vortex orientation. The stability of the vor- 
tex structures is reflected by the positive definiteness of the 
elastic modulus matrix. Generally an FLL is characterized 
by 21 independent elastic moduli (there are three such mod- 
uli in an kotropic superconductor). $ addition to the 
known tilt Tand co~pression and shear C moduli there also 
exist mixed moduli D. Such moduli describe the "tilt-gear" 
and "tilt-compression" coupled fluctuations. Moduli D van- 
ish when H is oriented along the axes of symmetry of the 
crystal. 

2. Vortex structure degradation occurs when the super- 
conductor is magnetized along the crystal axis. The continu- 
um of FLL's that continuously transform into one another 
as the unit cell rotates relative to the axeshof symmetry is 
stable. Such FLL's Lave identical ~ o d u l i  C, moduli D=O 
and different moduli T. The moduli Tchange in antiphase as 
the FLL's transform into one another. 

3. FLL degeneration is eliminated when H deviates 
from the crystal axis. Vortex structures with orthorhombic 
symmetry are realized in uniaxial superconductors. The axis 
of anisotropy c, the vortex axis v, and the external field H lie 
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in the same plane. This is the mirror symmetry plane for the 
FLL. Only 12 of the elastic moduli are independent and non- 
zero. They form a matrix with two nonintersecting blocks. 
The moduli in one block describe the compressive strains 
and tilt of the vortices to the c axis, which conserve the or- 
thorhombic symmetry of the FLL's. The moduli of the other 
block describe the coupled "tilt-shear7' strains that break 
orthorhombic symmetry. The FLL structure and the values 
of the elastic moduli are significantly different in "easy-axis" 
and "easy-plane" uniaxial superconductors. 

4. Sparse hexagonal FLL's begin to form in "easy axis" 
superconductors from i2divid%al vortices in a field 
H = H,, (8). The moduli C and D of such FLL's are small 
compared to the tilt moduli T,i = (BH,, /4 r )  (pii/p33) and 
are comparable in magnitude. A hexagonal FLL experiences 
severe angular distortions when field H is "applied" along 
the ab-plane. The angle between the translation vectors 
jumps sharply from r / 3  to 2tan - ' [ (3p: ) - I / , ] .  Such 
changes occur within close proximity to the tilt angles 8 of 
field H to the ab plane, A8m [H/H,, (1~/2) - 1 1, and are 
accompanied by a sudden increase by alfactor of p;f/' in the 
induction and tilt moduli. The moduli C rise by a factor of 
[H/H,, ( r /2 )  - 1 ] -,. A hexagonal FLL transforms into 
an oblique FLL with growing magnetic field. The long diag- 
onal of the orthorhombic unit cell is always oriented along 
the projection of the axis of symmetry. The limit of the angle 
between the translation vectors in a strong field H%H,, is 
equal to 

8=2 arctg [3-"(cos2 €)+paS sin2 €))-"I (52) 

(see the dashed line in Fig. 4).  
5. Vortex chains are stable structures in "easy-plane" 

superconductors. Isolated chains appear in a field H,, (8)  of 
lower intensity compared to the nucleation field of individ- 
ual vortices H,, (8) .  The intervortex distance in the chain is 
on the order of A, and hence the moduli T I , ,  T,, , C,,,, , 
C,,,, , Dl,, , and D,,, are finite. The chain is rigid with re- 
spect to structural strains. The distance between vortex 
chains drops off rapidly with increasing magnetic field. Such 
chains form a regular FLL. Its rhombic cell is oriented so 
that the short diagonal of the rhombus lies along the projec- 
tion of the axis of symmetry. In a strong magnetic field 
H9 H,, the limit value of the angle E in the unit cell is equal 
to9 

9=2 arctg [3"(cosZ 0+b3 sinzB)-"I. (53) 
h 

Elastic shear moduli C and mixed tilt-shear moduli are 
manifested in a vortex chain structure. New moduli appear 
due to the weak interchain interaction and grow with the 
field as H/H,, (8)  - 1. When H is oriented near c, the su- 
perconductor is irreversibly magnetized. There is a range of 
angles 8 between H and c where two vortex structures are 
stable. When H is applied at an angle, there is a sudden, 
irreversible rearrangement of the vortex configuration. The 
hysteresis domain shrinks with increasing induction or 
growth of the parameter pa. 

6.  The structure and properties of dense FLL's 
(n,A '9 1) can be analyzed using the same method em- 
ployed by V. K ~ g a n , ~ , " , ' ~  for a uniaxial crystal with pa < 1. 
Only the main results will be enumerated here. 

The angle between the translation vectors in dense 

FLL's is independent of the induction and determined by 
relation (52) forp, > 1 and Eq. (53) for pa < 1. As in sparse 
lattices, the short (long) diagonal of the unit cell is oriented 
parallel to the axis of symmetry of the crystal with 
pa < 1 (pa > 1 ). In the primary approximation in the param- 
eter l/n,A 2 <  1, B = H, and the vortices are oriented along 
the magnetic field. 

Unlike sparse vortex structures the expressions for the 
elastic moduli of dense FLL's are identical for superconduc- 
2 r s  withp, > 1 andp, < 1. As in an isotropic crystal, the tilt 
T and compression C, , , , , C,,,, , and C, ,,, moduli are equal, 

The shear moduli can be rewritten by a scale transformation 
through the moduli of an isotropic crystalI3 

H @  0 C,221 =(pa--' cosZ 0+p. sin")'" --- 
64n2h2 ' 

A 

The moduli D can be written analogously as 

(I-y,3)sin 0 cos 0 H(Do 
0 1 2 2  = 

(COS' Of pa3 sinZ 8) '" 32n2h2 ' 

The dependence of the elastic moduli (54)-(56) on the an- 
gle 8 is smooth and reversible. 

The most evident effects of the sudden change in the 
vortex structure and its elastic moduli is observed in thresh- 
old magnetic fields H c h  ( @ )  for crystals with pa < 1 and 
H,, (8) for crystals with pa > 1. 

The easy axis crystals include the superconductor sodium polysulfide 
(SN), (Refs. 15,16) consisting of molecular chains. 

" "Easy plane" superconductors (also called layered superconductors) 
include all existing metal oxide superconducting compounds. 

3' For an isolated chain the modulus C,,,, describes rigidity relative to 
chain deviations from the projection of the axis of symmetry in the basal 
plane. 

The modulus TZ2 was not calculated in Ref. 3 and hence it was incorrect- 
ly concluded that chains with vortices tilted relative to the axis of sym- 
metry in a direction opposite that of the magnetic field are stable. 
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