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A study was made of the effect of temperature on a percolation transition in polymer 
compositions in which the concentration of conducting filler is below the percolation threshold. 
A simple model of this phenomena is presented and the calculated temperature dependence of the 
thermogenetic percolation transition on the original concentration of the conducting phase was 
obtained. 

Disordered two-phase systems based on an electrically 
insulating matrix and conducting dispersed filler, in particu- 
lar a mixture of polymers and metal powders, are materials 
whose properties strongly and nonlinearly depend on the 
filler concentration, especially near the percolation thresh- 
old. The percolation threshold is attained when isolated 
clusters, consisting of a finite number of conducting parti- 
cles, coalesce into an infinite cluster. In this case many prop- 
erties of the material (electrical conduction, permittivity, 
internal capacitance, etc.) change so strongly that the at- 
tainment of the leakage threshold can be interpreted as a 
phase transition of a percolation type. To obtain such sys- 
tems, polymer compositions are mainly employed, which 
have significantly different values for the coefficients of tem- 
perature expansion (CTE) of the matrix and filler, usually 
powders of carbon or a metal; here the filler content by vol- 
ume may vary within wide limits from 6 to 30%. In this case 
the percolation threshold in systems based on isotropic 
fillers is approximately 14% and may be larger or smaller 
according to the sign of the potential of the filler particles 
and quality of the components in the mixture. 

Analysis of the anomalous properties of such percola- 
tion systems arouses great interest, although creating a sys- 
tem as close as possible to the percolation threshold by con- 
ventional techniques' is a complex experimental problem, 
because small mistakes in the concentration significantly 
change the system properties.* Thus, achieving the percola- 
tion threshold in the polymer composition is usually con- 
nected with a technological increase in the concentration Q 
of the conducting phase up to a critical value Q,, and it is 
assumed that the temperature is of no importance. Indeed, 
the simplest estimates show that the change AQ in the con- 
centration due to the difference between the CTE of the ma- 
trix and filler when the temperature changes substantially 
(AT- 100-1 50 K )  amounts to fractions of a percent and 
should not significantly affect the characteristics of the sys- 
tem with Q < Q,. 

For high temperatures such systems have a resistance 
characteristic of a pure matrix, since clusters consisting of a 
finite number of conducting particles are separated from 
each other by thin layers of insulating matrix. However, 
when such systems cool an abrupt typically percolation tran- 
sition of the system into a conducting state can be observed, 
where the electric conductance increases by a several orders 
of magnitude in the interval 10-30 K.',3 Regarding this 
abrupt change in electric conductivity a as a manifestation 

of a temperature-induced (thermogenetic) percolation tran- 
sition, we note that this behavior of a ( T )  cannot be ex- 
plained only by the form of AQ(T) in a real temperature 
interval. Obviously, there exists a stronger dependence 
Q, (T) whose character is not clear at present. 

The aim of the present work is to discuss a possible 
mechanism for a thermogenetic percolation transition in the 
interval AT for compositions with Q < Q, (for a given initial 
temperature To ) and to estimate the value ATnecessary for 
reaching Q, in a system with the initial concentration 
Q( To 1. 

To construct a physical picture of this process we make 
the following assumptions: 

( 1) the filler particles are approximated by spheres of 
unit volume; 

(2)  the CTE of the filler and matrix do not depend on 
temperature; 

( 3 )  the strength and elastic properties of the filler sig- 
nificantly exceed the corresponding properties of the matrix. 

These assumptions to a lesser extent correspond to 
polymer mixtures with dispersed carbon due to the low me- 
chanical characteristics of the latter. 

To simplify the picture we go over to coordinates which 
are invariant with respect to thermal variation of the matrix 
volume. Here an increase (reduction) in the system tem- 
perature is equivalent to a decrease (increase) of the diame- 
ter of the filler particles (thermal expansion), i.e. the volume 
fraction of the filler increases when the temperature de- 
creases. However, a system with such a temperature incre- 
ment in the filler concentration differs in principle from the 
usual systems in which the percolation threshold is attained 
by a random arrangement of an additional amount of the 
conducting phase during preparation. Here the additional 
amount of the phase "arises" in connection with rapid cool- 
ing in full contact with the available particles of the conduct- 
ing phase, which is equivalent to the appearance of a strong 
attraction potential between these particles. 

Consider a system in which there is no conductivity at 
high temperatures. In it there are conducting insulated clus- 
ters of different dimensions separated by layers of insulating 
matrix with thickness sufficient to eliminate contact. 

A characteristic property of these clusters, in contrast 
with a single particle, is that thermal expansion of each parti- 
cle in them cannot be balanced by pushing out a layer be- 
tween the particles (the layer either is too thin or is absent 
altogether), which leads to a displacement of neighboring 
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particles with respect to the matrix. In the chain of particles 
a displacement is multiplied due to thermal expansion of 
each particle and the displacement value of the last particle 
is connected with the number of particles in the chain in the 
direction of displacement, just as the number of roasted 
birds on the ramrod fired from Baron Munchausen's gun 
was related to the number of birds that collided with the 
ramrod. 

We replace the volume distribution of the clusters by 
one characteristic volume, called a "blob," just as is done in 
the physics of disordered s ~ s t e m s , ~  and the whole mixture 
we represent as a system of tightly packed blobs separated by 
insulating layers of the matrix. Naturally, inside a blob there 
are smaller clusters and also matrix material. Increasing the 
size of an arbitrarily chosen blob by decreasing the tempera- 
ture leads, with a certain probability, to its making mechani- 
cal contact with the surrounding blobs and to their merging. 
In this case the maximum possible increase of the blob is 
threefold in size (the central blob plus two neighbors) and 
27-fold in volume. As a result, a system is formed consisting 
of tightly packed blobs of a larger size, which becomes char- 
acteristic at this stage. Repeating the procedure many times, 
we can obtain a blob of an infinite size (percolation transi- 
tion). 

This argument can be represented in differential form 
as 

where dV is the increment in the blob volume associated 
with a variation in temperature by dT, d V, is the increment 
in the blob volume due to thermal expansion, and dV, is the 
increment in the blob volume due to merging with the neigh- 
boring blobs. 

In this case the first term is determined from the law of 
thermal expansion of the bodies: 

where a is the difference between the volume expansion coef- 
ficients of the matrix and filler, and Vis the current volume 
of the blob. 

The second term is proportional to the volume of the 
interpenetration of the given blob and its surroundings due 
to thermal expansion, equal to 2dV,, the total volume of the 
blobs undergoing merging, which is equal to 26V (if the 
blobs merge completely, the volume increases by 27 times 
minus its own volume), and the probability p for blobs to 
merge unit intersection volume: 

Taking into account (2)  and (3) ,  Eq. ( 1 ) is reduced to the 
form 

and after integration 

where v is the initial volume of the blob and V is the finite 
volume upon cooling the system by AT. 

Taking into account the facts that the processes of con- 
necting each blob to its surroundings are equivalent and si- 
multaneous and the probability of each of them is x, we have 

FIG. 1.  Relations between the average volume of a blob and the tempera- 
ture differential with u = 3, a = 0.001 K ' ,  for different values of the 
filler volume fraction: Q = 0.1 ( I), 0.15 (2) ,  0.2 ( 3 ) ,  0.25 (4), 0.275 ( 5 ) .  

The probability x, in its turn, is proportional to the filler 
concentration Q and the fraction f of the filler's particles 
which belongs to the growing blob of a characteristic size: 

x = Q / .  

We estimate f as the ratio of the filler volume fraction Q to 
the maximum possible fraction for a random tight packing of 
spheres, equal to 0.64 (for Q = 0.64, f = 1 ), i.e. f = Q /0.64. 
When a certain temperature differential is reached, the blob 
volume increases rapidly (Fig. 1 ) . Naturally, the coeffi- 
cients of the functions V = V( AT) [see (4)  ] are of an illus- 
trative character and do not pretend to a high accuracy. 

Obviously, for 

the denominator of the right-hand side of Eq. (4) vanishes, 
which corresponds to a blob of infinite volume (percolation 
transition). The relation between the temperature gradient 
of the percolation transition AT,, and the initial volumetric 
content of the filler is given in Fig. 2. 

FIG. 2. Relation between the temperature differential AT,, at the moment 
of percolation transition and the filler volume fraction for u = 3, 
a = 0.001 K-I .  
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FIG. 3. Relation between the temperature differential AT,, at the moment 
of percolation transition and the blob's initial size v for a = 0.001 K ', 
Q=O.l  ( I ) ,  0.15 ( 2 ) , 0 . 2  (3) .  

In the proposed model the parameter v for fixed tem- 
perature and volumetric content of the filler is a measure for 
the attractive potential between the particles. An increase in 
the attractive potential leads to an increase in the value of u 
and accordingly reduces, for the given Q, the value of the 
temperature gradient of the percolation transition (Fig. 3 ) .  

Thus, from simple physical considerations we have ob- 
tained a visual picture of a thermogenetic percolation transi- 
tion. Now we indicate briefly some results of this model, 
which can be observed in experiments. 

1. Cooling of a two-phase system with a rigid filler, hav- 
ing a relatively low CTE as compared to the matrix, results 

in the appearance of regions containing a rigid frame com- 
posed of the compressed particles of the filler, which merge 
into one conducting ensemble. Upon further cooling the 
forces that compress the frame increase and a situation may 
develop in which the stability of the elements of the frame 
against compression will be lost, which will cause a "col- 
lapse" of supporting structure of the conducting ensemble 
and a loss of conductance. A system, which has lost conduc- 
tance as a result of "collapse," may, upon further cooling, 
regain it again according to the mechanism described in the 
present paper, and, apparently, this can be repeated many 
times. 

2. Since real composite systems do not follow the as- 
sumption 3 introduced here, the presence of forces com- 
pressing the frame and increasing with cooling will lead, for 
some AT> AT,,, to crushing of the surface of contacting 
particles and to the appearance of hysteresis on the relation 
o ( T )  after the samples complete a thermal cycle. 

In conclusion, the authors thank P. B. Dubovsky for his 
attention to the present work and express their gratitude to 
B. S. Vaeisberg, G. V. Smelov, and V. I. Smutnyi for their 
valuable remarks. 
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