
Localization of spin excitations and disruption of long-range order in weakly- 
doped La,Cu04 

M. A. Ivanov, V. M. Loktev, and Yu. G. Pogorelov 

Institute of Theoretical Physics, Academy of Sciences of the Ukrainian SSR 
(Submitted 22 May 1991 ) 
Zh. Eksp. Teor. Fiz. 101,596-613 (February 1992) 

We use a microscopic model to study the spin states of lightly (acceptor) doped La, CuO, . We 
investigate long-range indirect interactions between the spins of holes localized near acceptors of 
various types, interactions that are mediated by the exchange of virtual magnons in the 
antiferromagnetic CuO, planes. We show that although this interaction changes sign in the 
insulating phase, so that long-range spin order does not occur in a system of holes occupying 
random sites in the crystal, its presence is sufficient to effectively disrupt the long-range 
antiferromagnetic order in the system of Cu2 + spins. We suggest that the mechanism for this 
disruption is fluctuations in the magnetic anisotropy caused by random strains generated by the 
impurity ions, and construct the phase diagram of the system. 

1. INTRODUCTION 

It is now well-established that the common ancestor of 
the family of high-temperature superconductors (HTSC) , 
the compound La, CuO,, is an antiferromagnet ( AFM) 
with a layered structure consisting of magnetically ordered 
CuO, planes (see Fig. 1) with large intralayer and very 
small interlayer exchange interactions (EI)  These crys- 
talline and magnetic features are common to the other 
HTSC as well, all of which exhibit AFM ordering in CuO, 
planes.k8 There are several equivalent, but not identical, 
CuO, planes, a prerequisite for an increased number of mag- 
netic sublattices. Specifically, these sublattices are four in 
number in La, CuO,, YBa, Cu, 0, + , ( 1-2-3 ceramic), 
La, NiO,, Nd, CuO,, etc. The NCel temperature TN for 3 0  
ordering is high in all the HTSC ( - 300 K for La, CuO, , 
Refs. 1,4,5,8,9; -400Kforl-2-3whenx<O.l5,Refs. 1,4, 
6, lo) ,  but drops to zero rather quickly when impurities are 
introduced. Thus, in La, -, (Sr,Ba), CuO,, TN is zero even 
for x z 2 .  lo-', which corresponds to an impurity concen- 
tration c = x/2 z 1% for one unit cell in the CuO,. In 1-2-3 
the suppression of AFM occurs at a somewhat higher con- 
centration (x - 0.4); however, the same scenario applies, 
i.e., the gradual disappearance of long-range magnetic or- 
der, although for small x (when the centers appear primarily 
in the Cu-0 chains and not in the CuO, planes) the creation 
of other spin structures is possible (including noncollinear 
structuresl,l '"2 ). 

It is noteworthy that, although experiments indicate 
that the valence of copper in the CuO, planes is independent 
of doping (i.e., the spin at a site is preserved), data on how 
this disruption of order takes place and the structure of the 
resulting "paraphase" in HTSC are somewhat ambiguous. 
According to the majority of experimental papers, only the 
long-range order is missing, while short-range AFM correla- 
tions are reliably attested (see the review Ref. 1 ); however, 
the precise characteristics of these correlations have not yet 
been established. In certain other publications (e.g., Refs. 
13, 14) it has been asserted that the original structure is 
preserved even in the metallic phase, with the sole difference 
that the magnitude of the local magnetic moment is greatly 

decreased while the AFM vector fluctuates strongly in space 
and time. 

It is important that significant variations in the magnet- 
ic properties of the system precede (if we exclude a proposed 
narrow region of coexistence) the appearance of conductiv- 
ity, which, e.g., in La, - , Sr, CuO, occurs only at a finite and 
somewhat higher value c-5% (the well-known phase dia- 
grams of HTSC show this unambiguously; see Ref. l ) .  In 
other words, the destruction of long-range AFM order takes 
place while the HTSC is still in its insulating phase, for 
which the carriers are localized. Without question, this fact 
must be reflected in any description of HTSC with extremely 
small acceptor content. In our opinion, it is of fundamental 
significance, since it allows us to "decouple" the problem of 
the appearance of conductivity (as a result of the insulator- 
metal transition) from that of the destruction of the magne- 
tism. 

Although in the overwhelming majority of theoretical 
papers the mechanisms proposed for the destruction of long- 

FIG. 1.  Spin structure of a CuO, plane with localized hole. 
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range AFM involve free-carrier models (the "spin bag" 
model,I5 field-theoretic  model^,'^.'^ the Hubbard mod- 
el,",'* etc.), recently more and more attention has been de- 
voted to approaches that incorporate the localized character 
of carrier states at small concentrations. Let us begin by re- 
calling the paper of Aharoni et al.I9 in which the concept of 
large ferromagnetic clusters in the CuO, planes which frus- 
trate AFM order is introduced, along with later elaborations 
of these ideas.2G22 However, in these papers the kinetic ener- 
gy of a carrier near an impurity center was completely ig- 
nored. An attempt was made to include the kinetic energy in 
Ref. 23, where the Emery model was used to investigate sup- 
pression of AFM order within a finite cluster containing a 
mobile carrier. A deficiency of this approach is that it ne- 
glectspp-hopping, which probably plays a significant role by 
changing the character of the carrier motion. 

In this paper we propose a model for describing the 
magnetic states of an impurity center while taking into ac- 
count the real hierarchy of electronic interactions. We inves- 
tigate centers in La, CuO, originating from both the replace- 
ment of La3 + by Ba2 +, Sr2 +, and Ca2+ and the 
incorporation of above-stoichiometry levels of oxygen. We 
remind the reader that the experiments of Refs. 1 and 24 
showed that both of these procedures lead to suppression of 
long-range AFM order in the insulating phase. In the new 
phase the spins of randomly-placed localized holes, by inter- 
acting with magnons of the host, are indirectly coupled. The 
character of this coupling allows us to infer certain things 
about the properties of the ground magnetic state of HTSC 
with a finite content of centers occupied by localized holes. 
However, as we will see below, for c - 1 % the coupling can- 
not destroy the long-range AFM order (at least for tempera- 
tures that are not too low). Therefore, in this paper we pro- 
pose another mechanism, which was invoked in a previous 
paper,25 by which impurity centers can affect the magnetic 
order (including the value of T,  ) : fluctuations in the mag- 
netic anisotropy of the CuO, planes due to random strains 
caused by impurities. We will show that for the values of 
strain observed in doped La, CuO, this mechanism is com- 
pletely realistic, and will attempt to construct the c-Tphase 
diagram for this system theoretically. 

2. ELECTRONIC STRUCTURE OF DOPING CENTERS 

At this time, the available data indicate that excess 
holes exist primarily in the oxygen subsystem" and move 
within thepdu o r p d r  bands. At low doping levels the holes 
are localized in the Coulomb potentials of the impurity ions. 
This localization is also facilitated by the well-known fact 
that in low-dimensional systems the appearance of a discrete 
level does not require any subsidiary conditions on the at- 
tractive potential. 

We can estimate the radius r, of the corresponding elec- 
tronic state by starting from the experimentally observed 
value of the activation energy26 A&- 10 ' eV of an impurity 
level and the width of the conduction band27 AE, z 2  eV: 
r,, - I a1 (AE,/A&) ' I2  =: (2-4) 1 a1 (where a is the lattice con- 
stant vector). From this we see that effectively the carrier 
moves among a rather small number of O2 - ions close to the 
impurity center; in what follows we will limit this number by 
considering only those ions that lead to the lowest value of 
the Coulomb energy. In this case, to first approximation the 

splitting of the electronic energy within a cluster is deter- 
mined by the kinetic characteristics (in particular the proba- 
bility ofpp-hopping), which are considerably larger than the 
magnetic interactions (i.e., the exchange interaction param- 
eter). Therefore, as we will see below, the effect of a localized 
hole on the magnetic state of the crystal can be reduced to the 
problem of the interaction of the spin of a hole in its ground 
cluster state (with respect to kinetic energy) with the spins 
of the c u 2  + , or, what is the same thing, to the problem of an 
interstitial paramagnetic impurity. 

It has often been noted in the literature that the distinc- 
tive feature of such an impurity center is its "frustrating" 
character, i.e., its symmetric placement with respect to anti- 
parallel AFM vectors of the sublattices, which in the present 
case is due to the structure of the CuO, planes. Certain prop- 
erties of a frustrating impurity in a host with the "easy axis" 
type of anisotropy have been studied p rev iou~ ly~~  (see also 
Ref. 29). However, the anisotropy of magnetic interactions 
in HTSC is closer to the easy-plane type. Another distin- 
guishing feature of HTSC, as we noted above, is the quasi-2D 
character of its magnetic properties, which allows us to limit 
our study to the CuO, planes. 

It is noteworthy that, depending on the type of doping, 
centers of various kinds can form. In La, CuO, + , the above- 
stoichiometry oxygen ions occupy the positions ( 1/4, 1/4, 
1/4) (Ref. 30), maximally perturbing the crystal field po- 
tential for a hole at the single O 2  ion in the next CuO, 
plane. If we assume that the excess holes are primarily local- 
ized by this type of ion, then an isolated "quadrupole," or 
"dumbbell," type of center (denoted db, see Fig. 2a) appears 
in the spin subsystem, with a C, axis of symmetry along one 
of the sides of the basal square, as is qualitatively described in 
Refs. 19,20, and 22. However, if the system under discussion 
is La, , (Ba,Sr,Ca ), CuO, , then the impurity alkali-earth 
ions Me2 + are located near the centers of the 2 0  unit cells in 
the CuO, planes. In this case, the potential acting on a hole 
due to the simultaneous fields of the four 0,- is as small as 
possible, so that a different type of center (also frustrated) 
must appear, called a plaquette (denoted pl, see Fig. 2b) 

FIG. 2. Dumbbell ( a )  and plaquette (b )  impurity centers in the La,CuO, 
lattice and their possible types, taking into account both geometric and 
spin configurations (for nearest-neighbor host atoms). The doping impu- 
rity ions (02 in a, Sr2 + in b )  are shown by double hatching. 
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with a C4 axis of symmetry; this type of center was first 
described in Ref. 23. For each type of center there are var- 
ious nonequivalent positions possible that differ in the spa- 
tial locations of the surrounding spins and the orientation of 
the symmetry axis C2 . For this last case, even when the local- 
ization radius of the hole is large, the point symmetry of the 
perturbation remains unchanged. 

The lower symmetry centers (Fig. 2a) act as if they 
were part of more symmetric centers; therefore we will study 
them in detail, making the following simplification: the hole 
is trapped only by those O2 - ions for which the lowering of 
the Coulomb potential is a maximum, and cannot leave the 
plane in which it appears. Then the Hamiltonian for holes in 
the field of an impurity ion that forms a center of plaquette 
type near the pth CuO, cell, without including spin interac- 
tions, can be written in the form 

where Tp,, is the pp-hopping integral, and a:, is the cre- 
ation operator for a hole with spin a on the a th  0'- ion of 
the pth cell. Taking into account the signs of the quantities 
T,,, which correspond to overlap of the nearest p-orbitals, 
it is easy to show that the four energy levels of the operator 
(l)equal&, = -2t,&, = E ,  =O,E, =2 t  (where?= [TI ) .  
In the ground state, a localized hole naturally occupies the 
lowest level E] ,  whose corresponding cluster creation opera- 
tor c,f, is expressed in terms of the original "site" operators 
in the following way: 

The description of the low symmetry center of dumb- 
bell type can be carried out in terms of the original operator 

+ since here the hole is localized on a single site. 
a ~ a u '  

3. SPECTRUM OF SPlN EXCITATIONS OFTHE CRYSTAL AND 
THEIR PERTURBATIONS NEAR AN ISOLATED IMPURITY 
SPlN 

In order to describe the spectrum of single-particle spin 
excitations of AFM La, CuO, we will use the standard Ham- 
iltonian which, applied to the CuO, plane, has the form3' 

where Sna is a spin operator for the nth Cu2 + ion of the a th  
magnetic sublattice (a = 1,2), and J is the isotropic ex- 
change interaction parameter between nearest neighbors; 
AJ, 4J corresponds to the "easy plane" type of anisotropy 
in the tetragonal crystal structure; D is the parameter for the 
Dzyaloshinski (antisymmetric exchange) interaction, 
which in this case causes not only a departure of the spins 
from the basal xz plane but also a weak intraplanar rhombic 
anisotropy AJ,, -D '/J< AJ,; and p is a vector that joins 
nearest-neighbor spins. After transforming the spin opera- 
tors in (3),  which are given in terms of their own (right- 
handed) coordinate systems with quantization axis (= for 
the a th  sublattice, to Holstein-Primakoff operators, isolat- 
ing the part of the Hamiltonian that is quadratic in the latter, 

and carrying out the usual diagonalization procedures, we 
obtain the Hamiltonian 

am =E Q.(k)B.+(k)P.(k), (4) 
k,v 

where the eigenfrequencies of the magnon branches 
(p = 1,2) equal 

Qp2(k)=[Ar+ (-1)"Bk]2-Ck2, 
Ak= ( I  cos 28+D sin 28+AJt sin2 8) sz, 

Bk=[ l  sin2 8+'/,(AJt cosZ 8-D sin 20)] szyk, 
Ck= [ (l-'/2Ali)cos 0+D sin 81 szyr cos 8, ( 5 )  

2 0  
tg 20 = --- I 

W-AJ, ' ' - z 
Herez is the number of nearest neighbors and s = (S 5);  the 
Bose creation and annihilation operators for magnons are 
connected with the spin operators (to within linear terms) 
by the relations 

where 

For small values of the two-dimensional wave vector with 
ak = [ (ak, ) + (bk, ) '1 'I2 4 1, the dispersion law for both 
spin-wave branches takes the simple form: 

$2,'(k) =QgU2+J2 (ak) z, ( 7 )  

where R,, = sz JWhJ ,  = Dsz and R,, = szdWhJ, are the 
lower and upper energy gaps, respectively. In this case the 
stability of the long-range AFM order is determined by the 
quantity R,, , and the Ntel temperature TN for such a quasi- 
2Dsystem can be found in the usual form (see, e.g., Ref. 32) : 

It is natural, therefore, to expect that doping will affect the 
magnetic ordering of the host crystal most strongly by effec- 
tively decreasing the quantity a,, . We note that an addi- 
tional factor that stabilizes the long-range order in the quasi- 
2 0  system is the interlayer exchange interaction, which 
causes dispersion of the magnons in directions transverse to 
the layers, an effect that is probably of the same order of 
magnitude as a,, . However, for simplicity, in what follows 
we will neglect the existence of this dispersion, assuming 
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that both stabilizing factors are suppressed by impurities si- 
multaneously and in the same way. 

The effect of an impurity center on the spin subsystem 
of an HTSC has a twofold character. On the one hand, impu- 
rity ions (both interstitial and substitutional) create rather 
strong local static distortions of the crystal lattice, as well as 
large local rotations p, - 30" (compared to uniform values 
p - 4" in the original crystal) of the oxygen octahedra closest 
to the impurities.33 This leads to sizable local perturbations 
of the magnetic anisotropy parameters, and accordingly to a 
perturbation of the magnon spectrum. On the other hand, 
each of these centers creates a new spin degree of freedom in 
the system, associated with the spin carried by a hole in the 
crystal; consequently, new energy levels arise in the spec- 
trum. We will consider these processes in the following se- 
quence: first of all, we derive the spin Hamiltonian for holes 
localized near an isolated impurity center, and then use it to 
obtain an effective Hamiltonian for the spin interaction be- 
tween holes at different centers. Then we determine the 
change in the static spin configuration and the magnetic ani- 
sotropy of the Cu2 + ions near an isolated center. Finally we 
find the change in the magnon spectrum and the ground 
state of the system as a whole. 

In order to describe the spin interaction operators be- 
tween the host and the carrier, we first give the Hamiltonian 
of an oxygen hole moving in the plane near thepth pl-impuri- 
ty center (i.e., of plaquette type) and coupled to the spins of 
the Cu2 + ions. Taking into account terms of second order in 
the pd-transition (hybridization), we can reduce it34935 in 
the coordinate representation to the Hamiltonian of the Shu- 
bin-Vonsovsky polaron model: 

where f izn: -'' is the matrix element forpdo-hybridization 
between oxygen p-orbitals and x2 - y2-states of the copper 
ion, LIE is the difference in energy levels caused by the Hub- 
bard repulsion of holes in the state Cu3 +, and &is a vector of 
Pauli matrices that act in the space of the hole spin states. It 
is clear from (9)  that processes can occur for which 
pa #pa, ; in this case we must assume that a copper ion no is 
close to the two oxygen ions between which the transition 
takes place. Then, taking into account the phases of the ma- 
trix elements y for each pair of ions in a cluster (Fig. 2b) and 
also the relation (2) ,  it is not difficult to reduce (9)  to the 
form: 

where the index a of the AFM sublattices labels one of the 
two possible configurations of an impurity pl-center, while 
the value of the constant J ' z 1 IT 1 */AE follows directly from 
(9)  and (2) .  In an analogous fashion, we also obtain an 
expression for the Hamiltonian that describes the behavior 
of the spin of an oxygen hole a,-* -c;. o ~ , , u ,  cp,+ ,, , local- 
ized at a low symmetry db-center with its symmetry axis 

along one side of the square (corresponding to the sign labels 
+ or - ) :  

It is clear from ( 11 ) (see also Fig. 2a) that for db impurities 
there are four nonequivalent configurations in all. 

Using Eqs. (6) ,  ( lo),  and (1 I ) ,  we can write the gen- 
eral Hamiltonian for the spin interaction of localized holes 
with the AFM host as follows: 

at=r z s  ,s, +, = z{ a,..: +N-"X exp (ilipj)op; 

~[m,: ' )  (k) P,(L) + m,:" (k) pNi (-k) ] + h.c.1. (12) 

Here the label j = 111, {2), {l + 1, and (2 + 1 enumerates 
all the possible (see Fig. 2) types and configurations of im- 
purity centers. The eigenfrequencies wj = J'sinB, of these 
configurations are determined by the nonzero values of the 
molecular field generated by the host spins adjacent to the 
impurity, corresponding to departure of thejth spin (Fig. 2) 
from the basal plane by an angle 8, (in the general case tak- 
ing into account the influence of local strain 8, % 8 of the 
lattice). Thus, the axis of quantization z of the impurity spin 
turns out to be perpendicular to this plane. The direction of 
the axis x is chosen to be the same for impurity spins and host 
spins, and in this case the constants for interaction of the 
fluctuations in the impurity spin with the magnons of the 
host equal 

-I- (-1)'sin B(u,k-v,k)], 

m:;;,z (k) (13a) 

ys'A 
- - -- 2 (k?) [ U Z I K + V ~ ~ + ( - - ~ ) ~  sin e(uZk-u,)] 

for the dumbbell and 

ka kb 
2 

jfs" ka (13b) 
(V )  

m~jjz (k) = - [ (cos + cosE) (UY+V~L) 
2 2 2 

ka kb 
- (-I)'+' sin o (oos - - 

2 
cos -) 2 (~Zk-~zk) 1 

for the plaquette, where the label v = 1, 2 distinguishes the 
corresponding constants in the interaction operator ( 12). 

The Hamiltonian ( 12) has a form that is characteristic 
of many problems in the theory of disordered spin systems 
(see, e.g., the review Ref. 29), as well as for insulating glasses 
containing two-level systems that interact with a strain field 
(see, e.g., Ref. 36). As will be clear below, anomalies in the 
magnetic properties of the subsystem of impurity spins and 
the crystal as a whole are determined in this case by the 
symmetries of the impurity centers and the dimensionality 
of the problem. 
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We note that in obtaining the Hamiltonian A?' we have 
assumed that the interaction between the localized spin and 
the host spins is not strong enough for the spins to form a 
cluster, a possibility that was discussed, e.g., in Refs. 19-22. 
In these papers it was assumed that J's$ since, first of all, 
the numerical calculations of Ref. 37 do not yield a strong 
inequality between J and  J ' ,  and secondly, J '  must be com- 
pared with the full exchange field Jz, we feel that clustering 
can be ignored. Finally, even when J 1 % J z  holds, the result- 
ing cluster of strongly coupled spins is located in zero mean 
field, so that its interactions with magnons reduces to ex- 
pressions of the type ( 12). 

4. EFFECTIVE INTERACTION BETWEEN IMPURITY SPINS 

Using the full spin Hamiltonian of the crystal in the 
f o r m R  = X, + A?' [see (4) and ( 12) 1, by means of stan- 
dard approaches to the theory of disordered systems29~38 it is 
not difficult to find expressions for the Green's functions, 
e.g., gflp (k )  (0; (k )  %, , whose poles are determined by 
the well-known dispersion equation 

0'-Q,2 (k) -Re R, (k, 0') =O. (14) 

Here, to first order in the concentration, the polarization 
operator R, (k,w2) has the form 

20 
&(k, a') = - {m2[ 1 m:;) (k) 1 '  - 1 mji) (k) 1 2 ]  N 

Pi  

( 2 )  +ojQ,(k) [ 1 mk" (k) 1'  +(mjp (k) l21) (a2-0:)-', (15) 

where a = (%) is the mean value of the impurity spin, while 
the coupling constant is determined by Eqs. ( 13 ) . 

The value of the energy gap in the magnon spectrum 
when impurities are present equals a,, 
= [a:, + ReR, ( O , f l i ,  ) ] "'; however, because the leading 
terms in the quantities (m;,"' (k )  / in the limit a k g  1 are pro- 
portional to (ak)2 /a ,  ( k )  for the db and to (ak)4/fl, (k )  
for the pl centers, when expression ( 15) is used the energy 
gap practically coincides with the original a,, . Consequent- 
ly, the terms that play a decisive role in the way the impurity 
spins affect the stability of the ground magnetic state of the 
crystal are those of higher order than linear in the cumulant 
expansion of the quantity (15) (Refs. 39, 29), which de- 
scribes the indirect impurity-impurity ipteraction due to the 
exchange of virtual magnons; this interaction determines the 
concentration broadening of the impurity levels. In principle 
these terms can be calculated by means of the quantity ( 13), 
as in ( 15). However, as the corresponding expressions are 
rather cumbersome, to obtain an estimate we will use a 
simpler procedure based on an effective Hamiltonian for im- 
purity spins. 

As will be clear below, the concentration broadening is 
determined by the indirect interaction between impurities at 
a mean distance 5- ac - while the primary contribution 
to this interaction is given by magnons with wave vector 
k - 5 -  '; relative to these magnons, the subsystem of impuri- 
ty spins is adiabatically slow if the condition c% (w,/J)2 is 
satisfied. Since the characteristic value of this latter quantity 
is about to we can assume that this condition is 
fulfilled in the region of concentrations c- 10 - 2, which is of 
primary interest to us. 

Let us begin with the Hamiltonian X ,  which we use to 

write equations of motion for the Green's functions of the 
form 4 u,f 1% %, , to second order in the coupling constant 
mj,"' (k) .  It is not difficult to verify that these equations can 
be obtained from the following effective Hamiltonian in the 
adiabatic limit w - 0: 

where the parameters of the effective anisotropic exchange 
interaction have the form 

3 2 
V" = 7 exp [ik (pj - pj,)] {my: (k) [m$L (k)]* 

PjPj'  i 

k ,  P 

+ my2 (k) [my: (k)]* 

+ my2 (k) my; (k) 3; [m:? (k)]* [myk (k)l*) 0;' (k) + c.c. 

(17) 

It is obvious that the most important contribution to the 
broadening of the impurity levels w, comes from the interac- 
tion ( 17) between centers of the same type: 

x X 

vg,., I I = vy (p - p') 

Calculation of these quantities, taking into account the defi- 
nitions (7)  and ( 13), shows that the dominant contribution 
is here determined by the following expression: 

where + is the angle between the radius vector p - p' and the 
AFM vector of the 2 0  host. As for the quantity 
VP'  (p  - p'), it differs from Vjx' ( p  - p') given in ( 19) by 
an additional small factor sin28, = (w,/J ') < 1, so that the 
effective Hamiltonian ( 16) can be approximately treated as 
if it were an Ising Hamiltonian. 

It is interesting to note that the same (Ising-like) be- 
havior is also characteristic of the effective interaction be- 
tween so-called orthogonal impurity centers in 3 0  magnets; 
however, this interaction, which is caused by strongly aniso- 
tropic substitutional impurities, differs from ( 19) by a sign 
change and the decay law oc r - ' (Ref. 29). Likewise, in in- 
sulating glasses the indirect interaction between two-level 
systems, which is caused by the exchange of virtual phonons, 
falls off as r (Ref. 36). 

5. PHASE STATES OFTHE SYSTEM AT LOW 
TEMPERATURES 

Due to the random locations of the impurity centers, an 
exact diagonalization for the egective Hamiltonian ( 16) is 
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impossible, and we can only assert that the presence of the 
interaction ( 19) between impurity spin excitations leads to 
the appearance of a certain concentration broadening A, of 
the original levels w,; it is important, however, to note that 
for the short-range interaction the correct value of this 
broadening cannot be obtained by using the simple mean- 
field approximation, that is, by self-consistent replacement 
of <, by (<, ) in ( 16) and calculation of the dispersion of 

2 1/2 the random quantity a,, = (w; + h , ) , where 
h, = Z,, VjX'(p-p') ( c f ,  ). In a first-principles approach 
the quantity A, is determined by the minimum width of the 
energy region around w, where this or some other cumulant 
expansion for Green's functions of the form 4 o; lop- ) be- 
comes divergent. By writing the equations of motion for the 
latter using the Hamiltonian ( 16) and analyzing the behav- 
ior of the first term of the corresponding series, we can ob- 
tain conditions for convergence (at small concentrations, 
where A, < w, ) in the form4' 

1-42 (o) I' 1 < *, 
c l X l - [ A : :  " 1 0  (a)]' 

where 

Taking into account expression ( 19), we obtain from (20) 
the following estimate for the required broadening: 

J f 2 s z  
i c y  for db, 

i.e., in order of magnitude it equals the absolute value of the 
angle q, of the interaction between impurities averaged over 
angle at the average distance. Since the energy w, is the same 
order of magnitude for both types of centers, it is clear from 
(21 ) that the most effective concentration broadening is for 
levels with the dumbbell coupling. It is interesting to note 
that the insertion of an Me2 + ion into the lattice causes a 
shift of the "vertex" oxygen ions into the tetrahedral posi- 
tion; this has been confirmed by ex~eriment.~'  In other 
words, a db center is always created near a pl-center. Per- 
haps this explains why the disruption of AFM ordering is 
equally rapid for both types of center. 

When the concentration of impurities attains a value 

the quantity A,, becomes comparable with w,, and Eq. (2 1 ) 
turns out to be applicable only for order-of-magnitude pur- 
poses. In this case, the concentration broadening washes out 
all the low-frequency part of the spectrum, including the gap 
in the magnon spectrum2' (if we keep in mind that w,, 
> n,, 1. As a result, the original ground state, for which the 
spins of the host form a Ntel configuration in the basal plane, 
while the impurity spins are oriented perpendicular to this 
plane, no longer corresponds to the lowest energy. 

For sufficiently low temperatures and a sign-varying 
interaction between the randomly located spins, it is well 
known that the energy minimum corresponds to ordering of 
the "spin-glass" type,42 and in the present case this is the 

ordering that should characterize the impurity spins. It is 
significant that for w, --a,, and c > c, , long-range order is 
absent not only in the impurity spins but in the host spins as 
well. The natural energy parameter that characterizes the 
low-frequency region of the spectrum in this case is the inter- 
action energy between impurity spins at the average dis- 
tances; in the present case we may choose A,, as this energy 
from (21). This value also determines the order of magni- 
tude of the temperature Tf for freezing-in of the spins, which 
therefore increases linearly with c for c > c, : 

For T <  Tf band states do not exist in the magnon spectrum 
with wave vectors smaller than the minimum value 

kmi,-ca-I ( l ' I J ) 2 ,  (24) 

while the value of the quantity inverse to this, 

determines the low-temperature correlation length in the 2 0  
subsystem of host spins. 

We note further that if the parameters of the system 
were such that the inequality w, <a,, held (e.g., in the ab- 
sence of the Dzyaloshinskii interaction), then its ground 
state should be characterized by spin-glass ordering of the 
impurity spins superposed on the original long-range order 
for the host spins. This situation, in particular, occurs for 
AFM with quadrupole impurities.28s29 

It follows from the estimates (22), (23), and will be 
confirmed below by other estimates, that the region in which 
the spin-glass type of ordering exists is bounded from above 
by a temperature on the order of 10 K, i.e., far below T,. 
These estimates are in satisfactory agreement with the ex- 
perimental estimates from Ref. 43 as well. 

For T >  Tf, the impurity-host interaction is "switched 
off' due to thermal saturation of the two-level impurity sys- 
tems (i.e., u-+O); the subsystem of impurity spins becomes 
paramagnetic, and, as it turns out, does not affect the AFM 
of the host to any appreciable degree. As a result of this, the 
long-range order of the host must be reestablished, i.e., a 
reentrant phase transition takes place. The change in T, due 
to the interaction between local spin excitations is only of 
order cT,. 

Thus, within the framework of the system (4)  and 
( 12), we find that disruption of AFM order in lightly-doped 
La2 CuO, is possible only in the range of very low tempera- 
tures. Then in order to resolve the question of whether or not 
this disruption is possible in the temperature interval 
Tf < T <  T,, we must investigate some other mechanisms by 
which impurities can affect the ground magnetic state of the 
crystal. 

6. STATIC DISTORTIONS OF THE LATTICE AND THE 
DISRUPTION OF LONG-RANGE MAGNETIC ORDER 

In the final analysis, the inability of the mechanism dis- 
cussed in the previous section to influence the AFM order in 
a crystal for T) Tf is related to the smallness of the eigenfre- 
quencies with which impurity spins precess; therefore, in 
order to explain the observed behavior of the magnetic sub- 
system, we must seek some other way to disrupt the long- 
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range order, i.e., due to those impurity perturbations that 
"survive" even at high temperatures. Perhaps the most ob- 
vious source of such perturbations is the static strains in the 
crystal lattice that arise when a lanthanum ion is replaced by 
an alkali-earth element, due to the difference in the corre- 
sponding ionic radii, or when above-stoichiometry oxygen is 
injected into the lattice. These strains do not depend on the 
spin state of the impurity, and their coupling to the host 
spins arises from their strong local effect on the spin anisot- 
ropy of the host. In this context it is relevant to recall (see 
Sec. 3 above) the original weak anisotropy AJ,, (denoted 
from here on by AJ for simplicity), which determines the 
stability of the ground state of the 2 0  AFM, is completely 
due to the weak uniform "strain" p of the perovskite struc- 
ture in La, CuO, . In this case, the appearance of a local dis- 
tortion p, near an impurity center ofjth type, which differs 
strongly from the uniform strain both in magnitude p, $p 
and in symmetry, can lead to a very significant perturbation 
of the center. 

A detailed microscopic analysis of these processes44 
shows that a real possibility exists for strong local changes in 
the parameters of the antisymmetric exchange interaction; 
however, the structure which results from these perturba- 
tions is found to be too complicated for direct use, e.g., in 
calculating Green's functions. Nevertheless, the necessary 
qualitative conclusions can be obtained even in the limit of 
the simplest phenomenological approach, which assumes 
the presence in the crystal of centers that are random with 
regard to direction of the intraplanar anisotropy, which is 
characterized by the quantity 6 J S  AJ. 

In order to investigate the large-scale spin fluctuations, 
we describe the spin configuration of the host in the continu- 
um approximation, using the angle $(r) which the AFM 
vector makes at the point r with the direction of the intra- 
planar anisotropy of the host, and in accordance with Ham- 
iltonian (3)  and the assumptions we have made regarding 
the character of the impurity-induced effects, we use the fol- 
lowing phenomenological spin energy density: 

where p runs over the random positions of the impurity 
centers and a, is a random quantity which takes on the val- 
ues f 1 with equal probability. 

It is apparent from an analysis of the first two terms on 
the right side of (26) that the characteristic scale of p for 
fluctuations gP ( r )  is the quantity r,  = adJ /h J ,  i.e., the 
Bloch length. If the impurity concentration satisfies the 
adiabatic condition mentioned in Sec. 4, i.e., c$ (o,/J)', 
then we have r,  $T, and on the average a large number of 
impurities are found within a single fluctuation. By consid- 
ering the energy E ( p )  = JZ?($p ( r ) )d r  = a,J 
+ a,AJ(p/a), + S ( p )  associated with such a fluctuation, 

and using for the random quantity S ( p )  
= (SJ/a)JBpapS(r - p)sin2$p ( r )dr  the obvious Gaus- 
sian distribution 

[where the constants a,,,,, - 1 are in general determined by 
optimizing the trial function qhp ( r )  1 ,  we can determine the 
probability W( T,c) of fluctuation-induced disruption of the 
original spin order at an arbitrary point in the crystal for a 
given temperature and concentration. Then the function 
T, (c) is found from the condition W( T, (c) ,c) = 7, where 
7 - 1/2. This function is found to be simplest in the limiting 
cases of small concentrations of low temperatures. 

At small concentrations (but nevertheless with 
c$ (w,/J) '), when the width of the distribution Pp (S) is 
small compared to a, J + a, AJ( p/a)  ', a special role in the 
disruption of long-range order is played by temperature-in- 
duced fluctuations, which in this case can be treated as sta- 
tistically independent of the concentration-induced fluctu- 
ations, and consequently regarded as independent among 
themselves at various points in the crystal. The correspond- 
ing contribution to W(T,c) can be found by summing the 
probabilities (equal among themselves) for all possible ther- 
mal fluctuations of radius I p I trapped at a given point (lead- 
ing finally to multiplication of the result by (p/a)'), and 
subsequent optimization with respect to the radius of the 
fluctuation: 

m 

W (T, c )  = max d~ (p /o) ' e -~ l~g  (E, p) ,  (27) 
IPI 0 

where 

The maximum in (27) corresponds to 
p,,, z a T  [a,AJ( T - a, cJ/c, ) ] - ' I 2 ,  and the correspond- 
ing function T, (c) turns out to be linear: 

where T, (0) corresponds to the value of T, determined in 
(8) ,  while 

is a characteristic concentration at which (as we will show 
below) long-range magnetic order is disrupted in the system. 
We note that the quantities c, of (22) and c, are in general 
independent of each other, and it is necessary for AFM and 
spin-glass order to be able to coexist in some range of concen- 
trations that the inequality c, < c, hold, i.e., 

As the concentration increases, the quantity p,,, in- 
creases as well, eventually attaining a value of r,, while the 
transition temperature decreases. As c -+ c, and T-. 0, a deci- 
sive role is played by statistical concentration-induced fluc- 
tuations, for which the probabilities of disrupting the origi- 
nal order within a single fluctuation cluster are rigorously 
correlated; this should lead to elimination of the factor p2. 
For T = 0, the quantity W(0,c) is determined simply by the 
total probability for forming "flipped" ($ = 71/2) clusters 
corresponding to negative E: 
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where 

is the probability integral. From ( 3 0 )  it follows that T N  ( c )  
vanishes, i.e., long-range order in the system completely col- 
lapses, in practice at concentrations on the order of c , .  In 
fact, the decrease in T N  is bounded at a point c; close to c , ,  at 
which T ,  ( c )  reaches the value T f ( c )  given in ( 2 3 ) .  

As T +  0 ,  the positions of the boundaries of the region of 
long range order found above from our phenomenological 
study are found to agree with the results of the following 
model microscopic approach. In fact, by using in place of 
( 12) a Hamiltonian for perturbations of the anisotropy due 
to induced static strains at impurity centers, e.g., of pl- 
type,3' along with the original magnon Hamiltonian ( 4 ) ,  

and taking into account only magnon excitations from the 
lower branch of the magnon spectrum with ,u = 1, we can 
reduce the resulting Hamiltonian to a magnon-scattering 
Hamiltonian of the form 

where the scattering parameters equal: 

( k - k ' )  a 
' ( L ?  k f ) = 6 ~ [ ( u l k + u l k )  ( ~ , k * + u ~ ~ ~ ) c ~ s - - -  2 

( k - k ' j a  kv(*, k f ) = 6 /  [ ( U , ~ + V , ~ )  ( U ~ ~ ' + V I ~ ' ) C O S ~ -  
2 

As T - 0  it is not difficult to obtain the following dispersion 
equation from ( 3 2 )  : 

0"Ql2 ( k )  -Rr ( a )  =0, ( 3 3  

where 

2cQ ( k )  z Q I ( k ' ) [ I V ( k , k ' ) I ' + ( W ( k , k ' ) I 2 ]  
R~(o)=A 

k r  02-Q12(kr)  

equals 
Ro (0) =cRde, (61)  ', 

n x 

for k = 0  and w - 0 .  An analogous result is obtained for the 
db-centers as well. 

It is easy to see from ( 3 3 )  that, by virtue of the defini- 
tion (7), the gap in the magnon spectrum reduces to zero, 
i.e., long-range order in the system is disrupted, when 

which is in fair agreement with the quantity c ,  determined 
above (see Ref. 2 9 ) ,  and indicates agreement between the 
phenomenological and model microscopic approaches. 

We note in this case that the continuous function 
T N  ( c ) ,  which agrees qualitatively with the results of the 
phenomenological description, can be obtained by substitut- 
ing into Eq. ( 8 )  the concentration-dependent value of the 
gap in the crystal with impurities determined from Eq. ( 3 3 )  : 

Q,, ( c )  =Q,, (1-clc,,)",.  

This implies the following result [compare ( 8 )  ] :25 

As the impurity concentration increases further, so that 
we have c  > c , ,  there is no long-range order in the system at 
any temperature; however, in the low-temperature region 
( T <  T f )  the effective impurity-impurity interaction (17) 
still remains, since the primary contribution to this interac- 
tion comes from magnons with rather well-defined wave 
vectors: k-7-  ' -&/a% k,, - & s J / ~ J .  However, in this 
case the presence in the host of a large number of "flipped" 
fluctuation clusters, which are simultaneously subject to 
strong temperature-induced fluctuations, can result in loss 
of the equilibrium state for impurity spins, and as a conse- 
quence a bound on the increase of the function T f ( c )  for 
c  > c ,  [relative to ( 2 3 )  1. 

The overall shape of the phase diagram for this system 
in "temperature-concentration" variables is shown in Fig. 3. 
We note that the diagram obtained in this way is in complete 
agreement with the diagrams given in Refs. 1, 43,  and 46, 
which are constructed by analyzing the various experimen- 
tal data. 

FIG. 3. Qualitative form of the magnetic phase diagram of lightly-doped 
La,CuO,. I, I1 are regions of the AFM and paramagnetic phases, while 
the dashed region is for a spin-glass type phase. 
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7. CONCLUSIONS 

The analysis we have carried out in this paper shows 
that the La, - , Me, CuO, system (like La, CuO, + , ) pos- 
sesses diverse magnetic properties that are characterized by 
alternation of AFM order, spin-glass order, and paramag- 
netic states. In this case, in the various regions of the spec- 
trum there exist both spin excitations of band type (mag- 
nons) and impurity fluctuation-induced states. An 
additional important feature of this system is the presence in 
it of strongly-developed AFM correlations over rather long 
distances 12,(k A,!, i.e., large AFM clusters, even in the 
paramagnetic phase. However, the quasi-2D character of the 
ordering can lead to activation energies for rotating the total 
moment of such a cluster that turn out to be independent of 
the cluster size and very much smaller than in a system with 
3 0  order. Therefore, long-time correlations in these clusters 
can perhaps be observed experimentally at very low tem- 
peratures. 

According to our calculations, the existence of local- 
ized spins in the system cannot disrupt the long-range AFM 
order in an irreversible fashion, and the field of random 
strains caused by the dopants turns out to be more effective 
in doing this. In principle, this mechanism for suppression 
can operate in other HTSC as well, in particular in ceramic 
123. However, in this material centers of an entirely different 
type appear: each insertion of an oxygen ion into 
YBa,Cu,O, +, gives rise to an exchange pair of strongly 
bound Cu2 + spins (i.e., a dumbbell) in the Cu-O chains, 
which in turn not only frustrates the AFM ordering in the 
vicinity of the CuO, planes due to the rather weak inter- 
planar exchange interaction, but also gives rise to a local 
rhombic distortion of the lattice. 

In this connection, however, we note finally that it is 
more likely that such a "strain-induced" disappearance of 
magnetic order will occur in the a-phase of solid oxygen, 
which is a quasi-2D AFM solid in which the addition of a 
relatively small number of N, (or Ar)  impurities completely 
destroys the long-range spin 3 0  order.47 

We are grateful to S. V. Maleev, S. G. Ovchinnikov, S. 
M. Ryabchenko, and S. K. Tolpygo for useful discussions of 
various aspects of the problem of disruption of long-range 
magnetic order in HTSC. 

" Thisdoes not apply to "n-type" HTSC, where the destruction of magne- 
tism is most likely described by the models investigated by Wieg- 
mann,17 although it is perhaps necessary to include in these models the 
local character of the states which arise as a result of doping as well. 
It is also not difficult to verify that at this concentration there is a formal 
sign change of the coefficient of (ak)2 in the dispersion law for spin 
waves, as follows from ( 14). In other words, due to the renormalization 
the spin wave velocity becomes negative. However, since the states in 
this region are in fact localized, we cannot even speak of a dispersion law 
in general. 

3' Here, for simplicity we have written the anisotropy of the spins near an 
impurity atom caused by the rotation of the octahedra in single-ion 
form, which strictly speaking has meaning only for S> 1. In actuality, 
however, for the system under discussion here, where we have S + 1/2, 
the spin anisotropy is caused by the anisotropic exchange interaction. 
Nevertheless, the results obtained here also remain valid for this type of 
anisotropy (if we treat SJas the anisotropic exchange interaction con- 
stant). This is associated with the fact that for S # 1/2 the quasiclassical 
approach used here, which is correct in the case of a single-ion anisotro- 
py that is weak compared to the exchange interaction, gives results 
equivalent to the case of inter-ion anisotropy or the antisymmetric ex- 
change interaction. 
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