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A microscopic theory of the bulk photovoltaic effect (PVE) in an orbital antiferromagnet (OAF) 
is constructed. The PVE in an OAF is caused by the asymmetry of the spectrum of elementary 
excitations as a function of the quasimomentum and exists even in the Born approximation for the 
scattering amplitude. It is shown that if the OAF state arises as a result of a second-order phase 
transition, photoconductivity in the neighborhood of the transition point conforms to the Curie- 
Weiss law. 

The photovoltaic effect (PVE) consists of the appear- 
ance of an emf in a crystal when the crystal absorbs electro- j2 = m(2nR)' n+n,  .f d3kpn., (k)p.r. (k). (3  

magnetic radiation.' The anomalous (or bulk) PVE is of 
special interest. It differs from the ordinary PVE in that a Here P,,. is the interband matrix element of the momentum. 
uniform electric current appears in a uniformly illuminated The off-diagonal current (3)  arises as a result of coherent 
specimen in the absence of a gradient of the electrochemical interference of real and virtual quantum transitions induced 
potential.2.3 For sufficiently weak fields the constant com- by the electromagnetic field. It is related to the displacement 
ponent of the electric current can be expanded in powers of of charge carriers in position when a photon is ab~orbed .~  
the electric field Both the diagonal and off-diagonal contributions to the cur- 

where El is the 1 th component of the constant electric field 
and El (a) = E T ( - R) is the I th component of the alter- 
nating field with frequency R. The first three terms describe 
static conductivity with nonlinear corrections, the fourth 
term describes photoconductivity, and the last term de- 
scribes the PVE itself, i.e., a photocurrent in the medium in 
the absence of a constant field. The tensor Pi,, can differ 
from zero only in noncentrosymmetric media. 

Two basic mechanisms for the appearance of the bulk 
PVE have been proposed and investigated. They are asso- 
ciated with the existence of two components in the photovol- 
taic current. The first component is described by the stan- 
dard expression for the electric current: 

where f, is the electron distribution function (the compo- 
nent of the density matrix that is diagonal with respect to the 
band indices). For a t-invariant nonmagnetic system, when 
the particle spectrum is symmetric as a function of the mo- 
mentum (ck = E p , ), the current (2)  can be different from 
zero only if the distribution function contains an asymmetric 
component: f = - f" , . The appearance of asymmetry of 
the distribution function as a function of the momentum in 
the absence of a gradient of the electrochemical potential 
presupposes that the principle of detailed balance breaks 
down, which can happen in the presence of asymmetric scat- 
tering of charge carriers in a noncentrosymmetric crystal.' 
In order to describe this effect it is necessary to go beyond the 
Born approximation in the calculation of the scattering am- 
plitude. 

The other m e ~ h a n i s m ~ - ~  is associated with the contri- 
bution of the components of the density matrix p,., (k )  
which are off-diagonal in terms of the band indices to the 
current: 

- - 
rent exist only in the presence of dissipation. 

In this paper we describe the bulk PVE in an orbital 
antiferromagnet (OAF). The OAF state was obtained'~~ in 
the model of an excitonic dielectric (ED).  This model de- 
scribes interelectronic correlations in the limit of weak inter- 
action. The possibility of the existence of the OAF state was 
also recently demonstrated in a model with strong interac- 
tion (the so-called flux  phase^).^ If the transition into the 
OAF state is accompanied by loss of the center of inversion, 
then the energy spectrum of the charge carriers in the mag- 
netic phase is asymmetric as a function of the momen- 
t ~ m . ~ , ' ~  AS will be shown below, because of this asymmetry 
the diagonal component of the photocurrent arises even in 
the Born approximation for the scattering amplitude. The 
only significant point is that the distribution function should 
not be a function of the energy E, (otherwise the derivative 
in the integrand in Eq. (2 )  is a total derivative and the cur- 
rent vanishes). As will become evident from the microscopic 
model developed below, if the analysis is limited only to iso- 
tropic scattering by phonons and impurities, processes in 
which the number of particles in the band is conserved, then 
the distribution function fk remains a quasi-Fermi distribu- 
tion function. Under these conditions the PVE arises only to 
the extent that recombination, which does not conserve the 
number of charge carriers in a band and results in the ap- 
pearance of a flux of quasiparticles in energy space, occurs." 
The photocurrent is described by the formulas (47) 
( T ~ ~  <fi/A 4 T~ ) or ( 59 (fi/jl< T, < rph ) , depending on the 
ratio of the characteristic electron-phonon relaxation time 
T ~ ,  in a band, the interband recombination time T,, and the 
time fi/A of field-induced interband transitions. 

The expression (48) for the photocurrent in a weak al- 
ternating field for T,, < T, <fi/il can be rewritten in the fol- 
lowing form: 

Here R is the frequency of a linearly polarized electromag- 
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netic wave with intensity J, x is the absorption coefficient of 
light in a semiconductor with a lattice constant a and band 
gap Eg, fiko=po = [m (fin - E, ) ] "' is the Fermi momen- 
tum of photoexcited electrons, and n is the unit vector along 
the polar axis of the crystal PI,. The representat i~n~,~ 

where d is a dimensionless real constant, is used for the inter- 
band matrix element of the momentum. The electron- 
phonon interaction parameter a,, can be represented in the 
form 

where w,, is the characteristic phonon energy and 8 is the 
temperature. The order parameter A, of the OAF state 
arises either as a self-consistent potential owing to the inter- 
band Coulomb interaction as a result of the phase transition 
(this is the case that is studied in the present work using an 
excitonic dielectric model) or owing to spin-orbital interac- 
tion in a spin antiferromagnet;12 in the last case the investi- 
gated contribution to the photocurrent has an additional rel- 
ativistic smallness. The possibility of the appearance of a 
photocurrent along PI, is governed by the asymmetry of the 
OAF spectrum as a function of the quasimomentum with 
PI,  A, #O. The following conditions were used in the deriva- 
tion of the expressions for the photocurrent: the condition of 
resonance 

the smallness of the anisotropy and asymmetry of the spec- 
trum of the OAF 

and the condition 

In order to compare the magnitudes of the diagonal (2)  
and off-diagonal (3)  contributions to the photocurrent in 
nonmagnetic media without a center of inversion and the 
photocurrent j, in an OAF we note that the structure of the 
expression for j, is identical to the structure of the inelastic 
contribution to the displacement scattering phot~cur ren t .~  
The difference lies in the fact that in piezoelectrics the asym- 
metric probability Was of inelastic scattering of an electron 
by phonons, which is proportional to a,,, appears in the 
displacement photocurrent instead of the symmetry param- 
eter 2A,/Eg of the spectrum. As a result, j, does not depend 
on the phonon coupling constant, but rather is determined 
directly by the asymmetry parameters of the crystal poten- 
tial. The diagonal photocurrent j, in a nonmagnetic medium 
also contains a contribution that is proportional to the prod- 
uct of Was -a,, and the relaxation time T,, -a,,' (Refs. 6, 
2).  In order of magnitude this contribution is equal to j,. 
Thus the ratio of j, in OAF to the known contributions (2)  
and (3)  to the photocurrent in piezoelectrics in weak fields is 
determined by the ratio of the spectrum asymmetry param- 

eter 2A,/Eg of the OAF to the electron-phonon interaction 
parameter a,, . If a,, in the OAF is sufficiently small, then 
this ratio can be of the order of or greater than unity. 

The situation when the necessary conditions for the ex- 
istence of the PVE appear in the system as a result of a phase 
transition is unique. Under nonequilibrium conditions such 
a transition is accompanied by the appearance of spontane- 
ous uniform current. When some macroscopic physical 
quantity arises spontaneously in thermodynamic equilibri- 
um as a result of a second-order phase transition the corre- 
sponding response function (permittivity function in the 
case of a ferroelectric transition and magnetic susceptibility 
in the case of a magnetic transition) diverges at the point of 
the transition. In this paper it is shown that a similar situa- 
tion also occurs at a transition into the OAF state with a loss 
of the center of inversion under nonequilibrium conditions. 
In this case, near the transition point the photoconductivity 
conforms to the Curie-Weiss law. 

1. MODEL HAMlLTONlAN ANDTHE EQUATIONS FOR THE 
KINETIC GREEN'S FUNCTIONS 

We shall study the two-band model of an excitonic di- 
electric with a singlet order parameter with arbitrary phase 
structure (A = A, + iA,) in an external field 

A ( t )  =Ao exp ( - iQt )  + C.C. 

The scheme used to describe the behavior of an excitonic 
dielectric in external fields will thus be suitable for analysis 
of the kinetic properties of both an OAF (A,) (Ref. 10) and 
a ferroelectric based on collectivized electrons (A, ) (Ref. 
8) .  We start from the Hamiltonian 

% ( t )  =%o+%c=t ( t )  +%E+%e-ph+%e-imp+%?. (4) 

Here Zo is the Hamiltonian of the electron-hole subsystem 
taking into account dielectric pairing: 

For simplicity, we assume that the electron spectrum 
(5, = p2/2m + Eg/2) and the hole spectrum ( - 6, ) are 
isotropic and have the same effective mass m. Here E, is the 
band gap (E, > 0 for the semiconductor model and Eg < 0 
for the semimetal model); a: are the Schrodinger operators 
creating an electron with quasimomentum p in the ith band 
( i  = 1, 2); W,, = y, + A,, where yp = P,,p/m, = - y,* is 
the hybridization parameter, describing the single-particle 
interband transitions;' P,,=iP is the interband matrix ele- 
ment of the momentum in the Luttinger-Kohn basis; m, is 
the free-electron mass; and, here and below the system of 
units c = fi = - e = 1 is employed. 

We write the Hamiltonian describing the interaction 
with an alternating electric field 

as follows: 
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For the components of the matrix 1, we have 

x, = + a,, 

where fp describes interband motion; A = Pl,Ao/mo and 
2 = P,,&/% describe field-induced interband transitions; 
and ip and A, are the components of the dielectric order 
parameter 

A, ( t )  = ~ ~ + ~ ~ e - ' ~ ' + ~ ~ ' e ' ' ' ~ .  ( 7 )  

which are induced by the external field. 
The term XE in the complete Hamiltonian ( 4 )  de- 

scribes the interaction with a weak constant external electric 
field E: 

where iE(a6,j/dp) is the operator of the scalar potential a, 
whose gauge in the coordinate space is chosen in the form 

@ ( r )  =-Er. 

The term Re - ,, in Eq. (4)  is the intraband electron- 
phonon interaction Hamiltonian 

where g ( q )  is the matrix element of the electron-phonon 
interaction and p ( q )  = b ,f + b - , , where b ,+ is the opera- 
tor creating a photon with momentum q. 

The term Xe - describes intraband electron-impu- 
rity scattering. For simplicity we assume that the impurity 
potential is identical for both hands: 

where the summation extends over impurity atoms distrib- 
uted randomly in the crystal. 

Finally, the last term in Eq. ( 4 )  describes recombina- 
tion processes. For what follows, it is sufficient to take into 
account only radiative recombination: 

where d,, is an operator that annihilates an incoherent pho- 
ton with momentum k and polarization given by the vector 
ea; w, is the dispersion relation of the photons; and &=, are 
the Pauli matrices with respect to the band indices. 

Following Ref. 13, we introduce the matrix of kinetic 
Green's functions: 

The self-energy part, which describes the scattering of 
charge carriers, has the following matrix form: 

Here and below the circumflex designates a matrix with re- 
spect to the band indices. The following system of equations 
can be derived for the kinetic Green's functions in an alter- 
nating field: 

d . .  
( i - l - ~ o p )  a t ,  G ( f l .  f 2 ) = ~ ( f l ) G ( t , ,  I , )  

Here i is the unit matrix, and 
,. ,. 
hp (t) =A, e x p ( - i Q t )  + h.c. 

In the absence of an external field the solutions of Eqs. ( 1 4 )  
and ( 1 5 )  can be represented in the following form:I4 

In these relations 

&=ep= ( E p 2 +  1 W p I 2 )  ' IL  

is the dispersion relation for the Hamiltonian of an excitonic 
dielectric ( 5 ) ,  and the matrices A, 9-A,, 9, are constructed 
from the coefficients of the canonical transformation that 
diagonalizes the Hamiltonian ( 5  ) : 

We note the following obvious properties of the matrices A 
and 9: 

The momentum distribution functions S,,, ( p )  
= 2nI,, ( p )  - 1  can be obtained from the relations 

Finally, in order to take into account the damping in the 
equilibrium Green's functions ( 1 6 )  we introduce the param- 
eter Y -  ( 2 7 )  - I, which in the simplest case of scattering by 
impurities ( 10) can be assumed to be ~onstant:'. '~ 

where n,,, is the concentration of scattering centers and 
N ( 0 )  is the density of states at the Fermi level. We note that 
if damping is neglected, the equality ( 1 8 )  holds identically. 
If, however, v#O,  then Eq. ( 1 8 )  holds to within the param- 
eter ( T (  ( E g / 2 I 2  + lAI2) - ' in the semiconductor model 
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or the parameter (71 A 1 ) ' in the semimetal model. We as- 
sume that this parameter is small. 

Averaging the current operator with respect to the basis 
of the kinetic Green's functions, we obtain for the average 
current density the expression 

~ h e r e j ( ~ , t )  is the current operator, whose time dependence 
is related to the dependence of the Hamiltonian on the vector 
potential of the electromagnetic field in the Luttinger-Kohn 
representation: 

A 

G(p,w,t) the Fourier transform of the kinetic Green's 
functions G(p,tl,t2) (12) with respect to the time difference 
t, - t2(t = (t, + t2)/2). We represent analogously the self- 
consistency equation for the dielectric order parameter in 
the following form: 

Where V(p - k)  is the interband Coulomb interaction po- 
tential. Thus the presence of the oscillating components in 
the order parameter (7)  is related to theiact that in an exter- 
nal field with frequency R the function G(p,w,t) can be rep- 
resented in the form of the series 

~ ( p ,  O, t )  =G,(o)+Gpr (0)  e - iot+d,"(o)  eiRt+. . . (22) 
A 

and analogously for the functions G ""(p,w,t). 
The functions S ,,, (p)  in equilibrium, which are deter- 

mined from Eq. ( 18), are quasi-Fermi distribution functions 
for the quasiparticles of an excitonic dielectric. Under non- 
equilibrium condgions, it is convenient to employ for the 
kinetic function G(p,tl,t2) the representation proposed in 
Ref. 15: 

Therefore, a  presentation of the type (22) is also valid for 
the function S(p,w,t) . From the expression (23 ) we obtain 
for the terms in the series (22) 

G, ( 0 )  = S P ( o )  w ( o )  +S, ' (O-Q/2)  dpa" (0-5212) 
+Sp" ( o f  Q/2) 8 ," ' (o+Q/2)  - [8 '5] ,  (24) 

~ , ' ( o ) = S ~ ( 0 + 5 2 / 2 ) i G ~ ~ '  ( o ) + B p ' ( ~ ) G P a ( o - Q / 2 ) -  [ F B I ,  
G , " ( O ) = S , ( ~ - Q / ~ )  GPa" ( o )  + B p f ' ~ ( o )  Gpa(o+Q/2)  - [ F B I .  

The bracketed terms in Eqs. (24) are obtained by writing the 
funccons out explicitly by permuting the indices. The func- 
tion S(p,w,t) is determined from the kinetic equation. It can 
be shown :hat theAoscillating components of the distribution 
functions S ' and S " are small, on the order of the parameter 
A /R< 1. For this reason, it is sufficieG to seek the time- 
independent component of the function G(p,w,t) (22) in the 
form ( 16) with 

A A 

s=sP (w) =sip ( ~ 1 3 ,  + sS 2p(~)j~, (25) 

where S,,,, (w) are as yet unknown distribution functions. 

Treating as a perturbation the Hamiltonian (6)  de- 
scribing the interaction with an alternatingpxternal field we 
can write down the expansion in pzwers ofA for the oscillat- 
ing components for the function G. Separating the resonant 
part, containing the functions G $'(w + R )  and 
G;'(w - R )  [in the notation of Eq. ( 16) 1, which canJe 
anomalously large at R -E ,  we obtain, for example, for G 
(the methodological details are presented in Ref. 14): 

Here the argument p is omitted in order to simplify the equa- 
tions and the following notation was introduced: 

We note that the parameter A, is essentially the renormal- 
ization of the matrix element of the interband dipole transi- 
tionA (6)  owing to coherence factors of the excitonic dielec- 
tric and can be written in the form 

where P,,(p) is the p-dependent interband matrix element 
of the momentum in the basis in which the Hamiltonian of 
the excitonic dielectric (5)  is diagonal. 

2. ANOMALOUS PHOTOVOLTAIC EFFECT IN AN ORBITAL 
ANTIFERROMAGNET: WEAK-FIELD CASE 

Using the notation introduced above we obtain from 
Eqs. ( 19) and (20) the following expression for the constant 
component of the current: 

We first study the case of a weak electromagnetic field: 
AT< 1, where T is the shortest relaxation time. The field can 
be taken into account by means of perturbation theory. We 
note that in the weak-field limit the damping Y mug  be re- 
gined in the denominators of the Green's functions G :'and 
Go in the expansion (26). In the limit Y -0 all terms in the 
perturbation series in A are found to be of the same order of 
magnitude; this was not pointed out in Refs. 16 and 17. The 
limit Y+ 0 actually means a transition to the strong-field lim- 
it, and in this case the entire perturbation series must be 
summed. Substituting into the formula (29) expansions of 
the type (26) for the kinetic Green's functions we obtain the 
following expressions for the constant component of the cur- 
rent (PVE) to second order in the field: 
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The second and third terms in braces correspond to renor- 
malization of the diagonal part of the current, i.e., the first 
term [compare with Eq. (2)  1,  owing to the interaction with 
the field. As one can see from Eq. (30), these terms are 
smaller by (AT)' than the first time. If the damping v is 
neglected but the change in the distribution functions owing 
to renormalization of the spectrum in second-order pertur- 
bation theory in A (optical Stark effect) is taken into ac- 
count 

then the indicated terms reduce to a total derivative with 
respect to the momentum 

and the corresponding contribution to the current (30) is 
identically equal to zero. The last term in the braces in Eq. 
(30) corresponds to the displacement PVE (3) ,  studied in 
Refs. 3-6 in the Bloch basis. We note that in this technique 
the field-induced renormalization of the current operator is 
taken into account in a natural manner [second and third 
terms in Eq. (20) ] ; these terms were not taken into account 
in Refs. 3-6. 

Below we study only the diagonal component of the 
current that is associated with the first term in Eq. (30). We 
take into account only the interactions in which the number 
of quasielectrons and quasiholes is conserved [such interac- 
tions include the intraband scattering processes (9)  and 
( 10) and radiative recombination ( 1 1 ) 1. Then the expres- 
sion for the photocurrent assumes the form 

It is immediately evident that the photocurrent is different 
from zero if the distribution function SIP is different from 
the quasi-Fermi distribution function or if the integrand in 
Eq. (3  1 ) contains a component that is symmetric as a func- 
tion of the momentum. The last condition is realized in 
OAF, where the spectrum of the Hamiltonian (5)  

is asymmetric as a function of the momentum (E, #E -, ). 
The derivation of the kinetic equation for determining 

SIP in our model is stand%d.I3 We add the equation for the 
kinetic Green's function G ( 15) and the Hermitian conju- 
gate equation. The result is 

=h , ( t , )~ ( t , ,  1,) - &t1,t2)& (,,I+ I d t l [ i  (t,, t ' ) ~ ~ ( t ' .  t,) 

The kinetic equation is obtained from Eq. (32) with the help 
of the relation ( 18). The first two terms on the right-hand 
side of Eq. (32) correspond to the source in the collision 
integral, describing field-induced interband transitions, and 
the integral terms describe scattering by phonons and im- 
purities and radiative recombination. In the stationary case 
the kinetic equation has the form 

Substituting the expressions for the self-energy matrices in 
the Born approximation into the integral term in Eq. (32) 
and using Eqs. ( 16) and ( 18), we obtain for the electron- 
phonon collision integral 

where Np = (exp ( ap /@ - 1 ) is the Planck distribution 
function of the phonons. The term describing the recombi- 
nation of quasiparticles through the gap is omitted in the 
collision integral. This is valid when ((E,/2)2 + 1A/2)1'2 
> wph in the semiconductor model or IAl > wph in the semi- 
metal model, where w,,, is the characteristic energy of the 
phonons. The collision integral Eq. (34) vanishes for the 
quasi-Fermi distribution functions: 

The first equality in Eq. (35) reflects the fact that the num- 
ber of quasielectrons is equal to the number of quasiholes. 
The chemical potential p in Eq. (35) can be arbitrary when 
recombination is neglected. 

Analogously, the collision integral for intraband elec- 
tron-impurity scattering has the form 

imp 

and vanishes for arbitrary energy distribution functions 
S,,,, ( + E,, ) = S1,2 ( + E~ ). In particular, it vanishes for the 
distributions (35). 

Finally, the recombination collision integral can be 
written in the following form: 
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A A  

where the matrix element I?- Ta(p,k) is defined in Eq. ( 11 ) 
and we have introduced the recombination time 

4 an, * 
i - Q  1- I 

3 aA, ' 

which is inversely proportional to the probability of emis- 
sion of an incoherent photon in an interband transition. The 
integral (37) vanishes if 

slP(&,) = - I ,  SZP (-8,) = I .  (39) 

In this case, n,, = 0 and n,, = 1, i.e., 

in the case of a completely filled lower band and a completely 
empty upper band, which happens for very strong recombi- 
nation, when the recombination time T, is much shorter than 
all other characteristic relaxation times in the system. 

I t  is useful to calculate directly the source in the colli- 
sion integral [the last term in Eq. (33)] for an arbitrary 
value of the parameter A without treating the field as a per- 
turbation. We separate from the expression for the source in 
Eq. (32) the stationary part: 

Using the relations (26) and (18) we obtain in the limit 
Y-0: 

2~ 1 A Jz[Sz (-Q/2-E) -St (Q/2-E) I . 
(40) = lim - 

v-0 4EZ+vz 

In Eq. (40) we have introduced the function Ep defined as 

which is the dispersion relation for quasiparticles in an exci- 
tonic dielectric in a strong electromagnetic field (see below). 
Passing to the limit Y + 0 we have 

Thus in a strong field (AT> 1 ), when the renormalization of 
the spectrum is significant, there is no source in the kinetic 
equation. In a weak field (AT< 1 ) one can see from Eq. (42) 
that the source vanishes if SIP (6, ) = S2, ( E ,  - R).  If the 
distribution function is chosen to be of the form Eq. (35), 
then the condition that the source (42) be equal to zero de- 
termines the chemical potentialp = R/2. As a result we find 
that when recombination is neglected the functions of the 

form 

represent stationary distributions of quasiparticles in an ex- 
citonic dielectric in a weak field with frequency R, slightly 
exceeding the gap width [ ( 0  - I A ( ) /R 4 1 for the semime- 
tal model or ( R  - E, ) / R 4  1 for the semiconductor model; 
this condition made it possible to separate the resonance part 
of the series (26) 1. The physical meaning of the distribution 
(43) is obvious: The external field transfers quasiparticles 
into the level E~ = R/2 in the upper band (the energy is 
measured from the center of the forbidden band) and then, 
owing to intraband relaxation processes, the quasiparticles 
fill states near the bottom of the band up to this level (the so- 
called "saturation state"" ). 

It follows from Eq. (3  1) that the photocurrent vanishes 
for quasi-Fermi distribution functions (43) [this result is 
also true for the off-diagonal component of the photocurrent 
(30) 1. The distribution function differs from the quasi-Fer- 
mi function and the photocurrent is nonzero only to the ex- 
tent that recombination occurs, since the complete collision 
integral (33), including the recombination term, no longer 
vanishes for the distribution function (43). We note, how- 
ever, that in the hypothetical limit of very strong recombina- 
tion, when T, 4 rimp, rPh holds, there is no photocurrent in a 
weak field. The solution of the kinetic equation (39) shows 
that under these conditions the system simply does not con- 
tain any free carriers that could participate in the formation 
of the current. As will be shown below, the situation is differ- 
ent in the case of a strong field: A photocurrent is possible in 
the presence of strong recombination. 

We consider only the electron-phonon mechanism of 
intraband relaxation. We seek an expression for the distribu- 
tion function, differing from the quasi-Fermi function, from 
the kinetic equation (aslp /at) ,, = 0, including the electron- 
phonon ( 34) and recombination ( 37) collision integrals and 
the source from the external field (42). If recombination is 
weak, then owing to intraband relaxation a quasiequilibrium 
distribution is rapidly established for the created quasiparti- 
cles. In this case recombination merely shifts the Fermi level 
from R/2 (43) by some amount q,, so that 

Q/2-8,-q, 
Sip ( ~ p )  =th 

20 

Let q p - ~ , T 1 4 6 < R / 2 - ~ , i , ,  E , ~ , = [ ( E , / ~ ) ~  
+ (A12]1'2. Then the perturbation theory in the parameter 
(Or, ) ' -qp/O< 1 can be used to solve the kinetic equa- 
tion. The equation for the function qp then has the form 

(ap-qr) ~ G ( E ~ - E ~ - o ~ - ~ )  +6 ( E ~ - E ~ + o ~ - ~ )  I 
X '  s2/2-E, St/2--.5k 03,-k 

c h -----. ch-sh- 
20 20 20 

We seek a solution of Eq. (45) which is approximately linear 
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in the hybridization in the form 

where y, = iPp/mo is the hybridization and a(&:) is the 
unknown isotropic spectrum function (EO = E (  y = 0)  ). For 
simplicity we replace the matrix element of the electron- 
phonon interaction by a constant: g2(p) = g2/po, where 
E:" = W2.  In addition, we replace the acoustic phonon spec- 
trum w, by the characteristic phonon energy up, = 2p0v,, 
where us is the velocity of sound. Let 

where T$' = 2mg2/n-. Then in Eq. (45) the quantity v, 
characterizing the damping owing to the phonons, has the 
form 

and for the parameters appearing in the expression for 77, 
(46) we obtain the following values: 

We note that the component in Eq. (46) that is asymmetric 
in the quasimomentum is present only in the OAF state 
(A = iA,) and arises as a consequence of the anisotropy of 
the spectrum of the OAF with y, #O. Substituting into the 
expression for the current (3  1 ) the distribution function 
(44) with a shift of the chemical potential (46), we arrive at 
the final result to first order in A,/Eg and v p / O  (we assume 
that the normalizing volume is equal to unity) : 

- 
iZ= A., t r - I  = - 

From the inequality 774 (R/2) - E,, and the expres- 
sion obtained above for 77 it follows that the expression (47) 
for the photocurrent is valid for the following ratio of the 
characteristic times in the system: rph <A - <T,. Then the 
saturation state (43) is distorted only slightly owing to re- 
combination [see Eq. (44) ]. In the other limiting case, when 
rPh <r ,<A - ' holds (this is the weak-field case), it is natu- 
ral to study a weak distortion of the distribution function 
(39) owing to the source from the external field: 

Here the functions a(&, ) and b ( ~ i  ) arise to the extent that 
(aS,,/at),,, is nonzero, i.e., a, b-A'. Here the photocur- 
rent also appears owing to the asymmetry of the distortion of 
the distribution function due to the asymmetry of the spec- 
trum of the OAF with y, #O. From Eq. (31) we obtain the 
corresponding expression for the photocurrent, assuming 
wph/8< 1 and A,/E, < 1: 

The distortions 77, (46) of the stationary distribution 
function, which lead to the photocurrent (47) in the case of 
an "intermediate" field (T,, <A - ' < T, ), like the distor- 
tions a + bA,) yl in the weak-field case (rPh <T, < A - I), 
which lead to the photocurrent (48), are significant near the 
bottom of the conduction band in the region of momenta of 
the order of the quasi-Fermi momentump,. In the semicon- 
ductor model of an excitonic dielectric, which we are study- 
ing here, states in a wide range of energies on the order of the 
binding energy of an exciton," which owing to the resonance 
condition significantly exceeds the interval R/2 - E,,, near 
the bottom of the conduction band, participate in the forma- 
tion of the order parameter A, ( t ) .  For this reason, in the 
indicated interval the function A,, ( t )  can be assumed to be a 
slowly varying function of the momentum A,, ( t )  =: A, ( t ) ,  
as was done in the derivation of Eqs. (47) and (48). 

3. ANOMALOUS PHOTOVOLTAIC EFFECT IN AN ORBITAL 
ANTIFERROMAGNETIC: STRONG-FIELD CASE 

Let us study the semiconductor model of an OAF in a 
strong field (AT) 1 ). In a standard semiconductor, coherent 
states of electrons and holes form in a strong alternating field 
under conditions of resonance (model of a photon dielec- 
tric"): 

We show that even in a semiconductor excitonic dielectric it 
is possible to introduce quasiparticles whose ground state is 
constructed taking into account both dielectric interband 
correlations and interband transitions induced by the strong 
wave. The canonical transformation with the coefficients 
( 17), which accomplishes the transition from the operators 
a,, (5) to new operators a,,, diagonalizes the time-indepen- 
dent part (5 )  of the Hamiltonian (4) .  The time-dependent 
off-diagonal part of the transformed Hamiltonian can be ex- 
pressed in terms of the renormalized interband matrix ele- 
ment of the momentum (28). In this form the problem is 
now analogous to the problem of a photon dielectric." We 
now transform in the obtained Hamiltonian to an "oscillat- 
ing" system of coordinates through a time-dependent uni- 
tary transformation," which fixes the chemical potential of 
the quasiparticles of the excitonic dielectric aip at the value 
R/2: 

After this transformation the matrix of the Hamiltonian 
2, + Re,, ( t )  in the basis a, is reduced to the form 
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Here, in accordance with the notation (6), the following 
parameters were defined: 

The resonance part 1f0 of the Hamiltonian R ( t )  no longer 
depends on time and can be diagonalized by a canonical 
transformation with the coefficients lip and EP: 

where Ep is the dispersion relation (41 ) . The transformation 
(5 1 ) transforms the operators aip into the new operators B,, 
which describe quasiparticles that are coherent electron and 
hole states arising as a result of both Coulomb correlations 
and interband transitions induced by the strong field.14 

In Eq. (29) for the current we go over to the operator 
basis sip, and then perform the transformation (49). Then 
the current can be expressed as follows in terms of the 
Green's function of the Hamiltonian (50) : 

1 
- P,2 (p) c'"!' 

d 3 p  dw rug 
,j ( t )  = iSp -. 5 (24' - de, 

where the renormalized interband matrix element of the mo- 
mentum p , , ( ~ )  is defined in Eq. (28),  and the following 
notation has been introduced: 

In order to obtain the constant component of the current 
(52) we expand the kinetic Green's function in a series in the 
perturbation B, ( t )  (50). Separating in Eq. (50) the princi- 
pal (resonance) components we obtain 

where the "zeroth" functions satisfy relations of the form 
( 16), in which the matrices 2 and9 are constructed from the 
coefficients (5 1 ) and the energy denominators contain in- 
stead of E, the spectrum E, (41 ). The contribution to the 
stationary component of the current, determined by the first 
term in Eq. (53), has the form 

The other contribution to the current, associated with the 
second and third terms in Eq. (53), can be written as fol- 
lows: 

+ C.C.  ] (slp-s2p). 

Using the self-consistency equation for the dielectric order 
parameter (see below) it can be shown that the current j, 
exactly cancels the second term in Eq. (54). As a result, the 
expression for the constant component of the current in an 
excitonic dielectric in a strong field assumes the standard 
form 

The distribution functions S,,,, in Eq. (55) must be 
sought as a solution of the corresponding kinetic equations. 
The method for obtaining these equations for an excitonic 
dielectric in a strong field is in principle analogous to the 
method employed above for the weak-field case (see also 
Ref. 14). It is significant that in a strong field a source does 
not arise in the complete collision integral [see Eq. (42) ] 
and the effect of the field on the excitonic dielectric reduces 
to renormalization of the quasiparticle spectrum (4 1 ) . The 
electron-phonon collision integral, which, in contrast with 
Eq. (34), must be supplemented with a term describing cre- 
ation and annihilation of quasiparticles through the field gap 
A, vanishes for a quasi-Fermi distribution function with zero 
chemical potential (an analogous situation also occurs in a 
photon dielectric1 ' ) : 

The quasiparticle-impurity collision integral vanishes for an 
arbitrary energy function S,, = S, (E ,  ), in particular, the 
distribution (56). Thus intraband relaxation processes can- 
not distort the quasiparticle distribution away from the qua- 
siequilibrium distribution (56). A distribution function dif- 
ferent from the quasi-Fermi function and therefore a 
nonzero photocurrent (55) can be obtained only by taking 
into account recombination, which does not conserve the 
number of particles in a band. The recombination collision 
integral for the strong-field case has the form 

where the relaxation time rr (p)  is defined in Eq. (38). In the 
absence of dielectric pairing and hybridization the results 
(38) and (57) transform into analogous relations of the the- 
ory of a photon dielectric. " 

The stationary distribution, for which Eq. (57) vanish- 
es, does not reduce to the quasiequilibrium distribution (56) 
in any limit: 

The function (58) is the solution of the kinetic equation in 
the limit rr (rph,  rimp. However, even in the case 7, ) rph , 
rimp, which is usually realized in semiconductors, the com- 
plete collision integral does not vanish for the quasi-Fermi 
distribution function. It is not difficult to show (see, for ex- 
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ample, Refs. 11 and 14) that the dissipation of energy of the 
external field in the stationary state also arises in the system 
only to the extent that recombination occurs. 

Since the dielectric order parameter A, ( t )  is formed in 
a wide range of momenta, greatly exceeding the volume of 
the phase space occupied by nonequilibrium charge carriers, 
to calculate the photocurrent we assume that A, ( t )  given by 
( 7 )  does not depend on p. As a result, in the limit of strong 
recombination (58) we obtain from Eq. (55) to first order in 
the hybridization and the imaginary order parameter A, 

Here A - is the interband transition amplitude A renormal- 
ized by the Coulomb interaction [see the formula (67) ] and 
the normalization volume has been set equal to unity. 

Thus we have shown that in an OAF without a center of 
inversion (P,, A, #O)  the photovoltaic effect, described by 
the formulas (47), (48), and (59) in the limiting cases of 
moderate, weak, and strong fields, occurs under nonequilib- 
rium conditions in the presence of dissipation. It is signifi- 
cant that these contributions to the diagonal photocurrent 
arose even in the Born approximation when scattering pro- 
cesses were taken into account. 

4. ORDER PARAMETER AND ANOMALIESOFTHE 
PHOTOCONDUCTIVITY NEAR THE TRANSITION POINT 

We first study the order parameter of an excitonic di- 
electric in the semimetal model, when the screened interelec- 
tron interaction potential can be assumed to be constant. 
The self-consistency equation for the complex order param- 
eter [compare with Eq. (2 1 ) 1 has the form 

d3p d o  
A=gR Re "P i ~ , ,  (p, o) +ig, 1rnj - 

( 2 ~ ) "  (2n)' iG12 (P, a), 

where the integration constants g, and g, for the real and 
imaginary parts of A are, generally speaking, different. On 
the basis of the structure of the kinetic Green's functions 
(16) the self-consistency equation (60) can be rewritten, 
neglecting nonlocal corrections, as follows: 

where we have introduced the spectral functions 

According to Eq. ( 16), because of the presence of hybridiza- 
tion 

For this reason, any asymmetric distortion of the distribu- 
tion functions S,,,,  in the direction of the interband matrix 
element of the momentum vector P results in the appearance 
of a source in the self-consistency equation for the imaginary 
(toroidal) order parameter [the macroscopic physical 
quantity that arising spontaneously at the phase transition 
into the OAF state in the model of an excitonic dielectric is 

the toroid momentum density T-PA, (Refs. 7 and lo)] .  
The asymmetric distortion of the distribution function can 
be caused by both a constant electric field E and some en- 
trainment effect and is accompanied by the appearance of a 
dissipative electric current. For this reason we can say that 
the ohmic current is a source for the toroid order parameter. 

The corresponding microscopic calculation under con- 
ditions of weak impurity scattering ( Orimp ) 1 ) was per- 
formed in Ref. 8. At temperatures 8 near the transition tem- 
peratures 8, or 8, in the zero-gap state ( I A (rim, < 1 ) it was 
found that to first order in A, and A, the equations for A, 
and A, become decoupled: 

where under certain simplifying assumptions 
rn 

and E~ is the Fermi energy of the semimetal. In thermody- 
namic equilibrium, when the distribution function does not 
change, it follows from Eq. (61 ) that 

which reflects ordering of the ferroelectric type when 
A, #O. Moreover, in Ref. 8 an expression was derived for 
corrections to the current which arise owing to the OAF 
ordering and are nonlinear in the field E: 

and it was pointed out that the existence of a photovoltaic 
effect in OAF without a center of inversion (PA, + O )  al- 
ready follows directly from the expression for the current 
j,, . In the limit of very low frequencies of the external elec- 
tromagnetic field (RT,,, < 1) the frequency R can be ne- 
glected when calculating the current. The PVE tensor Pilk 
( 1) in this limit is identical to the nonlinear conductivity 
tensor, which determines the current j,, and has the form 

Using the results of Ref. 8, which were presented above, 
for the induced order parameter A, we can write the follow- 
ing expression for the photoconductivity tensor ( 1 ) in the 
case RT,,, < 1 near the point of the transition into the OAF 
state: 

where yi,k, is the dissipative tensor: 

From the expression for y,,, (62) it follows that near the 
temperature of the transition into the OAF state the tem- 
perature dependence of the photoconductivity conforms to 
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the Curie-Weiss law. In reality, the singularity in Eq. (62) is 
smeared out to the extent that the phase transition is 
smeared out under nonequilibrium conditions. The presence 
of a source in the order parameter, associated with the exter- 
nal field responsible for the nonequilibrium, also leads to an 
analogous effect. For a toroid order parameter, for example, 
the Poynting vector can be such a source. 

We return now to the semiconductor model, in which 
an alternating electromagnetic field with finite frequency 
gives rise to interband transitions of charge carriers and the 
phase transition into the excitonic-dielectric state occurs 
with E, = Eex (E,, is the binding energy of the exciton). 
The self-consistency equation for the imaginary dielectric 
order parameter (A = iA,) has the following form in the 
weak-field limit: 

Here S, (E ,  ) is the stationary distribution function (43) (we 
neglect the recombination corrections to the order param- 
eter 7 / 0 9  1) and S i, is the change induced in the distribu- 
tion function by the constant external field and can be deter- 
mined from the kinetic equation: 

In the weak-field limit we neglect the alternating field in Eq. 
(63) according to the parameter A 7 9  1. 

By means of the substitution 

A p = 2 E p y  (P) 

Eq. (63) can be reduced in the standard manner to the 
Schrodinger equation for the Coulomb problem with the ef- 
fective potential" 

E, V' (p-k) = V (p-k) th - 
48 

and the right-hand side of Eq. (63), which plays the role of a 
source. The solution is sought with the help of the Green's 
function of the homogeneous equation 

Here q, (p )  are the eigenfunctions and En the eigenvalues of 
the homogeneous equation, containing, in particular, the ex- 
citon binding energy 

where in dimensionless units 

me' 
E,,O =- 

2ti2e' 

On the basis of the assumptions made in deriving the expres- 
sion for the current (47) and retaining in Eq. (64) only the 
singular term, we obtain for the particular solution \V ( p )  of 
the inhomogeneous problem and of interest to us 

where I i s  a dimensionless constant. As a result, the expres- 
sion for the photocurrent component (47), which is related 
to the constant field E and determines the photoconductiv- 
ity, has the following form above the transition point 
(E, >Eex ( 6 ) ) :  

Thus the photoconductivity in the OAF in the semiconduc- 
tor model near the transition point conforms to the Curie- 
Weiss law as a function of the band gap. The photocurrent 
component in a very weak field (48) also behaves analogous- 
ly near the transition point, if the order parameter of the 
OAF is induced by a constant field E; we shall not present 
the corresponding expression. 

In the strong-field limit ArB 1 renormalization of the 
interband transition amplitude A by the Coulomb interac- 
tion becomes significant.18 This renormalization is de- 
scribed by the self-consistency equation for the component A 
of the order parameter (7):  

For a >  E, - Ee, the coherent external field in Eq. (66) 
serves as a source of the Bose condensate of excitons with the 
order parameter formed at the frequency R.'8,14 

For what follows it is convenient to redefine the order 
parameters a, and E,, introducing the following quantities: 

Since the number of quasiparticles is equal to the number of 
quasiholes, SIP = - S,,, the system of self-consistency 
equations assumes the form13 

We consider the case of strong recombination (58). In 
this limit the self-consistency equation (68) can be written 
as follows: 

As follows from the equation for A, in Eqs. (69), the transi- 
tion to the state of an excitonic dielectric is suppressed in a 
strong field by the effective decrease of the interaction poten- 
tial. In the range of energies which are significant for the 
formation of the order parameter A,, however, the field cor- 

305 Sov. Phys. JETP 74 (2), February 1992 Artarnonov ef al. 305 



rection is small ( IAI2/E - 4 1 ) and can be neglect- 
ed. 

If, in addition, a weak constant field E is superposed on 
the system, then from the kinetic equation with a recombina- 
tion collision integral (57) we obtain for the correction to 
the stationary distribution function (58) 

The correction to the distribution function (70) leads to the 
appearance of a source in the equation for A, : 

d3k A k  

A. - - V (p-k) - = h.. 
(h) 2 ~ k  

d3k 
V(p-k) 

(Pk) (Ek) 
mmo 

As we have already pointed out above, in calculations of the 
photocurrent in the region of states near the bottom of the 
conduction band all Coulomb parameters can be assumed to 
depend weakly on the momentum. To first order in the hy- 
bridization and the order parameter A = AI the field gap 
parameter A also does not depend on the momentum and the 
constant field E: 

In addition, in this approximation the recombination time 
can also be replaced by a constant [see Eq. (47) 1. 

Substituting into Eq. (59) the solution Eq. (71) found 
with the help of the Green's function of the homogeneous 
equation, we obtain for the current contribution determin- 
ing the photoconductivity 

where J is a dimensionless constant. As in the weak-field 
case (65) the current (72) near the point of a toroidal exci- 
tonic transition conforms to the Curie-Weiss law in the pa- 
rameter E,. Of course, all remarks about the smearing of the 
singularity in the photoconductivity, i.e., replacement of the 
divergence by a local maximum depending on the decay and 
the presence of a source from the alternating field in the self- 
consistency equation, made above in application to the semi- 
metal model (62), are also valid for the semiconductor mod- 
el (65), (72). 

The obtained results can be given a simple phenomeno- 
logical interpretation. We introduce the dissipative function 

where ST,(T) is Landau's free energy functional for the to- 
roidal order parameter T - PAI and a = a ( 8 - 8, ), where 8 
is any parameter with respect to which a phase transition 
occurs (temperature, band gap), a, P> 0, and j, = uoE is the 
ohmic current. The last term on the right-hand side of (73) 
reflects the fact, established in Ref. 8, that the ohmic current 

is the source for the toroidal order parameter. By varying the 
function (73) with respect to T and substituting the expres- 
sion found for the induced toroidal order parameter 

into the expression for the dissipative toroidal current 

we obtain the Curie-Weiss law calculated in this work on the 
basis of the microscopic model. The obtained effect is uni- 
versal and is independent of the special method, studied in 
this work, for creating nonequilibrium in an alternating elec- 
tric field (PVE) . 

Finally, we note that the singularity of the photocon- 
ductivity at the point of the nonequilibrium phase transition 
is not a property specific to an OAF. The expression (75) for 
the photocurrent can contain, instead of the densjty of the 
toroidal moment, for example, the polarization 9 (in the 

+ 
excitonic dielectric model 9 - PA, ) . The photovoltaic ef- 
fect is then governed by the coherent (displacement) mecha- 
nism (3)  .3-5 The polarization component induced by a con- 
stant electric field contains, as is well known, a singular 
denominator analogous to Eq. (74). The divergence of the 
photoconductivity at the point of the ferroelectric transition 
thus will be a simple consequence of the divergence of the 
permittivity, which also happens under equilibrium condi- 
tions. 
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