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The propagation, in a semiconductor film, of high-frequency nonequilibrium phonons that have 
been formed as a result of cooling of a photoexcited electron-hole plasma is investigated. The only 
anharmonic process for the nonequilibrium phonons is assumed to be spontaneous decay. 
Scattering of phonons by impurities is neglected. The film thickness is assumed to be a small 
quantity VT, ( a ) ,  where u if the phonon group velocity and T/ (w ) is the decay time for a 
longitudinal phonon. It is established that energy is transported in space by phonons moving 
almost parallel to the film surfaces, and the characteristic length scale of the phonon 
nonequilibirum is 7- ut. 

Upon interband absorption of light, a photoexcited 
electron-hole plasma emits long-wavelength optical phon- 
ons as it cools, and these decay into pairs of short-wave- 
length acoustic phonons with frequency of the order of the 
Debye frequency (w - w, ) . 

In the case when the temperature of the equilibrium 
state of the crystal is low (T,, <fiw, ), and the distribution 
function of the nonequilibrium phonons satisfies the relation 
nTq(w) 4n(w)  41 ,  wherenTCq(w)zexp( - h / T , , )  is the 
distribution function of the equilibrium phonons, the only 
anharmonic process for the nonequilibrium phonons is 
spontaneous decay. 

We consider thin, pure crystalline films, such that the 
relative magnitudes of the frequency l / ~ *  (w ) of scattering 
by defects, the decay frequency 1 / ~ ,  (w), and the quantity 
v/d (where u is the average group velocity of the phonons 
and d is the film thickness) can be assumed to be as follows: 

The theory of the propagation of superthermal phonons 
in bulk crystals, where spontaneous decay dominates over 
scattering by defects, was considered in Refs. 1 and 2. In the 
case of films, allowance for the scattering of phonons by the 
boundaries will play an essential role. 

For certain values of the light-pumping parameters 
(the power and duration of the light pulse), as a result of 
multiple phonon decays a generation of phonons with distri- 
bution function n (w ) - 1 can appear. The processes of 
phonon-phonon coalescence and induced decay become just 
as probable as spontaneous decay. Quasiequilibrium, de- 
scribable by a Planck function with a certain initial tempera- 
ture To% T,, , is established as a result of three-phonon inter- 
actions. A phonon hot spot (PHs)  is formed. The results of 
the calculations show that the PHS is established before the 
nonequilibrium phonons begin to emerge appreciably from 
the region of the light excitation. The heat transport will be 
determined by the Casimir thermal diffu~ivity.~ The spatial 
expansion of the PHS occurs in a diffusive manner, and the 
characteristic size of the phonon nonuniformity is on the 
order of 

Consider the case when the light-pumping power is suf- 
ficiently low, so that a PHS is not established and, among the 
phonon-phonon scattering processes, only spontaneous de- 
cay is important. It might appear that, when the inequality 
( 1 ) is fulfilled, the problem reduces to one with two-dimen- 
sional diffusion, for which the diffusion coefficient is deter- 
mined by the phonon mean free path (of order d )  and the 
characteristic size of the phonon nonuniformity is deter- 
mined by Eq. ( 2 ) .  It may happen, however, that over the 
characteristic lifetime T/ ( w )  of the phonon generation, as a 
result of repeated diffuse scattering of phonons at the boun- 
daries there is an accumulation of a sufficient number of 
phonons moving ballistically almost parallel to the surfaces 
of the film, and the principal contribution to the spatial 
transport of energy will be made by phonons moving along 
the film. The anisotropic part of the distribution function of 
these phonons will not be small in comparison with the iso- 
tropic part, and the use of the diffusion equation is not justi- 
fied. To elucidate this question, it is necessary to consider the 
kinetic equation. 

THE KINETIC EQUATION 

As already noted, the nonequilibrium phonons that are 
created during the thermalization of the electrons have a 
frequency on the order of the Debye frequency. The phonons 
of the thermal background can be neglected. The nonequi- 
librium phonons have small occupation numbers. With 
these assumptions, it is clear that the main type of phonon- 
phonon interaction is phonon decay. 

We neglect the scattering of phonons by impurities, and 
also the leakage of phonons through the boundary, which is 
possible in the cooling of a film without a substrate in helium 
gas. Elastic scattering of phonons occurs principally on the 
film surfaces. Since elastic scattering can occur with conver- 
sion of the polarization of the phonons, frequent scattering 
on the surfaces leads to rapid "mixing" of the polarizations. 
Therefore, instead of the system of kinetic equations, we can 
consider one equation for the phonons of the decay mode: 

m 

F (t) - ('l3vdt) 'I2. (2)  Here, n(w, r, z, e, t )  is the distribution function of the phon- 
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ons, r is the position vector, lying in the plane of the film, e is 
the unit vector of the direction of the phonon monentum, 
and E is the distribution function averaged over the direc- 
tions of the vector e. The integral term in Eq. ( 3 )  describes 
the arrival of phonons at the level o in the decay of phonons 
of higher frequencies, and has the same form if we make the 
simplifying assumption that the integral kernel is indepen- 
dent of the directions of the phonon momenta;p(o) = 3w2/ 
2?rZv3 is the density of states of the phonons; P ( w l - w )  is the 
kernel associated with the probability of phonon decay, and 
can be represented conveniently in the form P ( w l - w )  
= h ( w / w l ) / r l  (w')p(w1)w' ,  where the function h ( x )  - 1 
for x  - 1. The phonon-decay frequency has the form 

where y is a parameter that depends on the rate of anhar- 
monic decay. 

We seek the distribution function of the phonons in the 
following form: 

assuming that its isotropic part no is independent of z be- 
cause of the uniformity of the heating over the depth of the 
film and the absence of leakage of phonons through the 
boundary. 

On the function (5 )  we impose two restrictions. The 
first is that the energy density of the phonons is completely 
determined by the isotropic part no. For an isotropic spec- 
trum w  (q), this condition leads to the expression 

3 do6n (o, r, z, e, t) =O, ( 6 )  

where do is a solid angle in the direction of e. The second 
restriction is that the boundary conditions for complete dif- 
fuse reflection of phonons from the surface of the film have 
the form 

Gn (z=  f d/2, e ,SO)  =0, ( 7 )  

where z = + d  / 2  are the film boundaries, e, = cos 0, and 8 
is the angle between the direction of the phonon momentum 
and the z axis. 

Equation ( 3  ) can be solved by making a Fourier trans- 
formation r - k and a Laplace transformation t - + A .  We ob- 
tain 

where v, is the component of the phonon velocity in the 
plane of the film. The solution of Eq. ( 8 ) ,  with the condition 
( 7 )  and averaged over z  to give 6n = J?':,, Sndz/d, has the 
form 

where 

where q, is the angle between the vectors k and v, . 
Next, we must substitute the expression ( 9 )  into the 

condition (6) and integrate it over the angles. As a result, we 
obtain an equation for the isotropic part n o ( @ )  of the distri- 
bution function. It is not possible to integrate the expression 
( 9 )  analytically. Since all angles are important in the inte- 
gration, we interpolate (9)  by the following function, which 
coincides with ( 9 )  at the angles 8 = 0  and 0 = r / 2 :  
- I ( o ) -  (h+l/'tl+ikv,)no(o) 

6ni = 2v 1 cos 0 I /d+h+ l/'tl+ikv, ' 
( 1 0 )  

A detailed numerical analysis of the functions (9)'  and ( 10) 
shows that the maximum deviation of &from 6n for any 
angles 0 and q, amounts to no more than 10% of the function - 
Sn . 

Substituting ( 10) into the condition ( 6 )  and taking into 
account the inequalities assumed above, we obtain an equa- 
tion for the function no(w)  : 

We take into account the explicit form of the expression for 
I ( w )  and express the kernel P ( w l - + o )  in terms of h ( w l / w ) ,  
and also introduce new variables x  = w/w',  f  = fivrI ( a ) ,  
and 7 = Rrl ( a ) .  We seek the self-similar solution of Eq. 
( 1 1 )  in the form 

where A and a are arbitrary constants. The equation for the 
function F ( f ,  7 )  has the form 

1 

-!- [ d ~ z - ~ - ~ h ( x ) ~ ( ~ x ~ ,  qxs ) - ( l+q )F (~ ,  q )  ] 
1+q , 

The large parameter yo in ( 13) is under the logarithm. Thus, 
Eq. ( 13) essentially contains no large or small parameters. 
Consequently, the self-similar function F(g ,  7 )  - 1 for f, 
7 - 1 .  By making the inverse Fourier and Laplace transfor- 
mation on ( 12 ) , we obtain 

The quantity 7 ,  defined by the relation 7 /vr l  ( w )  - 1 ,  is the 
characteristic length scale of the phonon nonequilibrium, 
while the relation t / r l  ( w )  - 1 determines the characteristic 
frequency w  of the phonon generation at time t. 

By estimating ( 1 0 )  in the range of angles lcos 8 1 
< ( A  + l / r l  ) / v / d  (i.e., near 8 = r / 2 ) ,  wediscoverthat Sn 
-no, and this confirms our assumption that it is not possible 
to use the diffusion equation. 

287 Sov. Phys. JETP 74 (2). February 1992 N. M. Guselnov 287 



CONCLUSION 

Thus, we have ascertained that, if a phonon hot spot is 
not established, the distribution function of the nonequilibri- 
um phonons has the form ( 14). By calculating the energy 
density of the phonons with the aid of ( 14), one can easily 
show that the characteristic length scale of the phonon non- 
equilibrium has the form 7 = vt .  Over the characteristic life- 
time r, (o) of the phonon generation, as a result of diffuse 
scattering at the boundaries, there is an accumulation of a 
sufficient number of phonons moving ballistically almost 
parallel to the film surfaces. The number of such phonons 
does not depend on the thickness of the film. With decrease 
of d,  the solid angle within which the energy-transporting 
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phonons can propagate ballistically decreases, but this de- 
crease is balanced by the increase of the frequency of diffuse 
scattering at the boundaries, as a result of which phonons 
can be scattered into this solid angle. 
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