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The kinetics of the formation of a Bose condensate in a weakly interacting Bose gas is analyzed. 
The question of the time at which Bose condensation is reached does not have a universal answer. 
For problems involving short-range correlation properties, this time is determined by the time 
required for the formation of a "quasicondensate:" a state in which fluctuations of the absolute 
value of the order parameter $ are suppressed. This time is the sum of the evolution time in the 
region described by the Boltzmann kinetic equation (the kinetic stage) and the evolution time in 
the coherent region, in which the kinetics is described by the equation for the $field. It is shown 
that the kinetic stage of the process takes most of the time. The time scale for the attainment of 
Bose condensation is the usual time between particle collisions. 

1. INTRODUCTION 

The kinetics of the formation of a Bose condensate in a 
gas with a repulsive interaction between bosons is an inter- 
esting problem in the kinetics of phase transitions. If, when 
the conditions for the formation of a Bose condensate arise, 
the system is far from equilibrium, and there is no conden- 
sate, then the temporal evolution differs substantially from 
the well-known kinetics of second-order phase transitions. 
This problem has recently attracted particular interest in 
connection with the process of Bose condensation in a gas of 
spin-polarized atomic hydrogen. One reason for this interest 
is that the system itself has a finite lifetime, particularly if its 
density is high (Refs. 1 and 2, for example). A second reason 
for the interest is that it has been found3 that the probabili- 
ties for inelastic processes, in particular, the recombination 
rate, change substantially when a Bose condensate appears 
in the system. This effect opens up an interesting possibility 
for the experimental observation of Bose condensation. Al- 
though there is no true Bose condensate for T # 0 in the two- 
dimensional case, it was shown in Ref. 4 that the change in 
the probability for the inelastic processes persists below the 
point of the Kosterlitz-Thouless transition, by virtue of the 
specific properties of a two-dimensional quasicondensate, 
i.e., a condensate with a fluctuating phase. 

The time over which a Bose condensate is formed has 
been studied in several places (e.g., Refs. 5-7 and 9).  Levich 
and Yakhot5 have asserted that if there is no condensate at 
the initial time then the time over which the condensate 
forms as the result of an interaction of gas particles with a 
heat reservoir is infinite. Examining the kinetics under con- 
ditions such that particles interact with each other, Levich 
and Yakhot6 also found that the time required to achieve 
Bose condensation was finite within the framework of the 
Boltzmann kinetic equation. Levich and Yakhot did under- 
stand that the kinetic equation was not applicable at low 
energies (in the so-called coherent region; more on this be- 
low). Furthermore, the question of the validity of the result 
remained open, because of some strong assumptions made in 
solving the kinetic equation. For this coherent region, the 
analysis of the time evolution in Ref. 6 was actually based on 
the random-phase approximation, which is not suitable for 
this region. 

Snoke and Wolfe7 undertook a numerical calculation 
using the kinetic equation. Although this calculation did 
demonstrate a substantial restructuring of the particle distri- 
bution function at low energies when the conditions for Bose 
condensation obtain, the appearance of a Bose condensate 
was not detected. There was a good reason for that result. It 
is not possible to find a true condensate with E = 0 on the 
basis of a kinetic equation without either (a )  singling out a 
low-energy interval in which collective effects are predomi- 
nant, and in which the kinetic equation is not valid (more on 
this below), or (b)  introducing seed condensate in a self- 
consistent way. Eckerns has analyzed kinetic processes in a 
Bose gas in which there is a Bose condensate. 

Another extreme result was recently reported by 
S t ~ o f , ~  who asserted that the time required for the formation 
of a Bose condensate was - f i / i /T , ,  where T, is the tempera- 
ture of Bose condensation. That result looks strange, and it is 
furthermore physically meaningless, since this time is 
shorter than both the particle collision time in the gas and 
the characteristic evolution time f i /n ,  e, in the coherent re- 
gion in which the kinetic energy of the particles is smaller 
than their potential interaction ( e  is the effective particle 
interaction vertex, and n ,  is the equilibrium density of the 
condensate). 

The question of the condensate formation time in the 
course of the actual evolution of a gaseous system is not 
changed in any fundamental way by the interaction with a 
heat reservoir. Because of the pronounced nonlinearity of 
the problem in the decisive stage of the temporal evolution, 
the interaction of particles with each other dominates. This 
assertion should be valid, in particular, for metastable Bose 
systems prepared artificially, e.g., excitons and biexcitons 
(see, for example, Ref. 10, where an attempt was made to 
achieve Bose condensation experimentally). For systems of 
this sort, the interaction with excitations of the medium can 
be important for the overall picture. 

Actually, the question of the formation time of a Bose 
condensate does not have an unambiguous answer. The an- 
swer depends strongly on the particular problem under con- 
sideration. The ambiguity arises in the final stage of the evo- 
lution, in which a substantial fraction of the particles which 
should go into the condensate are concentrated in the energy 
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interval E 5 no u. The state of an interacting Bose gas at tem- 
peratures below T, is known to be characterized by a com- 
plex order parameter (Ref. 11, for example). In this final 
stage of the evolution, which we will call the "coherent" 
stage, the kinetic energy of the particles becomes smaller 
than their average potential energy. There is a pronounced 
mixing of states with different momenta k, and the system 
should be described by the general equation for a complex 
classical field (for occupation numbers n, ) 1 ). This equa- 
tion cannot be reduced to an equation for occupation 
numbers. It is with this coherent stage of the evolution that 
the formation of new local correlation properties and the 
formation of a long-range order in the system are associated. 
The time over which the absolute value of the order param- 
eter (i.e., the condensate density) reaches equilibrium and 
the phase of this order parameter may in general be very 
different. Spatial fluctuations of the condensate density die 
out over times short in comparison with the time scale for 
relaxation to a spatially uniform phase. The reason is that 
the change in the energy in the first case is associated with 
the density change itself. In the second case, in contrast, the 
energy depends on only the gradient of the phase, and long- 
wavelength fluctuations die out very slowly. The situation is 
complicated by the circumstance that vortices may arise in 
the system in the course of its time evolution. The annihila- 
tion of these vortices would impart an additional relaxation 
time to the problem. 

A nonequilibrium, nonuniform spatial distribution of 
the phase has the consequence that a 6-function distribution 
of condensate particles and, correspondingly, true long- 
range order can arise only after a very long (if not infinite) 
time. After the decay of nonequilibrium density fluctu- 
ations, local correlation properties are established in the sys- 
tem. These properties are identical to those which prevail in 
an equilibrium system with a true condensate. At a length 
scale on the order of the correlation length 

(m is the mass of an atom), if all the condensate particles are 
in the energy interval E 5 no u, the time scale for the attain- 
ment of a local equilibrium is given by 

(see the following section of this paper). Consequently, for 
all processes for which the dependence on the presence of a 
Bose condensate is related to the correlation properties at 
distances r 5 r,, the condensate formation time can actually 
be assumed to be the finite time rkIn in ( 1.2) in this energy 
interval (although this time scale actually corresponds to 
the formation of a sort of "quasicondensate;" only the abso- 
lute value of the order parameter fluctuates). These com- 
ments apply in particular to the effect of Bose condensation 
on inelastic processes in an interacting Bose gas. 

In the overall picture of the kinetics, the time rkin is not 
the only time scale. Moreover, it is generally not the longest 
and in this sense not the governing time scale. 

Let us assume that a pronounced cooling has initially 
occurred, as the result of a decrease in the energy in the 
degrees of freedom with E 2 T, at a scale such that the final 
equilibrium temperature is lower than T,. In this case the 
excess of particles which should subsequently form a con- 

densate is initially concentrated at high energies, - T. Since 
we have T, )no 0, a flux of particles should form in energy 
space in this case, directed toward low energies. Although 
the energy of the particles satisfies & ) n o  0, the evolution 
process is described by the ordinary kinetic equation for a 
Bose gas. In this regime, which we will call the "kinetic" 
regime, there are two intervals along the energy axis. The 
first-the high-energy interval-is between E-T and 
E-E*, where E, is the boundary at which the occupation 
numbers n, becomes substantially greater than the equilibri- 
um values. The second interval is E < E,. Here the collision 
integral is definitely nonlinear in the occupation numbers. 
The occupation numbers themselves are determined by the 
number of excess particles which go into the condensate. 
The general properties of a nonlinear kinetic equation of this 
sort have been studied by Zakharov, primarily in application 
to plasmas (see the review in Ref. 12). We will be drawing on 
his results below. 

As the analysis below shows, the time scale for the pas- 
sage through the kinetic region is determined in order of 
magnitude by the reciprocal of the particle collision frequen- 
cy in the gas: 

where cr is the scattering cross section, u, is the thermal 
velocity, and n is the total density of the gas. 

Comparing the time in (1.3) with the time scale [r,, 
from ( 1.2) ] for the decay of nonequilibrium density fluctu- 
ations in the coherent regime which arises in the case 
E 5 no u, we see that the condition 

essentially always holds. The kinetic stage of the process is 
thus the limiting step for the formation time of a quasicon- 
densate (but not for the formation of a long-range order). 

The overall scenario for the process by which a Bose 
condensate forms can be outlined as follows. In the linear 
region, with E > E* (this region is particularly well expressed 
in the case no gn ), a quasiequilibrium distribution with a 
time-varying chemical potential arises. This distribution 
leads to the formation of a density peak, which moves to- 
ward small values of E. In the nonlinear kinetic region, 
E < E*, a solution n, - E  7'6 develops. This solution was 
found by Zakharovl* for the case of a constant flux of parti- 
cles in energy space. This energy dependence leads to an 
elongated energy-space distribution, with a front which 
reaches the coherent region in a time -rkin. The time scale 
for the influx of the rest of the nonequilibrium distribution 
into the coherent region turns out to be the same. Specific 
features of the nonlinear kinetic stage have been analyzed 
previously by one of the present authors.I3 

2. COHERENT REGIME OF THE EVOLUTION 

Let us consider the energy interval E 5 no u. We assume 
that the bulk of the particles which are to form the conden- 
sate are in this interval. The large occupation numbers char- 
acteristic of this case allow us to replace the operator $, the 
second-quantization operator for the Bose particles, by the 
amplitude of the boson field, $(r,t),  which is a c-number, in 
this energy interval. For the amplitude $ we have the equa- 
tion (here and below, f i  = l ) 
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In the limit t-. co , the function $ should reach its equilibri- 
um value 

where @, is the equilibrium value of the condensate phase. 
We are ignoring the particles above the condensate in this 
energy interval, since their total number per unit volume is 
small in comparison with no. 

Writing the function rC, in the form 

$=no'" exp (-ipot) f (r, E) , (2.3) 

we can rewrite Eq. (2.1 ) as 

In terms of the dimensionless variables 

[see ( 1.1 ) and ( 1.2) 1, this equation becomes 

AS?--+ CO, we have f-exp(i@,). 
It follows from this equation that the evolution on 

length scales - rc occurs over times - T,, . With increasing - 
t, the gradients of the phase and the density are smoothed 
out. This smoothing is equivalent to a decrease in the scale 
values of the wave vectors k and frequencies w in the Fourier 
representation - of the functionJ The excess energy per parti- 
cle -no U goes off into the kinetic region. It turns out that 
the condition 7) 1 is by itself a sufficient condition for sub- 
stantial suppression of the fluctuations in the absolute value 
off, i.e., the density. 

To demonstrate this point, we introduce a deviation Sn 
from the mean spatial density no. Using (2.5), we write sepa- 
rate equations for the absolute value and phase of the func- 
t i on j  After linearization, the equations for the Fourier com- 
ponents of the absolute value and the phase become 

This system gives us a spectrum which is the same as the 
Bogolyubov spectrum, 

From the first of these equations we find 

For 7% 1, the characteristic values k, of the momentum k 
becomes smaller than ko = rc- '. For such values of k, the 
dispersion law is acoustic, 

and we have 

Hence 

Taking account of the relation E-  (k:/2m)no V for the 
kinetic energy remaining in the system, and using 

we find from (2.8) 

Consequently, over times determined by T,, , a state 
forms in which density fluctuations are suppressed (as in a 
true condensate). Smearing over a certain finite interval of k 
persists. It is interesting to show that suppression of density 
fluctuations is a necessary and sufficient condition for the 
same change in the probability of inelastic processes to ap- 
pear as in the presence of a true condensate. With this goal in 
mind, we consider the example of three-particle recombina- 
tion. For this process, the probability is determined by the 
correlation function 

as was shown in Ref. 3. In the case at hand, this correlation 
function reduces to 

Z=nO3<f3 (r,  t ) f ( r ,  t)>=<ns>. (2.10) 

If fluctuations are suppressed, then 

If fluctuations are instead present, then 

The expression for Sn can be written 

Consequently, 

Near the boundary between the coherent and kinetic re- 
gions, where all the field modes corresponding to different 
wave vectors k can be regarded as independent, we find the 
following expression for the binary correlation coefficient of 
the Fourier components of the field: 

Expanding f in a Fourier series, and using an analog of 
Wick's theorem, we then find 

As a result we find 

When density fluctuations are suppressed, the probabil- 
ity for three-particle recombination is thus reduced by a fac- 
tor of 6. This result is precisely the same as that found for the 
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case of a true ~ondensate.~ From this point of view, a state 
with a narrow "precondensate" peak (k, (ko ) in the parti- 
cle distribution has all the properties of a true condensate for 
all such processes; it can thus be called a "quasicondensate." 
An important point is that the appearance of a true conden- 
sate with k = 0 and the formation of long-range order are 
limited by the phase relaxation time. This time, which de- 
pends on the dimensions of the system, may be vastly longer 
than 7,. 

3. KINETIC REGION: LINEAR REGIME 

Since we have verified that there is a finite quasiconden- 
sate formation time, during which the particles go into a 
coherent region, the time evolution of the particle distribu- 
tion in the kinetic region, i.e., under the condition E) no fi, 
becomes an important question. The overall picture here de- 
pends strongly on the initial conditions. However, the kinet- 
ic time scales turn out to be of comparatively broad applica- 
bility. We consider a system at a temperature close to T,. We 
assume that cooling has occurred comparatively rapidly at 
the initial time, primarily because of a decrease in the energy 
in the degrees of freedom with E R T. If the final temperature, 
after the attainment of equilibrium, is lower than T,, then it 
is easy to see that the excess of particles which are to subse- 
quently form the condensate is initially at high energies. This 
excess must pass through the entire range of energies in the 
kinetic region, until it reaches the coherent region. Clearly, a 
related problem arises in a simple way when additional parti- 
cles are injected at an energy E 5 T. The estimates derived 
below also provide answers to the important question of 
when the cooling is associated with a continuous loss of par- 
ticles from the tail of the energy distribution. 

To make the physical picture more transparent, we con- 
sider the case in which the condensate density when equilib- 
rium is reached, no, is small in comparison with the total 
density of particles, n: 

In this case we thus have 

where T is the equilibrium temperature of the gas. We as- 
sume 

in accordance with the Ginzburg criterion," in order to get 
outside the fluctuation region. 

The kinetic equation for a Bose gas in the spatially uni- 
form case, for a distribution which is isotropic in terms of 
momentum, has the well-known form (Ref. 12, for exam- 
ple) 

(ni n ,  1, where 

x sin [ z ( ~ )  l h ]  sin[x (2) *]sin [2(-3 "1 . 

We have restored f i  in (3.4) to exhibit the dimensionality, 
and we have used the nonrelationship between fi and the 
scattering length a: 

The function x for the entire set of E~ 'S  satisfying energy 
conservation can be reduced to the simple form (cf. Ref. 7 )  

Under condition (3.1), the kinetic region breaks up 
into two energy intervals. In the first, which extends down 
the energy scale to some E, (T, the corrections An, are 
small in comparison with the equilibrium distribution func- 
tion E, at the temperature T. We call the kinetic regime cor- 
responding to this region the "linear" regime. Under the 
condition E ( E ,  , the arrival of excess particles is accompa- 
nied by an increase in the distribution function such that the 
condition n, )Ti, ) 1 becomes satisfied. In this region, the 
collision integral in (3.3) depends on essentially only the 
distribution of the nonequilibrium particles. A definitely 
nonlinear regime sets in, in which the time evolution is deter- 
mined by the interaction between particles. 

We begin with a consideration of the linear region. Over 
most of the corresponding energy interval E (  T, the kinetic 
equation in (3.3), linearized in An,, takes the following 
form, where we are using E, % 1: 

x [An, ( f i zz ,  + n,E, - Z,E,) + An, ( n l i i ,  + ElE4 - n 3 n 4 )  

,. 
5 Sl [An,]. (3.7) 

The solution of this equation under the conditions assumed 
here should describe a flux of the excess particles in energy 
space, toward lower energies. In order to determine the na- 
ture of the evolution of the distribution in the linear region 
and the time scale of this evolution, we adopt the approxima- 
tion that a local quasiequilibrium is reached in the energy 
interval with the bulk of the excess particles. The particle 
distribution can be written 

with a time-dependent chemical potential p ( t )  > 0. In gen- 
eral, the temperature may also depend on the time here. 
However, it is easy to verify that this time dependence can be 
ignored by virtue of (3.1). Relation (3.8) of course holds 
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only for E > p  ( t ) .  Over most of the linear interval, the condi- 
tion p 4~ holds, as we will see below. We can thus write 

An,=n,-ii,=p ((C) T/e2 .  (3.9) 

This E dependence corresponds to motion of the front of 
the E~ ( t )  distribution, with a width determined by the same 
parameter E~ ( t ) .  The parameter E, ( t )  itself is found from 
the condition 

where a = m3/2/21/2d. The integral is determined by its 
lower limit and has the value 2Tp (t)/~:" (t) .  Hence 

The boundary of the linear regime, E,, determined by the 
condition An,/E, - 1, can be found directly: 

(here we have made use of the circumstance that Tis close to 
T,, and we have used the relationship between T, and n) .  In 
this case we have 

The parameterp(t) lags behind 2(t)  at all times and is com- 
parable to this quantity when the boundary of the linear re- 
gime, E, , is reached. This circumstance demonstrates that it 
is legitimate to assume a quasiequilibrium distribution in the 
form in (3.8), (3.9). 

Let us find an expression for the particle flux in energy 
space. This flux is related to the motion of the boundary & ( t ) .  
Using (3.9) and (3.11), we find 

We are to find the ratio to/&, from the kinetic equation 
(3.7). 

If we substitute E, = T/E into the linearized version of 
the collisign integral in (3.7), we easily find that the integral 
operator fi is a uniform functional of the energy of zeroth 
order. In other words, it does not change under the replace- 
ment E; -+A&;. Analysis of the collision integral shows that 
collisions with E; -E, dominate the situation. The collision 
integral is thus characterized by an energy-independent re- 
laxation time rkin : 

where rkin is determined by (1.3) with a = 8.rra2. Here we 
can assume 

We can find the constant y approximately from Eq. (3.7) by 
examining E, near C(t), and by using a model in which we 
take An, from (3.9) for ~ > & ( t ) ,  while for ~ < & ( t )  we set 
An, = 0. Corresponding calculations lead to y -- 4. Approxi- 
mately the same value of y is found if we take E, > &(t),  but in 
the energy region with most of the excess particles. 

Using (3.16), we find that the expression for the parti- 
cle flux in energy space takes the simple form 

Interestingly, under our assumptions, there is a flux Q (con- 
stant at the front) after the spatial distribution (3.9) is 
formed. This constant flux corresponds to (a )  a front ampli- 
tude which increases with decreasing &(t)  and (b)  a peak 
width in the particle distribution which decreases. 

Using the relation 

e o ( t ) = T  exp ( - yt/rkin 1, 

which follows from (3.16), and also using relation (3.12), 
we find the following result for the time at which the front of 
the distribution reaches the boundary of the linear region, 
E* : 

T== (2rkln / y )  In (nln,). (3.18) 

The time required to cross the linear region is thus deter- 
mined by the ordinary collision time scale rk,, , enhanced by 
a factor ln(n/no ) at small no. 

Note that under condition (3.2) the boundary energy 
satisfies E* %no D, so the system necessarily passes through 
the nonlinear kinetic regime. 

We should stress that the estimate of the time required 
to cross the linear interval is comparatively insensitive to the 
nature of the assumptions which we have made. If the de- 
pendence of An, in the region E-&(t) differs from (3.9), 
then rL is again given approximately by (3.18), as can be 
verified. 

4. KINETIC REGION: NONLINEAR REGIME 

We now consider the nonlinear region. For this purpose 
we go back to our original kinetic equation, (3.3). Since the 
condition n, % l  definitely holds in this region, we rewrite 
the equation as 

I3 E Er  
fit=-W J de, de. d a i X ( 2 . ,  -J,  - )6( . l+~2-et -e*)  

8t E i  € 1  

It can be concluded from the form of the collision integral 
that the effective kinetic time in this case is determined by 

There is an influx of particles Q into the nonlinear re- 
gion [see (3.14) ]. As Zakharov has shown,I2 the equation 
I = 0 [where I is the collision integral in (4.1 ) ] has the solu- 
tion 

which corresponds to a steady-state particle flux. Substitut- 
ing this solution into (4.2), we find 

7,;: ( e )  -WAZle" ' ,  (4.4) 

The meaning here is enhancement of the collision processes 
with decreasing energy in both the incoming and outgoing 
terms. It is reasonable to assume here that the incoming flux 
behind the E(t) front has a Zakharov distribution, (4.3). 
The comparatively narrow particle distribution (of width 
- E* & T ) at the boundary between the linear and nonlinear 
regions corresponds to the circumstance that most of the 
excess particles reach the nonlinear region in times shorter 
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than T, . Once the distribution (4.3) has been established for 
these particles, the quantity A, which depends on the time in 
our case, can be found from the condition 

Hence for 2, ( t )  much lower than E* we have 

Since E* $ no u, A ( t )  varies only slightly until the boundary 
with the coherent region is reached. Note that the restruc- 
turing from the distribution (3.9) to (4.3) puts a substantial 
fraction of the particles in the tail of the distribution 
(EWE* 1. 

Substituting the value found for A into (4.4), we can 
easily verify that 

Writing the kinetic equation (4.1) in the conventional form 
n, = I + - I - , we have I - + - n , / ~ ~ ,  (E),  while we have 
n, - n , / ~ ~ ~ ~ .  Consequently, the solution in (4.3), which cor- 
responds to the condition I z 0 ,  is of a self-consistent nature 
in the time-varying case under consideration here. 

The value of the flux associated with the motion of the 
front is determined by an expression like (3.14): 

Hence, under the assumption of a constant flux, we have (cf. 
Ref. 13) 

where 

(to is reckoned from the beginning of the nonlinear regime). 
The quantity to determines the time at which the distribu- 
tion front arrives in the coherent region. Using the value of 
the flux Q entering from the linear region [see (3.14) 1, we 
immediately conclude to - T,, . 

In the initial stage, the buildup of particles in the coher- 
ent region is described by 

To describe the behavior of the particle density n, in the 
coherent region after a long time, we need to consider the 
kinetic equation, allowing for the quasicondensate which 
arises. At the same time, we can conclude simply from 
expression (4.9), with (3.17) for the flux Q, that the time 
scale for the buildup of the quasicondensate from the nonlin- 
ear kinetic region is on the order of T ~ ~ ~ .  This point can be 
verified by examining the final stage of the buildup. Since we 
have T='(E) -E-"~,  it is clear that this stage is associated 
with the direct arrival of particles with energies E-E, in the 
coherent region. An approximate equation for the buildup of 
the quasicondensate follows from (4.4) : 

Here A is again found from normalization condition (4.5 ), 
but in this case no should be replaced by the density of the 

excess particles no - n, which remain outside the coherent 
region. It follows immediately from (4.10) that the time 
scale for the buildup of the quasicondensate in the final stage 
is determined by - T,, . 

We thus reach the conclusion that the crossing of the 
nonlinear kinetic region and the arrival of most of the excess 
particles in the coherent region occur over a time T, whose 
scale is determined by T,, . Since we have T, $ T , ~ ~ ,  all the 
excess particles are in the quasicondensate for essentially a 
time - T,, . 

We have a comment here. Near the upper boundary E, 

of the nonlinear region the reciprocal of the effective time 
T ~ ,  (E)  in (4.4) is on the order of T,, , if we use expression 
(3.12) for E, ( T z  T,). The meaning here is that the time 
required to reshape the distribution in the tail of the nonlin- 
ear region and the actual time required for the crossing of the 
nonlinear region by the front, E(t), are determined by the 
same scale value T ~ ,  . 

The results found in this section of the paper are essen- 
tially unrelated to the inequality no g n .  As no increases, the 
boundary E, moves into the high-energy region, and the flux 
Q increases [see (3.14) or (3.17) 1. The time scale T, is 
again determined by T,,. If no -n holds, then we have 
E* - T, and it becomes meaningless to distinguish a linear 
regime of the kinetic region. The picture of the nonlinear 
regime drawn above covers the entire range of kinetic ener- 
gies, while the scale value T, is retained. 

Several general conclusions can be drawn from the re- 
sults derived above. The time scale for the formation of a 
quasicondensate, i.e., for the formation of a narrow peak in 
the particle distribution near E = 0, in which density fluctu- 
ations are suppressed, is finite. Although the width of the 
peak is finite, because of phase fluctuations, the quasicon- 
densate has the same local correlation properties as those of 
a true condensate. This comment applies in particular to 
inelastic processes which depend on the presence of a con- 
densate. The limiting time for the formation of a quasicon- 
densate is T,, in ( 1.3), which is the ordinary time scale be- 
tween collisions in a gas. This time scale determines the time 
needed by the excess particles which are formed at E - T, and 
which should form a condensate at equilibrium, to cross the 
energy interval between Tand the boundary of the coherent 
region, no u. This time is in general the sum of times corre- 
sponding to two regimes. The first of these regimes, which 
can be clearly distinguished in the case no <n, corresponds 
to energies in which the nonequilibrium part of the distribu- 
tion function is small in comparison with the equilibrium 
part. The corresponding kinetic time T, is given by expres- 
sion ( 3.18 ) . Under the condition no < n, this time is greater 
than T,, by a factor of ln(n/no ). In the second regime, in 
which a highly nonlinear kinetic situation is established by 
virtue of the condition n, $ E, $1, the front of the distribu- 
tion reaches the coherent region, again over a time -T,,, . 
The time scale for the transition of the bulk of the particles 
from the nonlinear kinetic region into the coherent region is 
on the same order of magnitude. The particles which are to 
form the condensate thus reach the coherent region over a 
total time characterized by T,, . 

If the bulk of the excess particles were found to lie in the 
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coherent region simultaneously, the quasicondensate forma- 
tion time would be characterized by T, in ( 1.2). This time is 
short in comparison with T,, . This circumstance supports 
the assertion that the overall process is determined by the 
time T,, . The formation of a true condensate with a long- 
range order in a macroscopic system may require times long 
in comparison with 7, in the coherent region. In this case the 
time scale of the phase relaxation may be greater than T,, 
and in this sense it may become the limiting time. 
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