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An analytical description of the quasienergy spectrum for a two-level atom in a strong deeply 
modulated polyharmonic field is obtained. I t  is shown that with modulation close to 100% the 
presence of "forbidden bands" of values for the quasienergy is possible, and a criterion for the 
existence of such bands is proposed. The relationship of this effect to the presence of sharp 
singularities in the absorption spectrum of the physical system being studied is discussed. 

1. Recently, in connection with applied problems in la- 
ser spectroscopy, quantum optics, and chemical physics, in- 
tensive studies have been made of the spectroscopic charac- 
teristics of a two-level atom situated in a polyharmonic 
field: I-' 

where R is the "central" frequency of the external field, $, 
are the phases of the corresponding harmonics, and A is a 
parameter characterizing the spacing between the harmon- 
ics. The interest in this form of external field arises from the 
following circumstances. First, the expression ( 1 ) contains, 
as a particular case, a biharmonic field. Second, the field in a 
laser resonator has such a structure. The quasienergy spec- 
trum of this physical system, as follows from general consid- 
e r a t i on~ ,~  is given by the expression 

where E l  and E2 are the energy levels of the atom and v,,, are 
the Floquet indices for the dimensionless system of equa- 
tions, which corresponds in this case to the Schrodinger 
equation.'." Thus, both initial levels of the atom are split 
into two infinite series of quasilevels. The Stark effect for this 
physical system reduces to the dependence of these quasile- 
vels on the intensity of the incident field for fixed values of 
the other parameters, including the form of the external field 
and the detuning x = (E, - E, - R)/2h of the "central" 
frequency from the frequency of the atomic transition. In 
Ref. 10 the quasienergy spectrum for a strong external field 
was calculated. It was shown that the Stark effect can vary 
qualitatively, depending on the dpeth of modulation of the 
external field. For a large (in the appropriate asymptotic 
sense) detuning of the "central" frequency from the transi- 
tion frequency, or for weak modulation of the external field, 
the Stark effect is simple: As the intensity of the external 
field increases the series of quasilevels for the two initial lev- 
els are displaced uniformly in opposite directions. However, 
for small detuning and 100% modulation the quasilevels os- 
cillate as the intensity of the external field increases, with 
each series remaining in a bounded interval. "Forbidden 
bands" arise, into which the quasilevels cannot fall. From 
the results of experimental234 and calculational work'.' it fol- 
lows that it is the case of deep modulation, close to 10096, 
that possesses a number of interesting physical features. The 

results.of Ref. 10 do not permit us to study the "asymptotic 
region" (in the space of the parameters of the problem) of an 
external field with 100% modulation. In the present paper, 
we present an analytical description of the quasienergy spec- 
trum of our physical system in this case. 

2. Let us proceed to more-precise formulations. We as- 
sume that the external field is strong, i.e., that the asympto- 
tic representation 

is valid, where T = At is the dimensionless time and p is the 
dipole moment of the atom. The functions q ( ~ ) ,  r ( r ) ,  and 
p ( ~ )  are periodic, with period 27r; they, and their first and 
second derivatives, are quantities of order 1; this condition 
fixes, in an appropriate sense, the "central" frequency 0. In 
these terms, deep modulation of the external field implies 
that q ( r )  has zeros ~ , ( l < k < n )  in the period: 
0 < T, < T, < ... < T, < 2r;  T, + , = T~ + 27r. The 100 % mod- 
ulation of the external field implies that, in addition, 
r (7)  = p ( ~ )  3 0 ;  this is the case that was considered in Ref. 
10. It is not difficult to see that, if, for all k, 
r(Tk ) = P ( T ~  ) = 0, this case reduces to the situation with 
r ( ~ )  =P(T) 3 0 .  Here, we assume that, at least for one k, 
I r ( ~ k  ) l 2  + Ip (~k  ) 12#0. 

Remark I. If q, r, and p are real functions, then, by 
changing, only the notation, we can arrive at the case 
r =p=O. We consider the general case, when the functions 
q, r, and p are complex-valued. 

Remark 2. For a biharmonic field, when only A, and A, 
are nonzero, deep modulation in our terms implies that 
1 - A,,/A, = o( 1 ), while 100% modulation implies that 
A, = A,. Thus, in the given case, our terminology coincides 
with the usual terminology. 

We assume henceforth that the detuning is small, i.e., 
the parameter x satisfies the relation 

The situation x = Bp with B + O  was analyzed in Ref. 10. As 
follows from the above account, the determination of the 
quasienergy spectrum reduces to the calculation of the Flo- 
quet indices for the system of equations that corresponds to 
the Schrodinger equation.'.1° To determine the values of the 
quantities v,,, we used the technique of asymptotic calcula- 
tions based on the reference-equation rne th~d . ' ~ . '  ' We give 
the asymptotic forms of the quantities v,,, in the large pa- 
rameter~ ,  including the terms of order unity. 

With each point T, we associate a matrix 
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exp[i (O,+cp,)] cos 6, exp (-i0,)sin 6, 
-exp(iO,jsin 6, exp[-i (8,+rpk) I cos 6, 1 

Here, 
6,=arc sin{exp [--n (ak+fik2) 121 ), 

cpk=arg{r[ '12-i(ak+ fik2)/41r[-i(ak+pk2)/41 ( ~ ~ ' ~ - i p ~ ) ) - n / 4 ,  

Then 

3. We discuss the consequences of the formulas present- 
ed here. Above all, they make it possible to describe the Stark 
effect for a deeply modulated external field. We shall consid- 
er, e.g., the case n = 1. Then 

Only the quantity 19, depends on the intensity of the external 
field, i.e., onp, the quantities S, and y,, are determined by the 
form of the external field. For a ,  + P > 0 the quantities v,,, 
oscillate as y, increases, each remaining within a bounded 
interval; v,,, does not take values in the intervals ( k /  
2 - - 6 , ( 2 ~ ) - ' , k / 2 + S , ( 2 a ) - ~  (k=O, f l).Thus,when 
the modulation of the external field is close to 100% there 
exist "forbidden bands" for the quasilevels. The width of 
these bands is determined, according to (4) ,  by the quantity 
a ,  + 0 :. We note that our formulas are valid to within terms 
O(p-112) [O(p-I), if B, = 01. This makes it possible to 
propose the following criterion for the vanishing of the "for- 
bidden bands": They drop out when a ,  and PI are so large 
that 

It follows from this that the presence of "forbidden bands" 
for the quasilevels is associated with the fulfillment of rather 
stringent restrictions on the parameters of the external field. 
Analogous conclusions also hold for n = 2,3, ... . 

Next, the formulas obtained for the quasienergy spec- 
trum can also be applied for a qualitative analysis of the 
absorption spectrum of a two-level atom in an external field. 
We assume, for simplicity, that the external field is bihar- 
monic and intense, and we are interested in the dependence 
on A, (the amplitude of one of the harmonics) of the coeffi- 
cient of absorption of a probe wave at a fixed frequency 
R + (m + {)A; to make the situation simple, we assume 
that 

and that A, (the amplitude of the second harmonic) is fixed. 
We assume that the detuning is small, i.e., condition ( 3 )  is 
fulfilled. Suppose that, initially A,=A,/2 (the modulation is 
weak); we let A, increase gradually, approaching deep mod- 
ulation. The absorption coefficient has a peak when the dif- 
ference of the energies of the two quasilevels corresponds to 
the frequency of the probe field; it follows from the condition 
(6)  that a transition can be realized only for quasilevels 
moving in opposite directions. For a weakly modulated ex- 
ternal field the corresponding quasienergy spectrum is de- 
scribed in Ref. 10, and, according to the results obtained 
there, the coefficient of absorption of the probe wave as a 
function of A,, will have an approximately periodic charac- 
ter. The absorption maxima correspond to values of A, such 
that 

2vi=E+1A, 1 - unity . (7)  

Gradually increasing A,, we reach the region of parameter 
values corresponding to deep modulation of the external 
field. As follows from our formulas, for modulaton close to 
100% the relation (7)  cannot be fulfilled, and there is no 
absorption at the frequency of the probe wave. Therefore, in 
the absorption spectrum we observe a dip that is asymptoti- 
cally narrow, since its width is determined by the width (in 
the parameter A,) of the "forbidden band." The presence of 
narrow dips in such situations was noted in Ref. 3. With a 
different choice of probe-wave frequency analogous phe- 
nomena occur, and for 6 = 1/2 and 6 = 1 sharp peaks can 
appear in the absorption spectrum. Of course, a rigorous 
quantitative description of these phenomena must be given 
within the framework of the density-matrix technique. 

In practice, generally speaking, it is possible to measure 
how the absorption spectrum of the physical system under 
consideration depends on an arbitrary parameter, such as, 
e.g., the frequency-detuning parameter x. It follows from 
our formulas that if, upon variation of this parameter, the 
"forbidden bands" [determined by the relations ( 5 )  ] in the 
space of the parameters cross, then sharp singularities will 
appear in the absorption spectrum. 

The authors are grateful to E. L. Al'tshuler for valuable 
information. 
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