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We study the Nambu-Jona-Lasinio (NJL) gauge model, which lies at the basis of the modern 
mechanisms of dynamical breaking of the electroweak symmetry without invoking fundamental 
Higgs fields. By making use of an approach based on the formalism of Green's functions of 
composite operators we obtain the effective low-energy action of the NJL gauge model in the form 
of a series in powers of derivatives of composite fields. An explicit formula for the effective action 
is produced in the case of a weak (a 4 1 ) gauge interaction. The structure of the effective action 
with respect to scale transformations in the region of coupling constants a<a, = n-/3 is 
established. 

1. INTRODUCTION 

The dynamics of bound states is one of the central prob- 
lems in particle physics, starting with the description of ha- 
drons in quantum chromodynamics (QCD) and ending 
with the dynamic breaking of the electroweak symmetry and 
composite models of leptons and quarks. The basic problem 
here is the derivation of the low-energy effective action for 
bound states. The best known example of this approach is 
the a model,' which provides a low-energy description of 
bound states of the Nambu-Jona-Lasinio (NJL) model2 
with dynamical breaking of chiral symmetry. The derivation 
of the low-energy action for the NJL model has been consid- 
ered in a number of papers.3 The problem, however, is sub- 
stantially more complex if the starting microscopic Lagran- 
gian includes a gauge interaction. This is precisely the 
situation typical in particle physics, when the fundamental 
Lagrangian is chosen to be that of QCD or the model of the 
electroweak interaction with dynamical symmetry breaking. 

In the present work we study this problem for the 
choice of microscopic theory in the form of the NJL gauge 
model with dynamical symmetry breaking.4 This model is of 
particular interest since it lies at the basis of various scenar- 
ios of dynamical breaking of the electroweak symmetry (see 
the recent review in Ref. 5) :  technicolor with slowly chang- 
ing coupling con~ tan t ,~  extended technicolor with strong 
coupling and finally, the standard model with- 
out a Higgs sector, realizing the idea of broken electroweak 
symmetry by the formation of a condensate o f t   quark^.^-" 

Although, just like in the classical NJL model,2 the 
four-fermion interaction forms an important part, there is 
also an important difference: the dynamics is formed here in 
the critical region near a second-order phase-transition 
point with breaking of chiral symmetry, where m,/A< 1 
[m, is dynamical mass of the fermion, and A is the ultravio- 
let cutt-off (the scale of the "new physics") ] .43'2*'3 

The NJL gauge model is described by the Lagrangian 

where the gauge interaction ( D ,  = 8, - ieA, ) is treated in 
the ladder approximation and the four-fermion interaction 
is treated in the Hartree-Fock approximation2 [for simpli- 
city we consider only the case of U( 1 ) gauge symmetry and 
U, ( 1 ) X U, ( 1 ) chiral symmetry 1. 

We introduce the chiral fields a and IT and write the 
Lagrangian ( 1 ) in the form 

One readily verifies the equivalence of the Lagrangians ( 1 ) 
and (2)  by making use of the Euler-Lagrange equations 

The effective action can be obtained by integration in the 
functional integral over the fermion and gauge fields. Pre- 
cisely here a significant difference arises between the model 
under consideration and the standard NJL model. In the 
pure NJL model there are no gauge fields and the problem 
reduces to the calculation of the fermionic determinant in 
the external fields u and n-. The presence of quantized gauge 
fields considerably complicates the problem. 

The problem of evaluation of the effective action in a 
gauge NJL model was considered recently by Bardeen and 
LoveI4 (see also Ref. 15). In this work an alternative method 
is developed based on the formalism of Green's functions for 
composite operators.16 This approach is applicable to a 
broad class of models with dynamical symmetry breaking. 
We will obtain the effective action for the NJL gauge model 
in the form of a series in powers of derivatives of composite 
fields and will discuss the mechanism of scale symmetry 
breaking in the model. It is relevant that for a # 0 the dynam- 
ics of the model leads to composite o and IT fields with non- 
canonical dynamical dimensions d, # 1. As was already not- 
ed in Refs. 8-10, 15, 17, 18, and 5, the spinless bound states 
play an important role in the scenarios of dynamical 
electroweak symmetry breaking based on the dynamics of 
NJL gauge models. This is related to the specific structure of 
these states (strongly bound  state^^"^). In particular, they 
turn out to represent essential degrees of freedom even at 
energies significantly exceeding the scale of the electroweak 
interactions Few -250 GeV, in contrast to QCD where the 
bound states become irrelevant for q & AQ,, . 

It is therefore to be expected that in the case under con- 
sideration the effective Lagrangian plays a more fundamen- 
tal role than in QCD. The present investigation is a step in 
the direction of explicit realization of the dynamical picture 
with such bound states. 

2. EXPANSION OFTHE EFFECTIVE ACTION IN POWERS OF 
DERIVATIVES 

The expansion inpowers of derivatives is widely utilized 
in models with spontaneous symmetry breaking.19 Let us 
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show that for the NJL gauge model the derivation of the low- 
energy action in the form of a series in powers of derivatives 
of the composite u and .rr fields reduces to the calculation of 
the Greens functions G'") (q,,q2, ...,q, ) of these fields near 
the point q, = q, = ... = q, in QED in the ladder approxi- 
mation. 

We consider small fluctuations of the fields a ( x ) ,  +(x)  
about the configuration with the constant values u,, T,: 

a(x) =oo+a (31, 

n (x) =n,,+ji (I) 

We then obtain from the QED Lagrangian [compare with 
(211 

the following expansion for the effective action ?;(@'" ), 
j = s,p, @(') = u, @(P) = .rr: 

x&(~'  (a) a(j) (y)  + . . . , ( 5  

It follows from the Lagrangian (4)  that 

where the connected Green's functions zq are given by the 
expressions 

Ass(x-y) =i<OlTTY (x) T Y  (y) 10>ao(o, 
APp(x-y) =i<OlTTiy5Y (x) Tiy,Y (y) 10>o~i), 

(9 )  
A,,(x-y) =i<OlTTY (x)Tiy5Y (y) )O)a,(~), 
AP8(x-y)=i<OlTTiy5Y (x) T Y ( y )  l O ) ~ ~ ~ i )  

(the index @:) indicates that the Green's function is calcu- 
lated in QED with the "bare" mass m'" = u, = + iy57i,). 

Making use of the expansion 

we can write the effective action in the form: 

where Av (q) is the Green's function in momentum space 
[ A v  (q) = Jd 4x exp(iqx) xv (x) 1. It follows from (2)  that 
the effective action for the NJL gauge model is 

1 
F (a, n) =F (o, n )  - - j d'x (02+n'). 

2Go 
(12) 

The problem reduces in this way to the calculation of the 
Green's functions of composite operators and their deriva- 
tives at the point qi = 0 in ladder QED with bare mass 
m ( ~ )  = uo + iy,.rro. The general method of calculation of 

Green's functions for composite operators was developed in 
Ref. 16, and in what follows we use the technique described 
in that work. 

3. EFFECTIVE POTENTIAL IN THE NJL GAUGE MODEL 

As was already noted in the introduction, from the 
point of view of application to electroweak symmetry break- 
ing the most interesting dynamical regime in the NJL gauge 
model is the near-critical regime with m,/A & 1. In particu- 
lar, we are especially interested in the local limit A - m, with 
m, remaining finite in that limit.4.12,13 

We start with the derivation of the effective potential. 
Although the expression for the potential for a < a ,  = r / 3  
has already appeared in the literature,15 we discuss in more 
detail its derivation. New in the present discussion is the 
derivation of the effective potential in the strictly local limit, 
which turns out to be relevant to the explanation of the 
mechanism of scale symmetry breaking in the model under 
consideration. We also obtain the potential in the case of 
supercritical dynamics with a)a, . 

We recall first the basic properties of the solution of the 
Schwinger-Dyson (SD) equation for the fermion mass func- 
tion Z (p)  in ladder QED4,12,20 (see Appendix A) .  As is usu- 
al, we make use of the Landau gauge. 

For a < a, = .rr/3 the solution for Z(p)  has the ultra- 
violet asympototic form: 

where Zo=Z(0) ,  w = (1 - a/a, )'I2, and l ( a ) ,  S ( a )  are 
functions of the coupling constant a. We note that in the so- 
called linearized approximation for the SD equation (which 
approximates the nonlinear equation well for the entire 
range of momenta) the functions 2 (a) and S ( a )  reduce to 

In the region a < a ,  the solutuion of the SD equation for 
C (p) can be obtained from ( 13) with the help of the replace- 
ment w - iZ, Z = (a/a ,  - 1 ) ''': 

It is well known4.12,20,21 that for a < a, there is no solution in 
ladder QED corresponding to spontaneous chiral symmetry 
breaking. This means that the minimum of the effective po- 
tential F(@hi)) [ - Id 4x7(@hi)) = ?;(@hi))] lies at the 
symmetric point &:) = 0. However inclusion of the four- 
fermion interaction changes the situation. In that case the 
potential takes the form [see ( 12) ] 
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and can have a minimum at the nonsymmetric point m t ' # O  
even for a <a,. The expression for the critical line (where 
~ : ) /A-o )  dividing the phases with broken and unbroken 
chiral symmetry was first obtained in Ref. 13: 

w h e r e g ~  GoA2/4d. For values a <a, spontaneous symme- 
try breaking takes place for all g>g, ( a ) ,  and the effective 
potential ~(mt) ) ( 16) describes the fluctuations near the 
nonsymmetric vacuum st) #O. The situation is different for 
a >a,. While for a <a, it is mainly the four-fermion inter- 
action that is responsible for the spontaneous breaking of 
chiral symmetry, for a > a, the main role is played by the 
electromagnetic interaction. In this region the critical line 
has the simple form: 

In that case spontaneous breaking of chiral symmetry 
# 0) takes place for all a > a, and, in particular, for a > a,, 
g = 0 (pure QED).4,'2,20,21 

The critical line ( 17), ( 18) is a line of chiral second- 
order phase transition: the order parameter 5:) tends to 
zero while g and a approach the critical line from the side of 
the phase with spontaneously broken chiral symmetry. 

Two methods are available for the derivation of the ef- 
fective potential. In the firstI4,l5 use is made of expression 
(6)  so that V(ao) can be written as 

(it is clear that it is sufficient to consider the configuration 
a, # 0, .rr, = 0 for the evaluation of the effective potential). 
The second method makes use of the fact that P(a,) coin- 
cides with the minimum of the Cornwall-Jackiw-Tombou- 
lis22 potential in ladder QED with bare mass m"' = a,. The 
expression for F(uo)  in ladder QED can be calculated exact- 
ly.23 Here we make use of the first approach. 

We start with the case a'< a,. It can be shown from the 
SD equation that the expression for the chiral condensate 
has the form (see Appendix A)  : 

where 8 = wln(Aes/2,) and we have used the asymptotic 
behavior (13) of 2 (p ) .  

The derivative da0/d8, can be found from the bound- 
ary condition for the SD equation (AS): 

Using the expressions ( 12), ( 19)-(22) we find the effective 
potential as a function of 2,: 

[here L = 1n(Ae6/8,) 1 .  From theequationdV/dZ, = 0 we 
can find the value E , m , ,  corresponding to the minimum 
of the potential V: 

for - values a < a, and a = a, respectively [8 = wln (Ae6 / 
I,), Z = ln(~e ' /E,)] .  

In the local limit B,/A-0 we note that the Eqs. (24) 
determine the critical line ( 17). It follows from (2 1 ) that for 
8 d A  4 1 the field a, is connected with 8, by the expression 

Zo2 
oo=X - (Lf I ) ,  a=a,. 

A (25b) 

It is convenient to introduce the renormalized fields 
a, = Z Z ,  'a, r2 = Z  Z, 'T SO that So, now coincides with E,. 
Then we find from (25) for the constant Z, : 

Then, in the local limit (A - cu ) we have 

We now express the potential V (23) in terms of the renor- 
malized fields a, and T,. Substituting the expression (24) 
for the coupling constant g into (23) and using (25), (26), 
and (27) we obtain the following expression for the effective 
potential in the local limit: 

for a = a, and g = 1/4. Herep: = 4 + ~ and in the deri- 
vation of V(p, ) we used the fact that, as a consequence of the 
U, ( 1 ) X U, ( 1 ) symmetry, it can be obtained from V(aor ) 
by the replacement of a,, by the chiral invariantp, . We note 
that the fermion dynamical mass, appears in the potential 
Vas a result of the dimensional transmutation phenomenon: 
from the requirement that the value V(2, = E,) be a mini- 
mum the constant g = GoA2/4g is determined as a function 
of E,,, A, and a. As a result, in the local limit A- CQ the 
dimensionless coupling constant g is replaced by the dimen- 
sional parameter 8,. The appearance in the potential (28) of 

218 Sov. Phys. JETP 74 (2), February 1992 V. P. Gusynin and V. A. Miranskil 21 8 



a term proportional to ( p ~ / ~ ~ ) 2 " 2 - " '  is important. It can 
be shown that the contribution of this term to the effective 
action is scale-invariant. Indeed, under scale transforma- 
tions Z, transforms as Zo+sZo and it then follows from (27) 
that the dynamical dimension of the composite field u2 
equals d, = 2 - w.'915 This in turn means that the dynami- 
cal dimension of the term (p:/xi )2"2-o) equals four. Con- 
sequently, in the potential V (28) only the second term (the 
mass term) violates scale symmetry, and the corresponding 
violation is soft [the dynamical dimension of the mass term 
obeys 2(2 - w) < 41. We also note the negative sign of the 
mass term, which is the reason for the appearance of a non- 
trivial vacuum expectation value for the fieldp, and, conse- 
quently, for spontaneous breaking of chiral symmetry in the 
manner analogous to the standard Goldstone mechanism. 

For a = a, scale symmetry is violated in the potential 
(29) by the logarithmic term. The form of the potential (29) 
is reminiscent of the one-loop effective potential in the Cole- 
man-Weinberg (CW) However there are also sub- 
stantial differences between them: while in the CW potential 
the power of the scalar field is equal to four, in our case this 
power is equal to two. This, of course, reflects the fact that 
for a = a, the dynamical dimension of the composite field 
u, equals d, = (2 - w) 1 a = a c  = 2. 

For a more detailed discussion of scale symmetry 
breaking in the NJL gauge model see Sec. 6. 

We now discuss the effective potential in the region 
a >a,, g < 1/4. Using expression ( 15) for the asymptotic 
behavior of the mass function in this region we perform all 
calculations similarly to the case a <a,. As a result we ob- 
tain 

where 8 = Gln(Aes/Zo), while the function Z,(p) is deter- 
mined from the equation [compare with (21 ) ] 

XZo2 sin 0 
oo=-[-+cos0] 2A i;, 

with the replacement u,,-+p. 
The equation dV/dZo = 0 now takes the form 

1 
-= 

2cos 284-6 sin 28-2(1+6z)-1 

4g 2 cos 28+ (3@+a3) sin 26-2 (aa+l )  ' (32) 

where 8 = Zln(~e"T,). From (32) we find the solution 
for 8 near a -a, : 

Writing 8 as 8 = 8 - Zln(Z, /~,)  we find in the local limit 
the following expression for the potential (30) on the critical 
line (18) (6-0):  

gci/,.  (34) 

Equation (3  1 ) also simplifies in that limit:'' 
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Choosing as before the renormalization constant Z, so that - - 
uor =Z,',= Z,, we find 

The presence of the singularity at g = 0 (pure QED) in rela- 
tions (34) and (37) is connected with the fact that the meth- 
od of introducing the auxiliary fields u and n- into the La- 
grangian (2)  fails in the case of pure QED. In particular, the 
Lagrange-Euler equation (2a) gives in that case u = n- = 0 
forg = 0. The dynamics of pure QED for a > a, is discussed 
in detail in Ref. 25. 

4. THE EQUATION FOR THE KINETIC TERM IN THE 
EFFECTIVE ACTION 

The U, ( 1 ) X U, ( 1) symmetry leads to the following 
general form for the kinetic term of the effective Lagrangian 
in the local (A - co ) limit: 

where F, and F2 are in the general case functions of a, 
p, = ( @ j " @ t J ' )  ' I 2  andp, (the valuep, minimizes the poten- 
tial). It is therefore sufficient for the determination of L, to 
evaluate d 2A,/dq,dq, 1, = , and d 2App/dqpdq, 1, = in the 
case uo # 0, T,, = 0. In the following we discuss only the eval- 
uation of d 2App/dqpdq, 1, = , (the evaluation of 
d 2A,/dq,dq, 1, =, is similar; some specific features of that 
calculation will be noted below). 

The expression for A, (q)  in ladder QED has the 
formI6 

1 d'k 
A P P ( ~ )  =% j - k ~ ~ ( k ) r ~ ( k ,  k+q)G(k+q)iy51 

( 2 ~ ) ~  
+ (4'-4), (39) 

where the fermionic propagator is G(k) = i [ k  - Z ( k  2, ] - ' 
(we use the Landau gauge) and rp & the ampctated vertex 
connecting the composite operator Yi y,V' with the fields 
and Y. Graphically (39) is represented in the form: 

The vertex Tp (k,k + q) satisfies the equation 

or in graphical form, 

where the photon propagator is D,, (k )  = ( l/ik ') 
x (g,, - k, k,/k '). From (39) we obtain the equation for 
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In the following sections these equations will be used to de- 
rive the kinetic term in the effective action. 

where the prime denotes derivatives with respect to q. The 
last expression can be simplified if use is made of the follow- 
ing equations, which result from (40): 

We obtain 

or in analytic form, 

For the vertex function for coincident momenta, rp (k,k), 
the exact expression 

Z ( k 2 )  rp (k, k) = i y 5  - 
0 0  

was obtained in Ref. 16. We note that for the scalar vertex 
r, (k,k), connecting the composite operator TY with \V and 
$ (and entering into the expression for d 2A,/dqpdqp Is = , ) 
the analogous relation has the form 
rs (k ,k)  = i (d/duo)2(k2)  (Ref. 16). For the the deriva- 
tive rP ,  (k,k) we can write a general expansion containing 
four scalar functionsgi(k 2 ,  ( i  = 1,2, 3 ,4) :  

r,, (k,k) satisfies the following equation [see (40) 1 

5. THE EFFECTIVE ACTION FOR SMALL a 

It follows from Eq. (46) that the functions gi(k 2 ,  in 
(45) are quantities of order a .  A detailed analysis of Eq. 
(46) shows also26 that the functions g i (k2)  decrease as 
k 2 + m .  Therefore the dominant contribution to 
6' 2App/dqpdqP 1, = , for a < 1 comes from the first term on 
the right-hand side of Eq. (43). Using formulas ( 1 I ) ,  ( 13), 
(43) and (44) and taking into account that z ( 0 )  = fi, 
S(0) = 4 ln2 [see ( 14) ] we find the expression for the kinet- 
ic term for a<  1: 

In deriving (47) we used the fact that Z ,  = 1 + O ( a )  for 
a < l  [see (26)l .  

From (28) and (47) we now find the final expression 
for the effective Lagrangian for a < 1: 

where the dots denote the presence of terms with more than 
two derivatives. The terms with higher derivatives and, in 
particular, the Wess-Zumino terms, can in principle be ob- 
tained in a similar manner. 

We discuss now in more detail the Lagrangian (48). It 
is convenient to introduce the interpolating fields 

and to rewrite (48) in the form 

The minimum of the effective potential is determined from 
the equation $,, + 4,, = ( 1/12n-a) z:. Choosing the 
vacuum to be the configuration gin, = ( 1 / 1 2 m ) " 2 ~ , ,  
n-,,, = 0, we find that the excitation spectrum contains a 
massless pseudoscalar Goldstone boson and a scalar boson 
with mass Mu = 2X0. This result coincides with the analo- 
gous result in the pure NJL modeL2 

We now find the decay constant F,. Since the compos- 
ite fields a,,, a T Y  and q,, a Tiy,Y transform under chiral 
rotations Y +exp (iy,@) Y as 

oint+oint cos 2@+nint sin 2@, 
(51) 

nint+-oint sin 2@+ni,, cos 2@, 

the axial current is determined by the expression 

and in the tree approximation we find 

Hence 
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Now making use of the Goldberger-Treiman relation we ob- 
tain the expression for the Yukawa coupling constant g,: 

From (50) it also follows that the four-fermion interaction 
constant il equals 

Thus in the limit a< 1 the NJL gauge model describes the 
dynamics of spontaneously broken chiral symmetry with 
weakly interacting fermions and spinless bosons. The cou- 
pling constants g,  and il vanish as a - 0, which corresponds 
to the familiar fact that in the local limit the NJL model 
represents a free theory. 

We also note that the kinetic term in L,, (48) is scale 
invariant. As will be shown in the next section this property 
is valid for all a<a,. More than that, we will show that also 
all terms with higher derivatives are scale invarianL2' 

6. STRUCTURE OF THE EFFECTIVE LAGRANGIAN AND 
BREAKING OFSCALE SYMMETRY IN THE NJL GAUGE 
MODEL 

It was shown in Sec. 2 that the derivation of the low- 
energy effective action in the form of a series in powers of 
derivatives of the fields a and a reduces to the calculation of 
Green's functions of the composite operators @Y and \Viy,\~ 
in ladder QED with bare mass m"' = a,. We show now that 
the only terms in the effective action that violate scale sym- 
metry are the mass and logarithmic terms in the effective 
potential (28) and (29) for a <a, and a = a,, g = 1/4, 
respectively. 

Let us recall the basic properties of the Green's func- 
tions of the operators @q and V i y , ~  in ladder QED. From 
the work in Ref. 27 it is known that the anomalous dimen- 
sion of these operators in ladder QED is equal to 
y, = 1 - ( 1 - a/a, ) 'I2. In the case of an elementary field 
@ (x) this would mean multiplicative renormalization of the 
corresponding connected Green's functions 

where z, = C(Z,/A) ?", with C a normalization constant 
(2, can be viewed as the renormalized fermion mass in 
QED). The case of composite operators, however, is consid- 
erably more complicated (see, for example, Ref. 28). While 
multiplicative renormalization takes place for all Green's 
functions containing only one composite operator and any 
number of elementary fields, this property can be violated 
for certain Green's functions with a larger number of com- 
posite operators. For example, in spite of the fact that in the 
free theory the renormalization constant satisfies Z = 1 for 
all operators, there is quadratic and logarithmic divergence 
in A'2' and logarithmic divergence in A'4' (A'2' and A'4' are the 
Green's functions of the composite operator VV! or @iy,q). 
This circumstance leads to the violation of multiplicative 
renormalization of the Green's functions of the operators 
v\y and @ i y , ~  in ladder QED. Fortunately, this violation 
appears only in the propagator Aij- A?' ( i  j = s,p ) . In actu- 
ality, the renormalization relation (57) is satisfied for all 
Green's functions with n > 2. In the case n = 2 the following 
modified relation is valid 

[the relation (58) does not, of course, fix the value of - 
AV,,,, (0) 1. This means that multiplicative renormalization 
takes place both for A'" ' with n > 2 and for all derivatives 
with respect to q of the propagator Aij (q) .3' This is sufficient 
for the description of the structure of the effective action. We 
prove first the scale invariance of the kinetic term. In fact to 
this end it is sufficient to show that for all a<a,, g> 1/4 the 
kinetic term has the form (A -. cc ): 

where f, (a), f,(a) are finite functions of the coupling con- 
stant a. Since the dynamical dimension of the fields a, and 
a, equals da  = 2 - w [see (27) ] it follows from (59) that 
the dynamical dimension of the kinetic term L,  equals four, 
i.e., that L, is scale invariant. 

It follows from ( 1 1 )  that L, is determined by the 
expression 

1 Zm d2Aij,ren ( q )  d m ,  ( ' 1  am,(j)  =-(:) -- 
4 Z. dq,dy, I.=. axv dxv ' (60) 

In the last equality in (60) we used the relation (58). We 
choose the normalization constant C in the expression for 
2, the same as in the expression for Z ,  [see (26a)l: 

From this and (27) and (60) we find (A- oo ) 

am;i) 

I -- dq, dq, ,=, ax"~' . (62) 

In that expression 6' 2haren (q)/aqpaqv is the renormalized 
Green's function in ladder QED with fermion mass 8,. Since 
in the local limit A- a, the mass 2, is the only dimensional 
parameter of QED, it follows from here and the dimension- 
less character of the quantity a 2hg,,n (q)/aqpaqv I q  = that 

where qg (a) is a finite function of a. 
The expression (62) corresponds to the configuration 

a,, #O, aOr = 0. Since this configuration is invariant under 
the transformation a, -+a,, a, --+ - a, ,  it follows that 
qV (a ) = 0 if i#j. Taking into account the expression (38) 
for L, we arrive for an arbitrary configuration a,,, ?.r,, at 
(591, where f,(a) = jqpp (a), and 
f2(a) = b[WSS (a) - q, (a) I .  

We emphasize once more that the key considerations in 
our proof are: 

a )  multiplicative renormalizability of the function 
a2AV (q)/aqpaqv; 
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b) existence of but one dimensional parameter 2, in 
ladder QED in the local limit; 

C )  absence of renormalization of the coupling constant 
a in ladder QED, which gives rise to power dependence of 
the renormalization constant Z,  (B,/A). 

Since multiplicative renormalizability holds for all 
Green's functions that contribute to the terms with higher 
derivatives, the above proof can be extended to them as well. 
This means that all terms with higher derivatives in the effec- 
tive action are scale invariant. 

It is clear, however, that the above proof is not valid for 
the effective potential 7, which can be expressed in terms of 
the values of the Green's functions at q = 0. The reason for 
this is that in that case there is additional quadratic diver- 
gence in the propagator Aij (q) and multiplicative renorma- 
lizability is violated. In actuality this quadratic divergence 
cancels against the corresponding divergence from the term 
(2G0) -'@ti' Qti) in the potential ( 16) near the critical line, 
with the result that the mass term remains in the potential 
(28), giving rise to violation of scale symmetry. 

Since the effective action in the case a = a, ,  g = 1/4 
can be obtained as the limit of the corresponding action for 
a <a , ,  we find that in the potential (29) only the logarith- 
mic term violates scale symmetry. 

We note that the effective action with a potential of the 
form (29) and a scale-invariant kinetic term has been postu- 
lated before for the model under discussion (for a = a, ) in 
Ref. 23. The soft breaking of scale invariance means that the 
hypothesis of partial conservation of the dilatation current 
(PCDC) is a quite reasonable assumption for the descrip- 
tion of the dynamics of the u - s ~ a l a r . ~ ~ ~ ~ ~  The main point of 
the PCDC approach is precisely the inclusion of the noncan- 
onical dynamical dimension of the spinless fields. Conse- 
quences of the PCDC hypothesis in the NJL gauge model 
were discussed in more detail in Refs. 23 and 29. 

In this work we have discussed the dynamics of the 
model corresponding to only a part of the critical line 
(a < a, and g > 1/4). The picture of scale-symmetry break- 
ing for a = a, and g < 1/4, where the breaking of chiral sym- 
metry is due mainly to the electromagnetic interaction, is 
somewhat different from the discussed abovez3 and is stud- 
ied in more detail in Ref. 25. 

We note, furthermore, that our effective action corre- 
sponds to the tree approximation of the effective theory, ne- 
glecting the quantum fluctuations of the fields a and n-. In 
particular, the exact relation for the mass Mu can be sub- 
stantially different (especially for large a)  from that ob- 
tained in our approximation. 

7. CONCLUSION 

The low-energy effective action in the NJL gauge model 
corresponds to the a model with noncanonical dynamical 
dimension da = 2 - ( 1 - a/a, ) ' I2 for the composite fields 
a a A - ' ~ \ V ,  r a A-'Fiyg\V. The dynamical dimension d, is 
connected with the ultraviolet behavior of the dynamical 
mass function of the fermion [see ( 13) 1 and amputated 
Bethe-Salpeter function x,,,,,, of spinless bound states: 

Z d  ( p )  a Eo (p/2o) ' -*n , 

xo.tp ( p )  a r d  ( F )  a ( P )  . 

Since in the model under consideration du<2, the wave 

function x(,,,., (p) (which determines the form factors of 
the bound states) decreases for large p much more slowly 
than in theories of the type of QCD, where d, = 3 (the ca- 
nonical dimension of the FY operator). In this case we can 
speak of the presence of strongly bound states in the NJL 
gauge m ~ d e l . ~ . ' ~  A characteristic feature of such bound 
states is that, in contrast to QCD, they do not decouple from 
the dynamics at high energies (p)F,, in the case of the 
electroweak interactions). '5-'8,30,5 This property might turn 
out to be more important for the description of the dynamics 
of the breaking of the electroweak symmetry in scenarios 
based on the NJL gauge model. In that case the bound states 
play the role of Higgs bosons. The properties of such states 
were recently considered for certain scenarios in Refs. 31 
and 32. 

Another important application of the NJL gauge model 
is its use in the analysis of data of computer calculations on 
the lattice for asymptotically nonfree theories of the type of 
QED.33 AS was noted in Refs. 15 and 30, the results of lattice 
calculations for noncompact QED with a sufficiently large 
bare coupling constant33 can be understood if it is supposed 
that in the scaling region of this model an essential role is 
played by the induced four-fermion interaction (and other 
formally inessential interactions). The derivation of the ef- 
fective action in the NJL gauge theory shows clearly how in 
the scaling region E,/A 1 these formally inessential inter- 
actions are transformed into essential degrees of freedom 
similar to the spinless fields a and n-. The NJL gauge model 
might also turn out to be important for the understanding of 
the dynamics at short distances for a strong coupling con- 
stant. 
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Nambu, S. Rebi, J. Terning, L. Wijewardhana, P. I. Fomin 
and especially W. Bardeen for useful discussions. One of us 
(V. A. M.) thanks the members of the Applied Mathematics 
Department of the University of Western Ontario for hospi- 
tality and support. 

APPENDIX A 

We discuss here the properties of the solution of the SD 
equation for the fermion mass function Z (p) in ladder QED 
{the fermion propagator is G ( p )  = i[jA(p2) - Z(p2) ] -I). 

In Euclidean space in the Landau gauge the corre- 
sponding equation has the 

3a 
x ( p 2 ) = r n ( 0 )  + - j d q z  

q ' z ( q 2 )  [ e ( p 2 - q 2 )  + e ( q 2 - p 2 )  1 
-qZ+XZ ( q ' )  4n " P' q2  

Equation (A2) is equivalent to the differential equation 

with the boundary conditions 

Using (A3 ) and (A4) we find for the condensate (01 \VY 1 0 )  : 
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In the so-called linearized appro~imation,'~ which approxi- 
mates Eq. (A2) well in the entire range of momenta, the 
function Z(p2) in the denominator of Eqs. (A2) and (A3) is 
replaced by the mass parameter Zo = Z (0). In that case the 
solution of Eqs. (A3) and (A4) is expressible in terms of the 
hypergeometric function 

where w = ( 1 - 3a/77) ' I 2 .  The ultraviolet asymptotic be- 
havior of this function has the following form for 
a < a ,  = 77/3 and a > a ,  respectively: 

ro2 1 P 
E(p2)-A(a)--=-sin [Gi (ln- + *(a) ) I ,  (A9) 

p-rn P Zo 

where 5 = (3a /a-  1)"'. The functions i ( a )  and 6 ( a )  
are given by Eqs. ( 14) of the text. 

The ultraviolet asymptotic behavior of the solution of 
the exact equation (A2) has the same form as in (A8) and 
(A9), but with somewhat different 2 ( a ) ,  6 ( a )  (Refs. 4, 
20). 

"The singularity forg = 1/4 in Eq. (35) reflects the fact that this expres- 
sion is only valid for 1/(1 - 4g)<ln(A/I,). For 1/(1 - 4g) )ln(A/ 
I,) the relation (25b) occurs with the additional logarithmic term. 

2'An alternative derivation of this fact was given by Bardeen and Love 
(private communication). 

"The last fact can also be demonstrated by using the equations for A0 (q). 
Indeed, since multiplicative renormalization takes place for the vertex 
r, (q,k), containing only one composite operator, the validity of this 
property follows from Eq. (43) also for the derivative d2App (q)/  
as" dq, . 

IF. Giirsey, Nuovo Cimento 16,230 ( 1960). M. Gell-Mann and M. Levy, 
Nuovo Cimento 16,705 ( 1960). 

'Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122,345 (1961). 
3T. Eguchi, Phys. Rev. D 14,2755 ( 1976); T. Goldman and R. W. Hay- 
maker, Phys. Rev. D24,724 (1981); M. K. Volkov,Ann. Phys. (N.Y.) 
157,282 (1984); A. Dhar, R. Shankar, and S. R. Wadia, Phys. Rev. D 
31, 3256 (1985); D. Ebert and H. Reinhardt, Nucl. Phys. B271, 188 
(186). 

4C. N. Leung, S. T. Love, and W. A. Bardeen, Nucl. Phys. B273, 649 

( 1986). W. A. Bardeen, C. N. Leung, and S. T. Love, Nucl. Phys. B323, 
493 (1989). 

5V. A. Miransky, Int. J. Mod. Phys. A6, 1641 (1991). 
6B. Holdom, Phys. Lett. 150B, 301 ( 1985); K. Yamawaki, M. Bando, 
and K. Matumoto, Phys. Rev. Lett. 56, 1335 (1986); T. Akiba and T. 
Yanagida, Phys. Lett. 169B, 432 (1986); T. Appelquist, D. Karabali, 
and L. C. R. Wijewardhana, Phys. Rev. Lett. 57,957 (1986). 

'T. Appelquist, M. Einhorn, T. Takeuchi, and C. L. Wijewardhana, 
Phys. Lett. 220B, 223 (1989); 232B, 21 1 ( 1989). 

W. A. Miransky and K. Yamawaki, Mod. Phys. Lett. A4, 129 (1989). 
'V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett. 221B, 
177 (1989); Mod. Phys. Lett. A4, 1043 (1989). 

"'W. A. Bardeen, C. T. Hill, and M. Lindner, Phys. Rev. D 41, 1647 
(1990). 

"Y. Nambu, Preprint ETF-89-08, Chicago, Enrico Fermi Institute, 1989. 
lZV. A. Miransky, Phys. Lett. 91B, 421 ( 1980); Nuovo Cimento A90,149 

(1985). 
13K. Kondo, H. Mino, and K. Yamawaki, Phys. Rev. D 39,2430 ( 1989); 

T. Appelquist, M. Soldate, T. Takeuchi, and L. C. R. Wijewardhana, in 
Proceedings of the 12th John Hopkins Workshop on Current Problems in 
Particle Theory, edited by G. Domokos and S. Kovesi-Domokos (World 
Scientific, Singapore, 1988 ). 

14W. A. Bardeen and S. T. Love, Phys. Rev. D (1992). 
15W. A. Bardeen, S. T. Love, and V. A. Miransky, Phys. Rev. D42,3514 

( 1990). 
IhV. P. Gusynin, V. A. Kushnir, and V. A. Miransky, Phys. Rev. D 39, 

2355 (1989). 
"R. S. Chivikula, A. Cohen, and K. Lane, Nucl. Phys. B343,554 ( 1990). 
' 9 .  A. Miransky, Phys. Lett. 248B, 151 (1990). 
I9I. J. R. Aitchison and C. M. Fraser, Phys. Lett. 146B, 63 ( 1984). L. H. 

Chan, Phys. Rev. Lett. 54,1222 (1985). V. P. Gusynin and V. A. Kush- 
nir, Yad. Fiz. 51, 587 (1990) [Sov. J. Nucl. Phys. 51, 373 (1990)l. 

'OR. Fukuda and T. Kugo, Nucl. Phys. 117B, 250 (1976). 
2'T. Maskawa and H. Nakajima, Progr. Theor. Phys. 52, 1326 ( 1974). 
22J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 2428 

(1979). 
13V. A. Miransky and V. P. Gusynin, Progr. Theor. Phys. 81,426 ( 1989). 

V. P. Gusynin and V. A. Miranskii, Zh. Eskp. Teor. Fiz. 95,410 (1989) 
[Sov. Phys. JETP 68,232 (1989)l. 

24S. Coleman and E. Weinberg, Phys. Rev. D7, 188 (1973). 
25V. A. Miransky, Preprint UWO-DAM-11/91, London (Canada), 1991. 
26K. Aoki, M. Bando, T. Kugo, and M. G. Mitchard, Progr. Theor. Phys. 

85,355 ( 1991 ). V. P. GusyninandV. A. Kushnir, Preprint ITP-91-46E, 
Kiev, 1991. 

17S. L. Adler and W. A. Bardeen, Phys. Rev. D 4,3045 (1971 ). 
28E. Brezin, in Methods in Field Theory, Les Houches, sect. XXXIII 

(North Holland, Amsterdam, 1976). 
29S. Shuto, M. Tanabashi, and K. Yamawaki, in Proceedings of 1989 

Workshop on Dynamical Symmetry Breaking, Nagoya, 1990. 
30A. Kocic, S. Hands, J. B. Kogut, and E. Dagotto, Nucl. Phys. 347B, 217 

( 1990); E. Dagotto, J. B. Kogut, and A. Kocic, Phys. Rev. D 43, 1763 
(1991). 

3 1 T. Appelquist, J. Terning, and L. C. R. Wijewardhana, Yale Preprint, 
1991. 

"R. R. Mendel and V. A. Miransky, Preprint UWO-DAM-15/91, 1991. 
33J. B. Kogut, E. Dagotto, and A. Kocic, Phys. Rev. Lett. 60,772 (1998); 

Nucl. Phys. B317, 253 271 (1989); S. J. Hands, J. B. Kogut, and E. 
Dagotto, Nucl. Phys. B333,551 ( 1990); S. P. Booth, P. D. Kenway, and 
B. J. Pendleton, Phys. Lett. B228, 115 (1989). M. Gockeler et al. Nucl. 
Phys. B334, 527 (1990); A. M. Horowitz, Phys. Rev. D 43, 2461 
(1991). 

Translated by Adam M. Bincer 

223 Sov. Phys. JETP 74 (2), February 1992 V. P. Gusynin and V. A. Miranskl 223 


