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Gauge-invariant equations are derived for a theory of gravitational stability, describing the 
evolution of irrotational perturbations in an isotropic universe of critical density filled with a 
dissipative gaseous medium. These equations reduce to a singularly perturbed third-order 
equation which is nonlinear in several parameters. The solutions of this third-order equation thus 
have bifurcation properties. This equation has a singular point, whose position on the time axis, 
t = t, , is determined by the dissipation characteristics of the system. Near the singular point, the 
system loses its dynamic stability, and condensations with comparatively low peculiar velocities 
undergo an anomalous growth. This effect is interpreted as the formation of dissipative structure 
in the expanding universe. One possible critical point which appears to be pertinent to the theory 
of galaxy formation is at t~ 1016 s, where most of the mass of the baryon subsystem of the universe 
is in neutral hydrogen and helium. The effect of cold dark matter on the nature of a 
nonequilibrium phase transition in the baryon subsystem is analyzed. 

INTRODUCTION 

It is presently believed that the large-scale structure of 
the hot universe arises as the result of gravitational instabil- 
ity.'-3 It is usually assumed that small fluctuations in the 
density of matter, whose evolution subsequently leads to the 
appearance of structure (star clusters, galaxies, and galactic 
clusters), themselves originate from quantum fluctuations 
of the space-time metric. Later, according to certain hypoth- 
eses, these fluctuations can grow to a macroscopic size in the 
inflationary e p ~ c h . ~ . ~  After this epoch, they can grow as the 
result of accretion of surrounding matter. Models of dark 
matter are often invoked in explanations of the observed 
large-scale s t r u ~ t u r e . ~ , ~  In particular, entities which have 
been proposed as candidates for the role of a nonbaryonic 
dark matter are particles predicted by various gauge theo- 
ries7,* and exotic entities such as superconducting strings in 
a primordial magnetic field.9-'' 

When this picture of continuous evolution of density 
perturbations from an initial cosmological singularity to gal- 
axies and galactic clusters is compared with experimental 
data, however, a hot model runs into certain experimental 
difficulties. These difficulties are not easily overcome. Spe- 
cifically, the amplitude of density perturbations in the pre- 
recombination epoch is known to be related to the anisotro- 
py of the relic background microwave radiation. However, 
observations impose some severe limitations on this anisot- 
ropy.'-4 According to the observational data and their theo- 
retical interpretation,I2-l6 the quantity A T / T  must be less 
than lop4.  Since a long time has now passed without any 
reliable reports of a discovery of such an anisotropy, we be- 
lieve it is necessary to seek some new, alternative hypotheses 
regarding possible scenarios for the generation of the large- 
scale structure of the universe. One possibility might be the 
hypothesis of a strong, superadiabatic growth of density per- 
turbations as a result of nonlinear effects associated with 
dissipative processes in the cold viscous gas in the later 
stages of cosmological evolution. Explosive effects of this 
sort might occur if the system is sufficiently complex for the 
appearance of dissipative structure. A correct approach to 

the formulation of this problem and to its solution requires 
the simultaneous consideration of numerous factors which 
influence the evolution of perturbations of the density of 
matter in the epoch following the time of recombination. 

In this paper we focus on the dynamics of density per- 
turbations near singular points at which the evolution time is 
comparable in order of magnitude to the time scale of the 
relaxation process. The reasoning here is that a viscous gase- 
ous medium filling a time-varying universe is in a varying 
gravitational field and in this sense is an open dissipative 
system. Under certain conditions, dissipative structure can 
appear in such a system, in the form of density inhomogene- 
ities. We know that dissipative structure arises because the 
open system searches for new equilibrium states, different 
from the homogeneous state of local thermodynamic equi- 
l i b r i ~ m . ' ~ - ' ~  We would therefore expect that the age of the 
universe at the time at which the dissipative structure forms 
is comparable to the time scale of the relaxation process. 

Current ideas regarding the gravitational stability of an 
expanding universe are based on the linear theory of gravita- 
tional stability (LTGS) derived by E. M. Lif~hi tz . '~ ,~ '  We 
will be using the mathematical tools of that theory, specifi- 
cally stipulating that those tools are valid for solving the 
problems formulated above. 

The authors of the various papers on the LTGS have 
used a variety of methods for solving its equations, but all 
employ approximations. Our major goal here is to construct 
a method for solving the LTGS equations which would make 
it possible to analyze the asymptotic behavior of the solu- 
tions only after the nature and properties of the equations of 
the theory have been determined." It would then become 
possible to numerically integrate the exact equations which 
are constructed. We have done this in the present study. 

We believe that ignoring any terms in the initial equa- 
tions of the theory may lead to a theory with a seriously 
impoverished physical content. For example, if we ignore 
the viscosity, we are ignoring relaxation processes in the sys- 

If we instead take viscosity into account, we must 
take account of the nonzero sound velocity (u2#O) for any 
relaxing system (our approach here stands in contrast with 
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common practice in solving the LTGS equations in the late 
stages of evolution of the u n i v e r ~ e ' , ~ . ~ ~  ) . The reason is that, 
since this system is open and time-varying, both the relaxa- 
tion time and the velocity of sound in the medium depend on 
the world time t .  There can thus be a situation in which terms 
of the energy-momentum tensor associated with the pres- 
sure are comparable in order of magnitude to the dissipative 
terms, p=<a/a, at large values of the viscosity coefficient. 
(Large values of the bulk viscosity coefficient occur for mo- 
lecular hydrogen, for example, since the large size of the 
rotational quantum of the H, molecule, T, = 85 K, makes 
the time scale for rotational relaxation of the gas molecules 
long.) These times may be singular for momentum transport 
in the system. Near these points on the time axis, a hydrody- 
namic description is of course incorrect. In the LTGS, how- 
ever, the interaction of the spatially uniform mode a ( t )  and 
a spatially nonuniform mode h ,  ( t )  is taken into account 
exactly (ignoring the interaction of the spatially nonuniform 
modes with each other). However, since the open nature of a 
dissipative system results specifically from this interaction, 
it is manifested considerably earlier, within the range of ap- 
plicability of the linear approximation. 

Yet another distinctive feature of the LTGS on an ex- 
panding background is the existence of two independent de- 
grees of freedom (isotropic and anisotropic)20 for the per- 
turbed gravitational field. While momentum transport for 
one degree of freedom has a singularity (the momentum flux 
in the density wave is comparable in order of magnitude to 
the momentum sink due to dissipation), the system tends to 
maintain the existence of this degree of freedom. The behav- 
ior of this system thus becomes anomalous: An initial den- 
sity perturbation breaks up into growing condensations with 
relatively small peculiar velocities. In other words, dissipa- 
tive processes give rise to dissipative structure. 

Obviously, if an approximate solution method is used, 
and the LTGS equations are reduced to the post-Newtonian 
equations of the general theory of relat i~i ty ,~ this effect will 
be lost. 

A point which deserves particular emphasis is that tak- 
ing the viscosity and the compressibility of the medium into 
account simultaneously leads to an effect of the thermal re- 
gime on the course of the gravitational instability. As we will 
show below, this system is described by a third-order singu- 
larly perturbed equation in the parameter k 2u2/a2, where k 
is the wave number.,' This equation contains logarithmic 
derivatives of the sound velocity, u/u (as was first shown in 
Ref. 25). Since the thermal regime of this continuous medi- 
um is not adiabatic, and it depends primarily on the effect of 
the viscosity on the temperature ofthe medium, the behavior 
of all modes of the solution is distorted by thermal effects. 

We therefore assume that the only approximation pro- 
cedure which is legitimate for the Einstein equations de- 
scribing the expanding universe is the standard linearization 
procedure. I-320-23,25-32 This procedure allows one to cor- 
rectly formulate the problem of the evolution of normal hy- 
drodynamic modes superposed on an expanding back- 
ground.32 

This Introduction to the paper is followed by five num- 
bered sections, a Conclusion, and an Appendix. In Sec. 1 we 
derive a system of LTGS equations in terms of linear invar- 
iants, i.e., in a gauge-invariant form which does not depend 
on the state of an observer following the evolution of inho- 

mogeneities in the expanding universe. The asymptotic solu- 
tions of the gauge-invariant equations of the LTGS far from 
these singular points, where the evolution time is equal in 
order of magnitude to the time scale of a relaxation process, 
are studied in Sec. 2. In Sec. 3 we carry out an asymptotic 
analysis of the equations of the theory near singular points. 
We also offer a qualitative interpretation of some new phys- 
ical effects which appear. Section 4 is an analysis of numeri- 
cal solutions of the LTGS equations which have been de- 
rived. In Sec. 5 we estimate the effect of cold dark matter on 
the nature of the phase transition to an inhomogeneous state 
in the baryon subsystem. The Appendix contains certain de- 
tails of the derivation of the LTGS solutions near singular 
points. 

1. EQUATIONSOFTHE LINEAR THEORY OF 
GRAVITATIONAL STABILITY IN TERMS OF LINEAR 
INVARIANTS IN THE LATE STAGE OF EVOLUTION OF THE 
UNIVERSE 

We describe the evolution of normal hydrodynamic 
modes in the expanding universe by means of the system of 
Einstein equations with dissipative  effect^'^.^^ (we are using 
a rational system of units with f i  = c = 1 ) : 

7i" CL 
(oui);i  = - uf, + - v;, . 

T T 
(1.3) 

Here 

is a dissipation tensor, where 

are the tensors of shear and bulk deformations of the velocity 
field of the matter. The quantity 

is the heat-flux vector; v,{, and x are the coefficient of shear 
viscosity, the coefficient of bulk viscosity, and the thermal 
conductivity; n, E ,  and a are the number density of particles, 
the energy, and the entropy; p is the pressure; T is the tem- 
perature; and p is the chemical potential of the continuous 
medium. 

We write these equations out explicitly, noting that the 
real medium is described by the energy-momentum tensor of 
an ideal gas, distorted by dissipative effects:35 
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Here m is the mass of a gas molecule; c, ( T )  = c, is the spe- 
cific heat of the rotational degrees of freedom; and gc is the 
chemical constant of the translational degrees of freedom of 
the gas. 

The initial stage of the process is described by Eqs. 
( 1.1 )-( 1.3), linearized about an isotropic cosmological 
background: 

ds2=dtZ-a2 ( t )  (dxz+ dy2+dz2). (1.5) 

We now write the physical quantities describing the 
matter and the gravitational field in the form A = 2 + SA 
(background part plus a perturbation). 

An unperturbed Friedmann solution for the isotropic 
universe with dissipation is found from the equations 

where 

Equations ( 1.1 )-( 1.3) will now be put in the standard 
form for the theory of gravitational stability. All perturbed 
quantities are found as tensors in the background space, 2,. 
Specifically, the metric tensor, the 4-velocity of the matter, 
the number density of the particles, the energy, the entropy, 
the temperature, the pressure, and the chemical potential of 
the continuous medium are written in the form 

The linearized system of Einstein equations is 

The unperturbed Ricci tensor R 7, the energy-momentum 
tensor Ty,  and the dissipation tensor 7;" are constructed 
from the quantitiesgik, E,F,  j?, l, Z , p ,  andTin the usual way: 

In Eqs. ( 1.7)-( 1.13) and in the equations below, the 
semicolon means a covariant derivative in the space g,, . 

In order to solve Eqs. ( 1.7)-( 1.13) superposed on 
( 1.5), we need to rewrite these equations in a (3  + 1 )-di- 
mensional form; in other words, we need to separate the spa- 
tial and temporal coordinates. To do this, we define the oper- 
ation of ( 3  + 1 )-dimensional covariant differentiationz5 in a 
space with the metric 

and the three-dimensional covariant quantities 

(the Greek-letter indices take on the values 1, 2, 3) .  In the 
discussion below, we will be dealing exclusively with three- 
dimensional quantities and operations, so we will omit the 
superscript (3)  from the corresponding tensors. 

With these definitions in place, and after some simple 
calculations, we can rewrite the dissipative part of the ener- 
gy-momentum tensor in the explicit form 

To construct explicit equations for the linearized theo- 
ry, we make the substitution 

6p (n, T )  =u"t) 6 8  (n, T )  +6p, (n, T )  , (1.15) 

where the function 

is determined for the thermal regime set by the properties of 
the unperturbed solution (the dots mean derivatives with 
respect to t )  . Here Sp, is the deviation of the momentum flux 
density of the matter from the local equilibrium values as a 
result of dissipation. 

Here and below, a ( t )  is a self-consistent solution of un- 
perturbed equations ( 1.1 )-( 1.3) with a fixed kinetic coeffi- 
cient 5. 

The perturbation of the bulk viscosity coefficient, a{, is 
found from 
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where ical quantities SE and Su,, these expansions are 

Using these relations, we can rewrite Eqs. (1.7)-( 1.9) 
in the form 

where 
T 

- 1 

r=3- 
a dn dT m d i i  m 

Perturbations of type I (in the classification of Lif- 
shitzZ0 ) about an isotropic cosmological background can be 
expanded in a series in plane waves, 

and the expansion coefficients can be expressed in terms of 
scalar functions. 

For the perturbations of the metric h f and of the phys- 

For the coefficients of the Fourier expansion we have 
the following system of equations (we will omit the scalar- 
function index k from this point on) : 

(I-C,U" a i  -1 muZ aii 

HereN=p  + yand 

are functions constructed from the perturbations of the met- 
ric. With h : = h : = 0; and ?j,C,ii = 0, Eqs. (1.22)-( 1.25) 
are the same as the familiar equations of the Lifshitz theo- 
ry." There obviously exists a particular solution of the sys- 
temofequations (1.22)-(1.25):N= a/a,q, =0,6p, =O.It 
is thus logical to make the substitution N = (a/a) $. Adding 
( 1.22) and ( 1.23), we find the expression 
M =  M ( $ , ~ , $ , ~ , , ~ , S ~ ,  ,Sp, ). SubstitutingMinto (1.22), we 
find a system of equations for the invariant 
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J= [(a/a)N]*-3q1 ( J f = J  for X ' = X ' + ~ ~ ,  
h f ' = h f + 7; + r ] i k )  and for the quantity3' Sp, : 

Here 

The general solution of Eq. ( 1.27) is 
1 t f t' 

8pi=8pi0 erp (- 1 dt ) + e i p  (- j 1 dt ) Y exp ( l l d t l ) d t ,  
10 10 1, 1. 

(1.29) 

where the constant Lip,, corresponds to the solution of the 
Cauchy problem with the initial conditions Sp, (to ) = Sp,, . 
This constant is nonzero if the dissipation coefficients x, 7, 
and { are nonzero. 

After substituting (1.28) into ( 1.27), we find a third- 
order scalar equation for the invariant: 

where 

Equation ( 1.30), a third-order differential equation, 
contains a singular perturbation. It describes the time evolu- 
tion of three hydrodynamic normal modes of collective mo- 
tion of the continuous medium: the acoustic modes and the 
thermal mode.36 

We wish to stress that, in the version of the LTGS which 
we are proposing here, the analysis of the perturbations is 
carried out in a generally covariant form, without the impo- 
sition of any additional gauge conditions on the perturbed 
quantities. 

The invariant characteristics of the density and velocity 
of the matter are found by subtracting from (1.24) and 
(1.25) functions generated by varying the proper time 

in the unperturbed solution: 
1 

Here 

t, is an arbitrary constant, and to is a time which we use to 
specify the initial conditions. 

This procedure for eliminating fictitious solutions in 
the LTGS has a completely clear working interpretation. A 
difference between the reading of the clock of the local ob- 
server and the cosmological time t can be detected by com- 
paring the proper time T (dr  = g g d t )  with the time of an 
observer moving along with remote matter which is expand- 
ing according to the Friedmann law (i.e., by observing a 
universe which is homogeneous and isotropic at length 
scales larger than those of the perturbations). This proce- 
dure does not impose any restriction on the nature of the 
motion of the frame of reference (as is easily verified by 
working from the equations of relativistic kinematics). The 
working interpretation assumed for the construction of the 
functions SE,,, and V,,, means that observable physical 
quantities can be found directly from experiment, and the 
invariant increments in them can be eliminated in a simple 
way, by making a comparison with experimental results. It 
can be seen from ( 1.3 1 ) and ( 1.32) that the fictitious "gauge 
modes" do not "sense the dissipation" (just as we would 
expect). 

2. SOLUTIONS FAR FROM ASINGULAR POINT 

The three gauge-invariant physical modes of collective 
motions of a continuous medium which are described by Eq. 
( 1.30) can be classified in an obvious way as acoustic modes 
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and a thermal mode. [It is easy to show that the general 
solution of system ( 1.27), ( 1.28) depends on the same three 
constants that the solution of Eq. ( 1.30) depends on; specifi- 
cally, there exists a functional relationship 
Sp,, = Sp,, (c, ,c2,c3 ).] The hydrodynamic description of 
the continuous medium is valid under the condition t)t,. 
This condition is violated near the critical points x = 0, 
where 

In this section of the paper we consider the system far 
from such points, assuming x =: 1. Let us consider perturba- 
tions whose size is smaller than the distance to the horizon: 

We do not impose any apriori restrictions on the phase 
of the perturbations: 

Using the conditions kt / a )  1 and u2 4 1, we see that we need 
retain only k 2u2/a2 among the various coefficients of Eq. 
( 1.30) which contain u2; we can set u2 = 0 in the other coef- 
ficients. We thus use an unperturbed solution for 

For the sound velocity u2(t) it is then sufficient to use 
the expression 

and the temperature can be found from the law describing 
the increase in entropy of unperturbed solution ( 1.6) : 

We consider the standard problem of the dissipation of 
hydrodynamic normal modes of collective motions of the 
continuous medium, which we represent as an ideal gas with 
an arbitrary specific heat. The solution of this problem de- 
pends on the relations among three independent time scales 
of this system: the dissipation time 

the reciprocal of the particle oscillation frequency in a sound 
wave, 

and the cosmological time t. 
Under our assumptions, the conditions t, t, ) t, always 

hold. The relation between t, and t fixes the wavelength re- 
gion under consideration for the acoustic hydrodynamic 
modes. 

We construct solutions of Eqs. ( 1.30) in the limiting 
cases of short waves, ut /A 4 1, and long waves, ut / A  ) 1, us- 

ing for this purpose asymptotic methods of the theory of 
ordinary differential equations.37 

a)Short waves, ut/A>I. The fundamental system of so- 
lutions is 

1 2 E  a 2n R 
J = -( a I - - )  3 C, a e x -  J (-) A nc, d t  }. 
For the relative changes in the density and velocity of 

the medium we find the expressions 

where 
- 

' k2 
% ( t )  = - 3 i k t - ' / 4 a 0 7 ( ~ ~ )  , 8 ( 1 )  = - 

m 18aO6cv ' 

Here 

The exponential laws in (2.4) and (2.5) agree with the 
known damping of the acoustic modes and of the thermal 
mode in gaseous media.36 (This result can of course be 
thought of as a test of the validity of the system of equations 
being used.) Cosmological expansion leads to the appear- 
ance of a nontrivial dependence of the coefficients on the 
time t. We also wish to stress that the results found here are 
valid to the extent that the absorption rates given by (2.3 )- 
(2.5) are small. In gases, this condition holds for a certain 
interval of wavelengths A. As an example, let us estimate the 
first term in the absorption coefficient for a sound wave, 

under the conditions 
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Corresponding estimates for Z and $ are valid. There is no 
difficulty in writing solutions for a constant value of c,, by 
using (2.4) and (2.6). 

b )  Modelsolutions at a constant speciJic heat. Analytical 
solutions of Eq. (1.30) can be constructed for a constant 
specific heat, c, = const, only if we ignore small terms of 
order t,/t<l (i.e., only if we ignore the relatively weak 
damping due to dissipative processes). We can then inte- 
grate ( 1.30) over t once; as a result we find the equation 

Let us rewrite (2.7) in an explicit form, making use of 
the dependence of the coefficients on the temperature, the 
time, and the specific heat. We must set the constants c, 
equal to zero, since we are ignoring dissipative processes in 
this approximation. The entropy of the system therefore 
does not increase, and we have Sp, = 0. Consequently, un- 
der the same approximations as were used in the derivation 
of Eq. (2.7), we have 

where 

Here the prime means a derivative with respect to t /t,, and 
A, is the wavelength of the perturbation at the time t,, (e.g., 
at the recombination time t, = 5 .  1012 s) .  

Analytical solutions of Eq. (2.8) can be derived only for 
a constant specific heat, c, = const, in which case the equa- 
tion of interest is a homogeneous Bessel equation, and the 
sound velocity is equal to 

(The value c, = 5/2 corresponds to a molecular gaseous 
medium of H2 molecules at temperatures high in compari- 
son with the rotational quantum of the gas molecule: - - 
T s  T, = 85 K. The value c, = 3/2 corresponds to a gas 
with unexcited internal degrees of freedom.) The solution of 
Eq. (2.8) is then 

where J,  (z) and Y, (z) are the Bessel functions of the first 
and second kinds,38 

For the half-integer values of the specific heat, 
c,  = 5/2 ( Y  = 27/2) and c, = 3/2 ( v  = 7/2), the relative 
change in energy density is 

where 

and s,,, (z) is the Lommel function.38 
The solutions (2.10) describe the evolution of hydrody- 

namic normal modes of collective motions of the continuous 
medium under the conditions c,=const and - 
, = g = z = o .  

The physical meaning of the solutions which we have 
constructed can be seen easily in some limiting cases: 

1 ) Short waves, K,u,/@ 1 : The solutions are the same 
as (2.3)-(2.4) with c, = 0. In other words, Eq. (2.7) de- 
scribes the evolution of acoustic modes superposed on an 
expanding background. 

2)  Long waves, K,u,/P<l: In this limiting case, 
(2.10) becomes 

The solutions found here for acoustic modes in the long- 
wave approximation are the same as the standard LTGS so- 
lutions. l ~ ~ , ~ ~  The time evolution of long-wave density pertur- 
bations does not depend on the specific heat c,, since in this 
approximation the system under consideration here is a 
dusty medium with an equation of s t a t e p ~ O .  Using ( 1.32) 
and (2.9),  we easily verify that perturbations of the velocity 
V,,, decay in time according to a power law in the long-wave 
approximation. We will not reproduce the corresponding 
expressions here, since they are of no particular interest for 
LTGS. 
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3. DENSITY PERTURBATIONS IN AN EXPANDING UNIVERSE 
NEAR A SINGULAR POINT 

As we know, a local thermodynamic equilibrium is 
maintained in an unsteady system if the relaxation times are 
sufficiently short in comparison with the evolution time: 
t, <t. If this inequality is violated for any process, we must 
go over to a kinetic description of the system. Corresponding 
to a time-varying gaseous phase in the late stages of cosmo- 
logical evolution are several time scales for relaxation of the 
system to an equilibrium state. 

Translational degrees of freedom of the system relax 
over a time t,, = ?j/u2mTi; rotational degrees of freedom cor- 
respond to the relaxation time t,,, = $/u2mTi; the heat flux 
in the medium relaxes over a time t,, = Z/u2E. Near critical 
points t, z t ,  for any process, the system is no longer able to 
adjust to energy-momentum transport in the state of local 
thermodynamic equilibrium. If a time-dependent system is 
nonlinear, it may break up into fragments, whose relaxation 
time is trf < tf, where tf is the evolution time of the fragment. 
In this case, a dissipative structure forms, because the system 
as a whole loses its thermodynamic stability.",18 

Fairly general considerations lead us to expect such an 
effect in the LTGS. In the first place, this is not a truly linear 
theory but instead takes exact account of the interaction of a 
spatially uniform mode g,, ( t )  with a spatially nonuniform 
mode h,, (t,xa). Since it is this interaction which makes the 
system open, however, effects of this sort can arise in the 
linear theory. One of the critical points, which appears to be 
pertinent to relativistic astrophysics, is in a late stage of the 
evolution, at which most of the mass of the baryon compo- 
nent of the universe is in neutral hydrogen and helium. A gas 
of neutral H, is a special case because the following condi- 
tion holds in it: 

The reason is that the time scale 7, for the excitation of rota- 
tional degrees of freedom associated with collisions is much 
longer than the collision time, even at high tempera- 
t u r e ~ . ~ ~ ~ '  Consequently, the position of the singular point, 
t = t, (i.e., x = 0),  is determined primarily by the magni- 
tude of the second viscosity. 

On the basis of the discussion above, we "extend" the 
hydrodynamic equations to the applicability limit of the hy- 
drodynamic approximation and examine the trends in the 
behavior of the system as t, -t. The results found in this 
manner suggest a tentative conclusion; a final conclusion 
can be reached on the basis of the relativistic kinetics 
(through the use of equations analogous to the relativistic 
generalization of the equations of relaxation hydrodyna- 
m i c ~ ~ ~ - ~ ~  ). Accordingly, the analysis in this section of the 
paper is only illustrative. The appearance of this illustration 
is quite natural, since the equations themselves "do not 
know about" their limit of applicability. The formation of a 
dissipative structure (or the appearance of other nonlinear 
effects) in this case is a consequence of the general properties 
of nonlinear systems. 

The coefficients of Eq. ( 1.30) are singular at the critical 
points x(t, ) = 0. As follows from the definition of the kinet- 
ic coefficients for a neutral gas, the time t, is on the order of 
the time scale of the slowest relaxation process in the system 

(for neutral gaseous H, , this time is t, = 2.3. 103t, ) . Strictly 
speaking, all the equations which are involved in this paper 
are valid in the region 0 < x <  1 ( t<  t, ) . However, as we have 
already mentioned, it is interesting to examine the behavior 
of density perturbations in the region x (  t ,  ) -0, which in- 
cludes the vicinity of the critical points x ( t ,  ) = 0, where the 
arguments about thermodynamic quantities retain their 
meaning. 

As was shown in Sec. 2, at x =: 1 the viscous forces and 
heat-transfer processes lead to the ordinary damping of hy- 
drodynamic normal modes. The asymptotic behavior of the 
invariant Jnear the critical points can be studied by expand- 
ing the coefficients of Eq. (1.30) in Laurent series in the 
quantity x. The general solution of ( 1.30) can thus be writ- 
ten as a series in x in two opposite limits in terms of the 
parameter 

R =-- - ~k2/a2cpcvx i i  

(see the Appendix). 
a)  Short waves, E>I. This case corresponds to extreme- 

ly small length scales, on the order of stellar scales and be- 
low. A general solution is constructed through a direct inte- 
gration. Its asymptotic behavior in terms of x (as x-0) is 

where c, ,  c,, and c, are arbitrary constants; 
E = - ( f i / i ) E 2 ,  

B F +  ' )  are the Bernoulli numbers (h = 0,1,2); and 
2 

The relative changes in the density of the medium and 
the velocity are 

For two modes of collective motions of a continuous 
medium, the relative change in density has a power-law sin- 
gularity, and we have 

6) Long waves, K ~ I .  This case corresponds to the 
length scales of most physical interest: from galaxies to ga- 
lactic clusters. Again in this case, a general solution can be 
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constructed through direct integration of the third-order 
equation ( 1.30) near x = 0 (see the Appendix). 

As x-0 we have an expansion of the solution in an 
asymptotic series: 

where qh = - Wx. 
For the relative density change we find two stable solu- 

tions, corresponding to the integration constants c ,  and c,. 
The energy density for one of the acoustic modes has a weak 
logarithmic singularity as x-0: 

but 

Formally, the convergence region of series (3.1 ) - ( 3.5 ) 
is a segment along the time axis bounded on the left and right 
by those singularities of the coefficients of Eq. ( 1.30) which 
are closest to the point under consideration." Consequent- 
ly, perturbations with fairly arbitrary initial conditions, 
specifiedatx(t,)-1, go into the regime (3.1)-(3.5) as the 
critical point is approached. The short-wave region of the 
density perturbation spectrum, in which the solution for 
SE,,,/ 2 has a power-law singularity, is a special region by 
virtue of the dynamics. Consequently, as t -  t,, we see a ten- 
dency toward the formation of a dissipative structure whose 
elements have comparatively small peculiar velocities. In 
the course of this process, the restructuring of the open sys- 
tem should occur in such a way that the conditions for local 
thermodynamic equilibrium are preserved within the ele- 
ments of the structure which arises. 

We have a few words about the physical interpretation 
of the behavior of the density perturbations within the 
framework of this system of LTGS equations. A density 
wave which exists in a continuous medium superposed on a 
homogeneous and isotropic universe excites oscillations of 
two degrees of freedom of the gravitational field (in the lin- 
ear approximation, these two degrees of freedom are inde- 
pendent). At the formal mathematical level, this excitation 
causes the field equations to "become close in the linear in- 
v a r i a n t ~ " ~ ~  M (which corresponds to the rate of change of 
the isotropic part of the field, i ~ )  and N = p  + y. The mo- 
mentum conservation law ( TP,, = 0) of the system consist- 
ing of the matter plus the gravitational field then becomes 

(I-cVu2) a t  T ,yLL.: + mu2 - ] [ I  di i  + - ( c i - c v ) ] - ' ) + T ~  m 

+ ( I -cvuZ)  a t  -I[ I + E(ci-c,lI-' + 4 n ~ ~ ) p = a r n ~ r a p , .  
mu2 di i  m 

The general structure of this conservation law does not 
change, regardless of any gauge condition imposed on the 
components of the metric of the space-time. To put Eq. (3.6) 
in a form which is "invariant" in the LTGS (e.g., if we put 
aside the problems associated with a variation of the proper 
time), we impose the one gauge condition h = 0, without 
rigidly fixing the frame of reference. 

It can be seen from (3.6) that near the critical points 
x = 0 the momentum flux, transported exclusively by the 
isotropic part M of the gravitational field of the sound wave, 
is completely offset by the sink due to viscosity. For the dy- 
namics of the second degree of freedom of the gravitational 
field, described by the "linear invariant" N, however, this 
point is not critical. The effective "turning off' of one of the 
degrees of freedom of the field as a result of momentum 
transport means that the normal energy-momentum trans- 
port dictated by the symmetry properties of the gravitational 
field becomes impossible under the conditions of local ther- 
modynamic equilibrium. When transport processes are par- 
tially turned off, the particle momentum fluxes which pre- 
viously had been carried off instead accumulate, superposed 
on the unperturbed solution which is formed. The buildup of 
particles leads to an increase in the gravitational field (the 
component M increases). The geometry based on the bal- 
ance between the relativistic momentum fluxes becomes un- 
stable. As a result, this is a thermodynamically nonequilibri- 
um system at the critical points t = t,, and it exhibits a 
tendency to form a dissipative structure consisting of grow- 
ing condensations of matter. 

The critical factor 

which (with x = 0 )  determines the time of the nonequilibri- 
um phase transition of the system to a nonuniform state, can 
be written 

where the following crude estimate oft,  is valid: 

Since the dissipative structure forms near t,, the same 
quantity is the time scale for the onset of the instability, t,. 
The specific value t, z t ,  is related to the choice of model for 
describing the internal degrees of freedom of the gas. It will 
be estimated in the following section of this paper (where we 
find t, - 1016 s )  . 

A distinctive feature of this effect is an instability of 
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perturbations for all possible wavelengths. However, the na- 
ture of the catastrophic growth of these perturbations near 
the singular point differs from one wavelengthil to another. 
For long waves, the perturbations of the energy density near 
this point grow as lnx according to (3.5). For short waves, as 
can be seen from (3.2), the instability develops more rapid- 
ly, in a power-law fashion. As we will see in the following 
section of this paper, the picture far from the singular point 
is just the opposite: Substantial growth of long-wave pertur- 
bations begins as early as t- 100t,, and that of short-wave 
perturbations at t- 1000t, (see Figs. 1-5 below). 

This circumstance has physical consequences: The con- 
densation of small masses of matter occurs right at the tran- 
sition point. In other words, the seeds of stars and star clus- 
ters arise within elements of the large-scale structure which - 
is forming in the universe. 

To draw a complete picture of the development of den- 
sity perturbations throughout cosmological evolution, we 
would have to take systematic account of all the effects, ther- 
mal and dissipative, which influence the rate of the gravita- 
tional instability. The only way to solve that problem is to 
numerically integrate Eq. ( 1.30). This numerical integra- 
tion is the subject of the following section of this paper. 

4. NUMERICAL SOLUTIONS 

We first note an important aspect of Eq. ( 1.30), which 
follows directly from its form: Its coefficients and thus its 
solutions depend on the specific heat of the medium, 
c, = c, ( T). Because this equation (the main equation of 
the theory) contains the logarithmic derivatives u/u, the 
derivative of the specific heat with respect to the tempera- 
ture, dc,/dT, should appear in ( 1.30). This derivative van- 
ishes only if the specific heat is constant: c, = const. (The 
condition c, = const is a necessary condition, but not a suf- 
ficient one, for maintaining an adiabatic thermal regime in 
the continuous medium.) Only if the continuous medium 
evolves adiabatically (with u2 = cpT/cvm and 5 = 0) is the 
solution of Eq. ( 1.30) exactly the same as the corresponding 
solution of Lifshitz'  equation^.'^ However, first the specific 
heat of this system, consisting of a gas of Hz molecules, 
changes from c ,  = 5/2 to c, = 3/2 as the temperature of the 
medium decreases. Second, the value c, = 3/2 is not 
reached in this system, even asymptotically, since the T ( t )  
dependence is not adiabatic (the medium warms up as a 
result of the energy dissipation due to the viscosity). That 
this system is not thermally isolated is clear simply from the 
existence of a dimensionless numerical parameter which is a 
measure of the deviation of the temperature from its adiaba- 
tic value: 

It is therefore clear that there is the possibility that ener- 
gy will be pumped from molecular degrees of freedom into 
the energy of the varying gravitational field, h ,  (xa,t). The 
thermal instability does not, on the other hand, give rise to 
new parameters (which depend on the wavelengths of the 
perturbations) to supplement the Jeans parameter. One 
might therefore say that the Jeans instability in an expanding 
universe is distorted by thermal effects. Clearly, a study of 
this distortion must be accompanied by a study of the influ- 

ence of dissipative effects on the evolution of perturbations, 
and self-consistent solutions of Eq. (1.30) must be found. 
Since this is an extremely complicated problem, the only way 
to solve it is to integrate this equation numerically. 

From the equations of motion for the background phys- 
ical variables, (1.6), we find an explicit expression for the 
function u2 = u2(t): 

The temperature Tcan be found from the law describing the 
increase in entropy of the unperturbed solution: 

In order to construct numerical solutions of ( 1.30) over 
the entire range of the physical time t ,  we need to specify 
some specific values of the kinetic coefficients 77, c, and K .  
The kinetic coefficients of a gas consisting of rotationally 
excited Hz molecules can be calculated only through a rigor- 
ous quantum-mechanical analysis of the inelastic scattering 
of molecules. This complicated problem has yet to be finally 
re~olved.~' There are, on the other hand, some experimental 
data and some qualitative theoretical ideas45-49 which indi- 
catethat the rotational relaxation time of a gas of such mole- 
cules (which is long in comparison with the relaxation time 
of the translational degrees of freedom, trot /tp, = !JI - 300, 
even at comparatively high temperatures) at the very least 
does not decrease as the temperature decreases to 7, - 85 K 
(T, = 85 K is the rotational quantum of the Hz molecule). 

We therefore use a model approximation of the viscos- 
ity coefficients, working from the results for the model of 
colliding smooth spheres for trot g t ,  i.e., within the range of 
applicability of classical hydrodynamics50 

where m is the mass of the gas molecule, a, is the kinetic 
cross section, and 7, and x, are numerical coefficients of 
order unity. 

We can now find a rough estimate of the rotational re- 
laxation time of the system: 

where I,, is a length scale for the dissipation in the system. 
Substituting the standard values of the physical con- 

stants into (4.3), and substituting in the value 
(7, = 3800 K )  of the temperature at the time of recombi- 
nation (t, = 5- 10" s), we find an estimate of the time tro, 
(in cgs units) : 

We can now move on to the numerical integration of 
( 1.30) for various wavelengths il, specifying the initial con- 
ditions at the recombination time t,, and using the solutions 
(2.4)-(2.5) and (2.10)-(2.11) to classify the hydrodynam- 
ic normal modes. 

We determine the mass of the perturbation in the stan- 
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FIG. 1. Behavior of the reduced amplitude 
A = ( t )  (&,,,/Z) / ( t,) (SE,,,/ E )  for a growing acoustic mode in the re- 
gion of long perturbation waves (?Dl = 2. 101O?no). Everywhere, the 
dashed line shows the Lifshitz solution, found without consideration of 
dissipation. 

dard way, 

and we construct numerical solutions under the condition 
9l = const. 

Figure 1 shows SE,,, /.F as a function oft for the growing 
Lifshitz solution at wavelengths shorter than the distance to 
the horizon: ut<i14t (9l = 2-  10'0910 is the scale of the 
galaxy). The superadiabatic growth of a relative density per- 
turbation in the early stages of evolution in this model is a 
consequence of a thermal effect, the decrease in the specific 
heat of the rotational degrees of freedom of the gas at low 
temperatures. The reason for this effect is that the tempera- 
ture of the medium decreases, and the energy which is re- 
leased goes into collective excitations. This initial growth 
intensifies smoothly as the system approaches the critical 
point t = t, - 1016 s. The evolution of the system thereafter 
can be described only by a nonlinear theory. 

Figures 2-5 show SE,,, /Z as a function of t  for an acous- 
tic mode at short wavelengths, A 9 ut (9l = 7910 is the stel- 
lar scale). We can trace the breakup of the density wave with 
increasing perturbation wavelength in the course of the evo- 
lution. We can also trace the anomalous behavior of the solu- 
tions near the critical point t = t,. 

Figures 6-7 show the function 

as a function of t  for a relaxation mode at short wavelengths, 
i1 < ut (9l = 7W0 is the stellar scale). The initial evolution 
regime, with SE~,,,G = const, is disrupted by the thermal 

FIG. 3. The reduced amplitude for an acoustic mode at short perturbation 
wavelengths (%n = 7 E o ) ,  for t / r ,~(10,200) .  

effect and by the damping due to the thermal conductivity. 
An anomalous growth of the perturbations then occurs near 
t =  t,. 

A general feature of these numerical solutions is that 
the singular point at which the anomalous growth of the 
density perturbations occurs is shifted in the physical direc- . . 

tion away from the value predicted by the asymptotic solu- 
tion as x -+ 0. 

Specifically, the singularity in the spectrum of pertur- 
bations SE,,,/ Z+ cc is reached at the parameter value 
x -- 0.123 ( t  f -- 1856t, ). Here we find a cooperative effect: 
the appearance of bifurcation in terms of the parameters x 
[see (4.1 ) ] (for the unperturbed solution) and x. 

5. EFFECT OF COLD DARK MATTER ON A NONEQUlLlBRlUM 
PHASE TRANSITION IN THE BARYON SUBSYSTEM 

The astrophysical observational data available on the 
dynamics of large masses of matter in the local galaxy indi- 
cate that the universe contains a substantial amount of dif- 
fuse dark matter. Data on the abundances of the light ele- 
ments, interpreted in accordance with the present 
understanding of the primordial nucleosynthesis, suggest 
that most of the mass is of a nonbaryonic nature and is non- 
di~sipative.~' Dark-matter models usually invoke various 
types of neutrinos and other particles predicted by gauge 
theories or supergauge theories. 

Our purpose here is to determine how cold dark matter, 
i.e., matter consisting of heavy particles, would affect the 
nonequilibrium phase transition in the baryon subsystem. 
These particles have a small velocity spread in the post-re- 
combination epoch, so their temperatures and pressures are 
low. The cold dark matter and the baryons evidently form 
independent subsystems, which are coupled only by the gen- 

FIG. 2. The reduced amplitude for an acoustic modeat short perturbation FIG. 4. The reduced amplitude for an acoustic mode in the region of short 
wavelengths (YJt = 7Wa ), for t / t , e ( l ,  10). perturbation wavelengths (?n = 7TRo ), for t / t ,~ (200 ,  1000). 
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FIG. 5. The reduced amplitude for an acoustic mode in the region of short FIG, 7, ~h~ reduced amplitude for the thermal mode in the region of short 
perturbation wavelengths (W = 7W, ), t  / t ,~ (1000,  1856). perturbation wavelengths (W = 7 m o ) ,  t / t , ~ ( l M ) O ,  1856). 

era1 gravitational field. In other words, this is a heterogen- 
eous system. The gravitational field of the dark matter of 
course has a dominant effect on the system. 

Even before we carry out any calculations, we can see 
certain qualitative features of the nature of a nonequilibrium 
phase transition in a heterogeneous cosmological medium. 
In the first place, a density wave propagating through the 
baryon subsystem changes the overall gravitational field of 
the system. This change in the field in turn will cause a leak- 
age of momentum into the dark-matter subsystem, and the 
density of the matter of the latter subsystem will be redistri- 
buted. In other words, a new sink appears for the momentum 
carried by density perturbations propagating in the baryon 
subsystem. The critical condition for the degree of freedom 
M should therefore become more stringent than (3.6), and 
the numerical factor 0, will appear in the condition for a 
transition. This factor fixes the ratio of the flux density of 
momentum which has remained in the subsystem to the total 
momentum flux density. This factor is determined by the 
unperturbed solution and is equal to the ratio of the density 
of the baryon subsystem to the total density of matter in the 
universe in the comoving frame of reference (or it is equal to 
the mass ratio 0, = % J l b / % J l ) .  Consequently, the following is 
a highly accurate condition for the occurrence of the phase 
transition: 

where t, is the time scale (which we saw earlier) for the 
relaxation of a homogeneous universe whose density is at the 
critical level and whose matter consists entirely of baryons. 

Equation (5.1 ) gives a good description of two possible 
limiting cases: the case in which there is no dark matter and 

FIG. 6. The reduced amplitude for the thermal mode in the region of short 
perturbation wavelengths (Dl = 7W0 ), r / t , ~ (  1, 1000). 

the case in which dark matter is preponderant. 
1 ) If there is no dark matter, we have f ib  = 1, and the 

physics of the transition is as described in detail earlier. 
2 )  If the dark matter dominates, we have 0, -0, and 

no transition occurs, since the gravitational field of the dark 
matter simply annihilates any perturbations in the baryon 
subsystem. 

If, on the other hand, 0, is nonzero but small, we can 
say that the critical condition (5.1) holds and that the tran- 
sition time shifts toward the recombination time, because 
the condition for a transition becomes more stringent than 
that in a model without dark matter. 

Equation (5.1 ) can be put in the standard form by tak- 
ing account of the change in the relaxation time of the bary- 
on subsystem as a result of the decrease in the density of that 
subsystem: 

However, it is better to work with the transition condition as 
in (5.1 ), since the time t,, is determined by the parameters of 
the background solution. 

As a mathematical model describing the heterogeneous 
cosmological system, we consider two-fluid hydrodynamics: 

The subscript (dm)  stands for the dark matter, while the ( b )  
stands for the baryon subsystem. Equations (5.2)-(5.5 ) 
have two new equations, not present in ( 1. I)-( 1.3). These 
new equations are the conservation law of the number of 
particles making up the dark-matter subsystem [Eq. (5.3) ] 
and hydrodynamic equations for this subsystem [Eq. 
(5.411. 

Let us linearize system (5.3)-(5.6) about (1.5). As be- 
fore, we refrain from choosing a frame of reference for the 
perturbations. The entire discussion will be conducted in a 
class of frames of reference having a common proper time, 
under the one additional condition h = 0. For the pertur- 
bation of the pressure of the baryon subsystem, we use the 
ansatz described earlier, ( 1.15) : 
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1 where 
I 

Going through this procedure, we find a system of equations 
which is closed in terms of the "quasi-invariants" M and N: 

Equation (5.7) of this system can be integrated. It gives 
us the well known hydrodynamic solution for 
v,,,, = const. This result leads to an inconsequential trivial 
contribution from the velocities of the dark matter to Eq. 
(5.8). 

Using the algorithm described in Sec. 2 for solving a 
system of equations of the form (5.8)-(5.11), we reduce the 
latter system to an equation which can be used to study the 
dynamics of degree of freedom M. We single out the critical 
factor X, which is responsible for the anomalous dynamics 
near the point of the phase transition: 

XM+L(N,  N ,  N ,  N ,  6 p 1 ,  6p l )=0 ,  (5.12) 

x=(I-r,) (I-Q~) 

where x = 1 - t,/t is the critical factor of the purely baryon 
problem, which was defined earlier [see ( 1.28) 1, and 

Substituting (5.12) into (5. lo),  we find a fourth-order 
equation for N. Its solution gives us exhaustive information 
about the system. However, obvious physical considerations 
based on the correspondence principle, along with the com- 
ments back in Sec. 3 regarding equations of the form in 
(5.12), indicate that the only way to establish that this sys- 
tem has critical properties is to study the resonant denomi- 
nator X. 

Substituting the cosmological solution for a into X, we 
find the following expression, which holds far from the point 
t z t , :  

This expression is good for a qualitative analysis and rough 
estimates. Comparison of this expression with the exact 
expression (5.13) shows that the simple power law will in 
general be slightly distorted by the viscosity. (Actually, this 
distortion is slight, since the transition condition becomes 
more stringent, and its shifts are closer to the recombination 
time. ) 

To estimate the time scale of the evolution of the gravi- 
tational field of the system up to the phase-transition point, 
we note that the time evolution of the temperature can, 
roughly speaking, be regarded as adiabatic ( T a  t - 4'5), be- 
cause the conditions for the occurrence of the phase transi- 
tion become more stringent. This circumstance leads in turn 
to the estimate t , ,  =: (Rb)5'7t, of the transition time. The 
transition time thus moves closer to the recombination time 
(by a factor of order 5 for the value R, = 10) than in the 
purely baryon problem (t,  -- lo t6  s) .  This shift in time is not 
very important quantitatively, in view of our rough estimate 
oft,. 

CONCLUSION 

It follows from the form of the solutions constructed 
here that in the late stages of cosmological evolution, after 
the recombination of the hydrogen plasma (between 
t = 1014 s and t = 1016 s ) ,  the amplitude of the density per- 
turbations increases 1.5 orders of magnitude more than in 
the standard linear theory of gravitational stability (or in a 
model with the Jeans instability superposed on an expanding 
background' ), even if the density fluctuations start from a 
low level. Consequently, at S E ~ ~ , , / ~ -  1 nonlinear processes 
may come into play in the system. They should lead to the 
formation of growing condensations of matter, in a process 
accompanied by heating of the medium and the formation of 
structure. While the initial level of density fluctuations in the 
universe is low, and structure does not manage to form in the 
universe before the stage in which cold neutral hydrogen 
becomes predominant, at t=. 1016 s there is a tendency to- 
ward the formation of dissipative structure, as the result of 
an explosive instability. 

The theory of the branching of solutions of differential 
equations within the framework of standard hydrodynamics 
is inadequate for studying this process and for confirming 
the existence of a singular regime of the instability of the 
solutions constructed here.51 Since the effect under consid- 
eration here lies right at the boundary of the range of appli- 
cability of relativistic hydrodynamics, the methods of rela- 
tivistic kinetics must be used even in the linear theory. 
Specifically, we know that many important aspects of molec- 
ular systems with relaxing internal degrees of freedom can be 
analyzed on the basis of a relaxation hydrodynamics,42 in 
which case the physics of the dissipative processes is sub- 
stantially enriched by relaxation The effect of 
the dark matter of the universe on the growth of perturba- 
tions in the baryon subsystem of the universe also requires 
further research. 

In summary, the physics of the processes which occur in 
the hot universe after recombination is rather complex. The 
results which have been found in turn pose new problems. A 
study of these new problems should shed some light on the 
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origin of structure in the universe. These problems can be 
solved within the framework of a more general and more 
comprehensive theory. 

APPENDIX. SOLUTIONS OF THE EQUATIONS OF THE 
LINEAR THEORY OF GRAVITATIONAL STABILITY NEAR A 
CRITICAL POINT 

We expand the coefficients in ( 1.30) in Laurent series 
in the parameter x  near the singular point x  = 0. We intro- 
duce the change of variables t  = t ( x ) .  We then obtain 

where 

Here the prime means the derivative with respect to x. 
The invariant characteristics of the perturbations of the 

density and velocity of matter near the point x  = 0 are 

where 

Equation ( A l )  can be written in the following form 
near the point x  = 0: 

S1 J S1 
J"' +, (R+I) - - -H(H+l)J=O. 

x x xx2 

The point x  = 0 is an irregular singular point of Eq. ( A 4 ) ,  so 
we need to make some further approximations in order to 
find a solution of this equation near this point. 

We construct a solution of ( A 4 )  for two limiting cases 
in terms of the parameter K. 

a )  Short waves, Z$ I .  In this case, equation ( A 4 )  be- 
comes 

where 

A  solution of (AS)  is the Mayer G f~nct ion:~ '  
h m 

where 
I 

Here B :h + are the Bernoulli numbers of order h + 1 and 
p# 1, and 

The asymptotic behavior of the solution ( A 6 )  near the 
singular point can be written in the form 

J= -c, {b02 (0,O) RZx2+0 (x3))  +c2 {bll (0, I) RX ln ($72) 
+o[.r2(ln (Ra) ) ] } - ~ ~ { b , ~  (0,2) (In (Rx) ) Z + O [ ~ ( l n  ( a x )  )'I). 

(A71 

Substituting (A6)  into ( A 2 )  and ( A 3 ) ,  we find SE~,,\./ E, Ynv 
in the form 

(A81 

li 1 -  = ------------ 
Z J , ,  

Cia"-iiln+ri2/a2) 

x (-c, [b,, (0, O)R2x2+0 (x)]  +c2[blt ( 0 , l )  Rx ln(Wx) 

b) Long waves, Eel. The asymptotic form of ( A 4 )  in 
this case is conveniently constructed directly from (A1 ) . We 
expand (A1 ) in a series in k for K< 1. The resulting equa- 
tion is of the exactly integrable type 

Equation (A10) has the general solution 

where J2 (z), Y2 ( z ) ,  and s - ,,, ( z )  are Bessel, Weber, and 
Lommel functions, respectively, and $ = - R/x. 

In the limit x  - 0 we have the following expansion in an 
asymptotic series: 

The invariant physical quantities are therefore 

The energy density of the matter thus has a logarithmic sin- 
gularity as x-0, but 
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I '  I t will be shown below that the LTGS equations reduce to a singularly 
perturbed third-order equation which is nonlinear in several param- 
eters. As a result, the solutions of this third-order equation have bifurca- 
tion properties. 

*'In other words, the situation is analogous to that which prevails in the 
theory of a free quantum field in a curved ~pace - t ime .~ '~~~  

3' We are ignoring terms which are relativistically small, of orderT/m in 
comparison with the terms we have written out, in the dissipative part of 
the energy-momentum tensor and the heat-flux vector. 

4' The ratio of the mass of the baryon subsystem to the mass of the total 
system, 0, = lD7,/%Jl, is usually estimated to be O.O1<nb<O.l (Refs. 4 
and 6).  

I Y Z .  Zel'dovich and I. D. Novikov, The Structure and Evolution of the 
Universe, Nauka, Moscow, 1975 (Univ. Chicago, Chicago, 1983). 

'S. Weinberg, Gravitarion and Cosmologv, Wiley, New York, 1972 
(Russ. transl., Mir, Moscow, 1976). 

3P. J. Peebles, The Large-Scale Structure of the Universe, Princeton 
Univ., Princeton, New Jersey, 1980 (Russ. transl., Mir, Moscow, 1983). 
J. Silk, in Physics Outside the Soviet Union. Series A. Research (eds. A. 
S. Borovik-Romanov and R. Z. Sagdeev) (Russ. transl., Mir, Moscow, 
1989, p. 142). 

'E. W. Kolb, Proceedings of NATO Advanced Study Institute, Cargese, 
15-31 July 1986, New York, 1987, p. 307. 
J. Primack and D. Seckel, Ann. Rev. Nucl. Par. Sci. 38,75 1, Palo Alto, 
Calif. (1988). 
G. G. Raffelt, Conference on Neutrino Masses and Neutrino Astrophys- 
ics, Including Supernova 1987a, Telemark (Ashland, Wisc., 1987), Sin- 
gapore, 1987, p. 347. 

'5. Ellis, J. Hagelin, S. Keeley er al., Phys. Lett. B 209, 283 (1988). 
9T. M. Helliwell and D. A. Konkowsky, Phys. Lett. A 143,338 (1990). 
I0S. M. Barr and A. M. Matheson, Phys. Rev. D 39,412 ( 1989). 
"R. J. Sherrer and W. H. Press, Phys. Rev. D 39,371 (1989). 
1 2 ~ .  V. Berlin, E. V. Bulaenko, V. V. Vitkowsky et al., in Early Evolution 

of the Universe and Present Structure, Symposium 104, International 
Astronomical Union (Crete, 1982), Dordrecht, 1983, p. 121. 

"A. A. Starobinskii, Soobshch. Spets. Astrofiz. Observ. Akad. Nauk 
SSSR 53, 57 (1987). 

I4C. J. Hogan and R. B. Partridge, Astrophys. J. 341,29 (1989). 
'' G. M. Bernstein, M. L. Fisher, P. L. Richard etal., Astrophys. J. 337, 1 

(1989). 
"L. A. Page, E. S. Cheng, and S. S. Meyer, Astrophys. J. 335, 1 (1990). 
"I. Prigogine, From Being to Becoming, W .  H. Freeman, San Francisco, 

1980 (Russ. transl., Nauka, Moscow, 1985). 
l 8  G. M. Zaslavskii and R. Z. Sagdeev, Nonlinear Physics:From the Pendu- 

lum to Turbulence and Chaos, Mir, Moscow, 1988 (Harwood Aca- 
demic, New York, 1988). 

I9H. G. Schuster, Deterministic Chaos, Physik Verlag, 1985 (Russ. 
transl., Mir, Moscow, 1988). 

'OE. M. Lifshitz, Zh. Eksp Teor. Fiz. 16, 587 (1946). 
21E. M. Lifshits and I. M. Khalatnikov, Usp. Fiz. Nauk 80, 391 ( 1963) 

[Sov. Phys. Usp. 6,495 ( 1964) 1. 
22H. Sato, Progr. Theor. Phys. 45,370 (1971). 
23 G. M. Vereshkov, Yu. S. Grishkan, S. V. Ivanov etal., Zh. Eksp. Teor. 

Fiz. 73, 1985 (1977) [Sov. Phys. JETP 46, 1041 (1977)l. 
14V. A. Beilin, G. M. Vereshkov, Yu. S. Grishkan, N. M. Ivanov, and A. 

N. Poltavtsev, Zh. Eksp. Teor. Fiz. 78,2081 (1980) [Sov. Phys. JETP 
51, 1045 (1980)l. 

25 G. M. Vereshkov, Yu. S. Grishkan, and N. V. Pelikhov, Izv. Sev. Kav- 
kazsk. Nauchn. Tsentra Vyssh. Shk. Estestv. Nauki No. 2,78 (1974). 

26S. W. Hawking, Astrophys. J. 145, 544 (1966). 
27 J. M. Bardeen, Phys. Rev. D 22, 1980 (1982). 
28 H. Kodama and M. Sasaki, Progr. Theor. Phys. Suppl. 78, 1 ( 1984). 
29N. Gouda and M. Sasaki, Progr. Theor. Phys. 76, 1016 (1986). 
30B. Bednarz, Phys. Rev. D 31,2674 (1985). 
"B. Ratra, Phys. Rev. D 38,2399 (1985). 
"G. M. Vereshkovand Yu. S. Grishkan, Izv. Vyssh. Uchebn. Zaved., Fiz. 

30, 123 (1987). 
33 L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: The 

Classical Theory of Fields, Vol. 2, Nauka, Moscow, 1986 (previous edi- 
tions of this book have been published in English translation by Perga- 
mon, New York). 

34L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Nauka, Moscow, 
1986 (Pergamon, Oxford, 1987). 

35L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I, Nauka, 
Moscow, 1975 (Pergamon, New York, 1980). 

-" R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, 
Wiley, New York, 1975 (Russ. transl., Mir, Moscow, 1978). 

" M. V. Fedoryuk, Asymptotic Methods forLinear Differential Equations, 
Nauka, Moscow, 1983. 

"A. Erdilyi (editor), Higher Transcendental Functions, Val. 2, 
McGraw-Hill, New York (Russ. transl., Nauka, Moscow, 1974). 

39L. V. Leskov and F. A. Savin, Usp. Fiz. Nauk 72, 741 (1960) [Sov. 
Phys. Usp. 3,912 (1960)l. 

40 Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High- 
Temperature Hydrodynamic Phenomena, Fizmatgiz, Moscow, 1963 
(Academic, New York, 1966). 

41 J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport 
Processes in Gases, North-Holland, Amsterdam, 1972 (Russ. transl., 
Mir, Moscow, 1976). 

42V. M. Zhdanov and M. Ya. Alievskii, Transport and Relaxation Pro- 
cesses in Molecular Gases, Nauka, Moscow, 1989. 

43 M. N. Kogan, Dynamics of Rarefied Gases: Kinetic Theory, Fizmatgiz, 
Moscow, 1967. 

44 S. V. Vallander, E. A. Nagnibeda, and M. A. Rydalevskaya, Some Ques- 
tions in the Kinetic Theory of Chemically Reactive Gases, Izd. LGU, 
Leningrad, 1977. 

45S. A. Losev and A. I. Osipov, Usp. Fiz. Nauk 74, 393 (1961) [Sov. 
Phys. Usp. 4,525 ( 1961) 1. 

46K. Takayanagi, Phys. Rev. 110, 1235 (1958). 
47G. Engiot and H. Rabitz, Phys. Rev. A 10,2187 (1974). 
48S. J. Green, Chem. Phys. 62, 2271 (1975). 
49 W. E. Kohler and J. Shaefer, J. Chem. Phys. 78,4862 (1983). 
50E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Nauka, Moscow, 

1979 (Pergamon, New York, 1981 ). 
5' M. M. Vainberg and V. A. Trenogin, Theory of the Branching of Solu- 

tions of Nonlinear Equations, Nauka, Moscow, 1969. 
52 E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation in Shock 

Waves, Springer, Berlin, 1967. 
53 A. I. Osipov and A. V. Uvarov, Phys. Lett. 145,247 (1988). 

Translated by D. Parsons 

215 Sov. Phys. JETP 74 (2), February 1992 G. M. Vereshkov and Yu. S. Grishkan 215 


