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The structure of the "density-density" correlation function of conduction electrons of a normal 
metal is explained. The connection between the asymptotic behavior of the correlation function 
and the local geometry of the Fermi surface is established. The reconstruction of the correlation 
function during an electronic topological transition is considered. It is shown that the asymptotic 
Ruderman-Kittel exchange integral can be expressed in terms of an asymptote of a correlation 
function. 

1. INTRODUCTION 
v(rI, r.) = - I exp(-ibrI+ib1r2) 

The effect of a complex geometry of the Fermi surface * b b S  

(FS) and of its variation as a result of the electron-topologi- 
cal transition (ETT)' on the "density-density" spatial cor- 
relation function of conduction electrons of a normal metal 
is analyzed in the present article. The results are valid at low 
temperatures and for sufficiently perfect crystals: thermal 
effects and finite mean free paths have not been taken into 
account. The validity range of the results is estimated below. 

Let An ( r )  = n ( r )  - Ti be the deviation of the electron 
density n ( r )  from its mean value Ti. Then2 

Describing the stationary states of electrons in a metal by 
using Bloch wave functions 

where q is the quasimomentum, s is the band number, and 
u,, ( r )  is invariant to translational symmetry transforma- 
tions of the crystal lattice, expression ( 1)  can be written in 
the form (Fermi-liquid effects are neglected): 

It is seen that v(r ,  ,r2 ) is not a function of the difference of its 
arguments r = r, - r ,  . Thus, for constant r the function 
v(r l  ,r2 ) is periodic in r ,  , with periods equal to those of the 
crystal lattice. 

Equation (6)  generalizes the "density-density" corre- 
lation function of an electron gas in free space at T = 0. It is 
derived in the same way as the expression for the correlation 
function of a degenerate Fermi gas (cf. Ref. 2).  

A characteristic feature of the correlation function of a 
degenerate electron gas at T =  0 is the nonexponential 
damping of oscillations with period fi/2pF, where p, is the 
radius of the Fermi-sphere (Friedel oscillations).' It can be 
said that Eq. (6)  describes Friedel oscillations for the case of 
an electron gas in a metal. 

The occurrence of nonexponentially damped correla- 
tions when r increases (where r = / r ( ) is a consequence of 

2 the gradual filling of reciprocal space by electrons at T =  0. 

v (r,, r2) = - --=. I J a.. exp[; q (r2-ri)] It is shown below that the complex shape of the FS leads not 
8 only to a change in the oscillation periods (in comparison 

with a free electron gas),2.' but also to their damping as 

x uq; (r,) up. (r21-7 d3q I . (3)  r-co. 
(2nf2) The asymptotic behavior of the function v( r ,  ,r, ) for 

large r is determined by the singularities of its Fourier-com- 
The integral is carried out over the first Brillouin zone, while ponents v( ~ , k )  as a function of k = k .  r/r ( v is the sample 

volume) : 

( 4 )  1 
v (K, k)  = -J v (r,, rl) exp (-iKr,-ikr) d'r d'lr, vz 

is the electron distribution function in quasimomentum at 
T = 0, EF is the Fermi energy, and E, (q) is the electron ener- = -'r, C [J Aq.'(b,)Aq.(b~)Aq~.~(br) 

"", 
gy in state (2).  It is convenient to expand the function u,, ( r )  
in a Fourier series 

d3q' d3q 
x A,'-,.(b4) n q a n q f r -  6 (4'-q+3 (k-b))-------. 

(2518) ' (7)  

u q a ( r ) = z  e tbrAq8(b);  ( 5 )  The second summation sign denotes summation over the re- 
b 

ciprocal lattice vectors b, b, , b,, b,, and b, satisfying the 
where the summation is carried out over reciprocal lattice condition b + b, - b, + b, - b, = 0. Since A,, (b, ) is a 
vectors b (if a is any lattice period, then a b / 2 ~  is an integer). smooth function of q, we are dealing in fact with the singu- 
Then larities of the integrals, of the type 
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FIG. 1 .  Spherical Fermi surface and its shifted analog; volume of shaded 
region is the value of integral ( 8 ) .  

\' 

where b is a reciprocal lattice vector. The value of the inte- 
gral (8) is the volume of the intersection of the FS band s 
with the FS band s' shifted by fi(k - K) (this region is 
shaded in Fig. 1 ) . 

For simplicity it is assumed in the following that there 
exists only one conduction band in the metal, and the sub- 
script s is omitted in all equations. The resultant equations 
can be easily extended to include a more general case. 

For a given direction of the vector r the asymptote of the 
correlation function (6)  is determined by the singularities of 
integral (8)  taken over the two-component vector 
k, = k - kr/r, where k = k.r/r, as a function of k. The k 
values at which the function 

has singularities are those values of the wave vector compo- 
nents along the direction r/r for which the possibility ap- 
pears (or disappears) of tangency (for some k, ) of the FS to 
its shifted analog. We denote them by kJ. In the case of a free 
electron gas there exists only one kJ value, equal to 2pF/%, 
determining the period of Friedel oscillations. In the general 
case the wave vectors of Friedel oscillations are the distances 
between the planes perpendicular to r  and tangent to the FS. 

The vectors in q-space that join all possible pairs of 
points of planes tangent to the FS and parallel to each other 
determine not only the periods of the Friedel oscillations but 
also the values of wave vectors for which singularities are 
observed in the phonon spectrum. If the electron velocities 
are antiparallel at the tangency points, these are the well- 
known Migdal-Kohn ~ingularities,~.~ while if the velocities 
are parallel these are the commonly called Taylor singulari- 
ties (see Refs. 6 and 7).  

The use of expressions periodic in q-space requires tran- 
sition from the first Brillouin zone to an extended q-space, 
and consequently the FS must be understood to mean a peri- 
odic surface8 and not its portion within the first Brillouin 
zone.2' This fact alone complicates substantially the form of 
the correlation function and of the Friedel oscillations. We 
illustrate this with a simple example. Let the FS be a sphere 
(such as for Na, for example). At first glance this implies 
that, independently of the direction of r, the wave period of 
Friedel oscillations is fi/2pF (as would have been the case for 
a Fermi-gas with an isotropic dispersion equation). From 
Fig. 2, however, it is seen that this is not the case: additional 
terms appear in the asymptote of the correlation function, 
while the wave-number oscillations corresponding to them 
depend substantially on the direction of the vector r, and for 

FIG. 2 .  Spherical Fermi surface periodically repeating in extended q- 
space. Shaded part is the FS located in the first Brillouin zone. The asymp- 
totic correlation function has a term oscillating with period 2?r/k,,, where 
fik, is the distance between planes perpendicular to the direction of r / r  
and tangent to the FS at different cells of reciprocal space. The k,, value 
depends on the direction of r / r .  

some of its directions they vanish linearly with the angle. 
These terms contain the coefficients A, (b)  in various combi- 
nations (q is located on the FS). 

The law according to which Friedel oscillations decay 
as r- co (for a fixed direction of r )  is determined by the local 
FS geometry at the tangency points. Thus, if the FS is a 
sphere, the second derivative of the function v(K,k) with 
respect to k has a jump at the singular points k, (for exam- 
ple, at the point K,  = (r/r) (2p,/fi) ). In that case the 
damping of Friedel oscillations is determined by the factor 
r - (see Ref. 2).  If the FS is cylindrical, and the vector r is 
perpendicular to its symmetry axis, the singularity of the 
function v(K,k) is stronger (compare with Ref. 9 ) :  for 
k-k, 

In these cases the singularities of the quantities v(K,k) as 
functions of k are alike at k = 0, namely, discontinuities of 
the first derivative. 

It seems to us that in the considered problem of the 
effect of FS geometry on the correlation function of conduc- 
tion electrons we must distinguish between two questions. 

The first is the effect of the local FS geometry (the exis- 
tence of parabolic points, flattening points, and so 
manifested by the strong dependence of v(r l  ,r, ) on the di- 
rection of r/r. 

Section 2 is devoted to this question. The second is that 
of ETT effect on the correlation function (Sec. 4). The struc- 
ture of the correlation function of conduction electrons is 
investigated primarily in Sec. 3. 

In a comparatively crude description of an ETT due to 
formation of a new cavity, it can be sometimes assumed that 
a toroid, and not an ellipsoid, is f ~ r m e d . ' ~ , ' ~  HOW this affects 
the correlation function is considered in Sec. 5. 

It is shown in Sec. 6 how the results of Sec. 2-5 can be 
used to investigate RKKY interactions.I4 Finally, in the 
concluding Sec. 7 we discuss the validity of the approach 
used and of the results. 

The influence of local FS geometry and of topological 
and generalized topological transitions on the properties of 
metals has been discussed numerous times. Without being 
able to mention all the studies of this topic, we only point out 
several review articles, where the reader can find a relatively 
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complete literature (see Refs. 10, 1 1 ,  15, 16),  and we also 
point out one of the most recent publications known to us on 
the properties of metals during ETT.I7 The present paper is 
close in spirit to the articles quoted. 

2. EFFECT OF LOCAL FS GEOMETRY ON THE FORM OF 
CORRELATION FUNCTIONS 

According to ( 6 ) ,  the correlation function is 

where r = r, - r ,  , while in the integral 

I (b ,  b', r )  = J rikr [ [S A,.* ( b )  A,~. (b ' )d~k, ]  dk ( 1 1  

the integration is over the volume of the FS within the first 
Brillouin zone ( k  = q/f i ,  k = k . r / r ) .  

The asymptotic behavior of the function v ( r ,  , r , )  at 
large r is determined by the singularities of the internal inte- 
gra13' (over k,  ) as a function of k.  Owing to the smoothness 
of the function A,, ( b ) ,  these singularities coincide with 
those of the area S(k,&,)  of the intersection of the FS with 
the plane k = const as k tends to k,, where k, = k, . r / r  and 
k, = k, ( r / r )  are tangency points of the FS with the secant 
plane. At large r the asymptote of integral ( 1 1  ) is 

I (b ,  b', r) = flikj ( b )  ~ . t ~ ( b ' ) ~ ~  (r)exP(ikjr). ( 12) 
j 

Our task is to explain how the local FS geometry at the tan- 
gency point k = k, affects the shape of the function I ,  ( r )  
corresponding to this point. 

If the FS can be approximated near the tangency point 
by a second-order surface, this point is hyperbolic or ellip- 
tic.18 We consider these and other cases in succession. 

a) Hyperbolic point 

We select the 6, axis in k-space along r / r ,  so that 6, = 0 
at the tangency point ( k  = k ,  ). In the plane 6, = 0 the g, 
and 6, axes are selected along the FS lines of curvature.18 
The FS deflection from the plane k = k ,  near the tangency 
point is then 

We assume that A > 0 and B > 0.4' Besides, it is assumed 
[here and in Eqs. ( 2 6 ) ,  ( 2 8 ) ,  ( 3 2 ) ,  ( 3 5 )  below] that 
~ [ f i ( k ,  + 5) ] < E, withg3 > C3 (6, ,fZ ); in the opposite case 
the sign of the response must be reversed [see Eq. ( 2 4 )  be- 
low, and, correspondingly, Eqs. ( 2 7 ) ,  (34), ( 38 ) ,  ( 4 1 ) ] .  
Following variable replacement we have 

Our purpose is to calculate the integral 

in a small neighborhood ( 6 4  k,) of the point g, = 0 .  The 
integration over d ' k ,  is carried out over the area of the FS 
intersection with the plane 6, = const. To distinguish the 

singularity of interest, one may take the integral not over the 
entire area of this cross section, but over a small portion of it, 
for which 

Denoting the area of this part of the cross section by 
S,, ( k ,  + 6, ,EF 1, one has 

b 

r , , ( r )  = J e " ~ ~  sT(kh+E,. rF)dE3. ( 1 7 )  
- 6  

In the neighborhood of the tangency point, where )c,) < S 
and condition ( 16) is satisfied, one may use Eq. ( 14) : 

(AB)  'I' ST 

With the intention of calculating the leading term in the as- 
ymptote of the integral I,, ( r ) ,  we can retain in ( 1 7 )  only 
those terms of expression ( 18) for S,, whose singularity at 
6, = 0 is the most pronounced. Rewriting ( 17) in the form 

6 

we have 
n 

2i (7-E3) + y>I2 
Th ( r )  = - sin (E3r) - E 3  In 1 

(AB)  ' I 3  ( Y - E 3 ) ' l l  - yK 1 dE3. ( 2 0 )  

Finally, putting S< y, expanding the logarithmic argument 
in g3 /y ,  and carrying out the integrati~n,~'  we obtain 

,in 
IF, ( r )  = 

(AB)  '" r2 ' 

and the corresponding contribution to the asymptotic inte- 
gral ( 1 1 ) is [see Eq. ( 12) ] 

n 
A , , ; ~ ( ~ ) A , ~ ~  (b' )exp (ikhr+in/2) 

r2 (AB)% ' 

It is noted that the quantities A and B can be expressed 
in terms of the coefficients of the second quadratic FS form 
at the tangency point.I8 

We estimate the range of validity of the results ( 2 1 ) ,  
( 2 2 ) .  For this it is necessary to determine when the terms 
discarded from ( 13) and ( 1 4 )  are, indeed, insignificant. 

Let, for example, 

E S  ( E l ,  E 2 )  =-AEi2f BEr+Cg,3, ( 2 3 )  

i.e., following variable replacement we have 

Estimating the correction appearing in the expression for S,, 
isolating in it the singular term, and requiring smallness of 
the contribution of this term to the integral I,, ( r ) ,  we obtain 
the condition 
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If the FS is such that there exists a single scale -+ik,, we 
then obtain from (25) the condition r)  l/k, (see foot- 
note4' ); in this case the validity conditions of Eqs. (27), 
(3  1 ), (33), (36) that will be derived below are similar. 

We have treated in particular detail the case of a para- 
bolic tangency point, so as to demonstrate the method of 
singularity extraction. Results similarly obtained for other 
cases are provided below. 

b) Elliptic point 

At an elliptic tangency point we have, instead of ( 13 ) , 

This case is much simpler than the preceding one. Instead of 
(2 1 ) one easily obtains: 

n 
I, (r) = - 

r2 (AB) '" 

The validity condition (25) refers to this case as well. 

c) Parabolic point 

The regions of elliptic and hyperbolic points on the FS 
are separated by lines of parabolic points. 

At a parabolic point one of the principal curvatures of 
the surface vanishes, and for the deviation of the FS from the 
tangent plane near the point of tangency one has 

for definiteness it is assumed that B > 0.6' We note that Eq. 
(28) has been written down for the case in which the tangen- 
cy point is a parabolic point of general position [see Eq. (61 ) 
below]. Changing variables, we obtain 

Further calculations are carried out as in the case of a hyper- 
bolic point. We only note that in determining the quantity S, 
one must replace here ( 16) by 

As a result, the function I ( r )  in (12) corresponding to the 
parabolic tangency point is given by 

23CP[sin(n/12) I r(=/8) r-l,v3ni,l. 
d ,  (r) " 3'1, 1 c 1 'LB'~ 

Here r is an Euler integral of the second kind, and X is a 
complete elliptic integral ( r (5 /6 )  ~ 0 . 9 4 ,  
X [ s i n ( ~ / l 2 ) ]  - l.60).I9 

d) Flattening point upon "Crater" formation on the FS'O 

The Fermi surface possessing a flattening point can be 
separated into convex equal-energy surfaces and equal-ener- 
gy surfaces with "craters." The flattening point is then a 
point to which small loops have contracted, meaning lines of 
parabolic points (Fig. 3) .  As a rule, a symmetry axis of the 
reciprocal lattice passes through such an FS point. If it is a 
two-, four-, or sixfold axis, the FS deviation from the tangent 
plane (being always a fourth order function of 6, , 6, ) can be 
expressed near the flattening point in the form 

E,(t,, g2)=AEl4'+~g,l+2@ (IAB()'"Ei2&2. (32) 

If the symmetry axis is twofold, no conditions are imposed 
on the coefficients A, B, and @ in (32); if it is fourfold, one 
must have A = B; and ifit is sixfold we must also have @ = 1. 
We assume that the form (32) is sign-definite: AB>O, 
@ > - 1. The corresponding flattening point of the function 
I ( r )  in Eq. ( 12) is then 

where 

It is understood that not any fourth order form can be re- 
duced to (32), but, obviously, the power of r is independent 
of the specific form of (32). 

e) Intersection point of lines of parabolic points 

Even though lines of parabolic points do not intersect in 
the ETT model considered in Sec. 3, such intersections may 
indeed occur due to FS "corrugation," as well as in a gener- 
alized topological transition.*' Let the FS deflection from 
the tangent plane, described by a third order form, be 

E3(Ei7  E 2 )  =CE13+Dtz3. (35) 

As in the preceding subsection, we consider a particular case 
convenient for our purposes. 

The corresponding function I ( r )  in the asymptotic ex- 
pansion ( 12) is 

2ar(=/3) r-"/3e""'/6 foT(r)-- 
3 (CD) '" 

FIG. 3. "Crater" formation on the FS. A flattening point exists for E, = E,, at the FS, and a crater for E,  > E, .The thick dashed line is the line of parabolic 
points, existing for E, > E,. 
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Concluding this list of different types of tangency 
points, we note that in Sec. 5 we will encounter a situation in 
which the FS is tangent to a plane not at an isolated point, 
but along lines of parabolic points. 

3. STRUCTURE OF ELECTRON CORRELATION FUNCTIONS 
IN A METAL 

Using the results derived above one can, in principle, 
write down the asymptote of the function v(r, ,r, ) at large 
r = /r, - r, I, given the crystal structure and the FS shape. 
This quantity, however, depends on its arguments in a very 
complex manner. We first average it over r, : 

where the integration is carried out over the volume u of a 
unit cell. We have 

with the summation performed over the reciprocal-lattice 
vectors b, , b,, b3 , and b, satisfying the condition - b, + b, 
+ b3 - b, = 0. 

For a given direction of the vector r, let some points x, 
from among all the tangency points k, of the FS with planes 
perpendicular to the radius-vector be close to each other: 
/ x j  - x, I < k,. It is precisely this case which is of interest to 
us in Secs. 4-6 below: near the ETT points the FS has either 
small cavities (if the ETT is due to formation of a new cav- 
ity), or, in any case, small extremal diameters. 

Let, furthermore, the point x, be located far away from 
all other tangency points K,: 

where b is some reciprocal lattice vector," and point K, are 
far from each other: 

At large r the asymptote of the correlation function 
v(r) is a sum of oscillating contributions from all possible 
pairs of tangency points in the extended k-space and of 
monotonically decreasing terms resulting from the singular- 
ities of the Fourier-component of the correlation function 
( 7 )  at k = 0. The pairs of tangency points can be separated 
into three groups. 

1 ) Those pairs of tangency points for which the distance 
between the corresponding planes tangent to the FS is large: 

where b' is some reciprocal-lattice vector. We recall that k, 
can be one of the points K,, or one of the points x,. 

2) Pairs of tangency points far from each other, for 
which the corresponding tangent planes are close: 

3) Pairs of points xi close to each other. 
Correspondingly, the asymptote of the function v(r) is 

conveniently represented as a sum of three terms: 

v ( r )  = v ~ ( I * )  + v ,  ( r )  +vo,, ( r ) .  (41 

the first of which containing contributions from the first 
group of pairs of tangency points, the second-from the sec- 
ond group, and the third-from pairs of points x, . 

The monotonically decreasing terms in v(r) are sums of 
contributions of those pairs of points k,, k,, for which 

If in that case k, = k, and it is one of the points K,, while 
b' = 0, we shall assume that the corresponding term enters 
in the function vo (r). If b' = 0, and the points ki and k, 
enter in a group of points k, that are close to each other, then 
we include the corresponding contribution in van (r). In the 
other cases, we will assume that this pair of points gives a 
contribution to vl (r) .  

The function vo(r) contains the Friedel oscillations 
with small periods (the wave vector is 2 k,). Taking an 
average over Ar-k, ', we obtain the expression for its 
mean value 

where I specifies the points K, . We recall that the monotoni- 
cally decreasing functions I,  (r) and I, (r) depend on the 
direction of r. 

If there are no parabolic or other singular points among 
the points K, , then (v0(r) ) will decrease as r-4 as r + c~ . 

Let us consider the function vl(r), which contains 
long-period contributions from the pairs of widely separated 
tangency points [see Eq. (40) 1. In particular, these may be 
the tangency points which lie in different cells of the recipro- 
cal space. It is easy to see that the corresponding terms in the 
function ~,(r) contain factors of the type 

A q , ( b ) A , , ( b + b ' ) ,  (44) 
where b' is the reciprocal-lattice vector which links the cell 
centers. The coefficients A, (b) obey the normalization con- 
dition 

D 

therefore the quantity (41 ) decreases quickly with increas- 
ing (b'). Thus, only the terms corresponding to the first 
b ' + 0 are important. 

For a given direction of the vector r let some pair of 
tangency points satisfy condition (40). If the change of the 
angle specifying the direction of the vector r, is of the order 
of unity, we obtain instead of (40) 

1 k,-kl+bfr/r1>kF, 

i.e., the contribution of this pair of tangency points becomes 
a short-period one and appears not in Y, (r) but in v0 (r). 

Thus, we reach the following conclusion: the function 
Y, (r), containing long-period oscillations, differs substan- 
tially from zero only if the angles specifying the direction of 
the vector r are contained in quite narrow intervals. A char- 
acteristic feature of the oscillations contained in Y, (r) is that 
upon approaching some specific direction of the radius-vec- 
tor their wave number vanishes linearly with the angle. In 
that case additional monotonically decreasing terms appear 
in Y, (r). 

The third term in the right-hand side of Eq. (41 ), which 
we call the anomalous part of the correlation function, con- 
tains long-period oscillations resulting from pairs of tangen- 
cy points x, adjacent to each other. Using Eqs. (12) and 
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(45 ,.we obtain the following expression for the asymptote In that case the anomalous terms can be obtained, by chang- 
of the anomalous part: ing variables, from the standard expression for the correla- 

1 tion function of an isotropic Fermi-gas (Ref. 2 1 ) '' 
v..(r) = - -z Ij(r) Ij,' (r)exp[i(x,-xjj)r]. (46) Less trivial is the case in which the ETT results from a 

32nn8 jj. break (generation) of an FS bridge. It is assumed that near a 
saddle point q,, of the dispersion relation ~ ( q )  the FS can be 

We note that if for a given direction of r/r there exist not approximated by a surface of revolution symmetric with re- 
one but several groups of adjacent tangency points, the re- 

spect to a plane perpendicular to the axis of rotation and sults of the present section remain valid, except that the 
passing through the point q,,. It is, thus, described by the anomalous part of the correlation function must be under- 

stood to be the quantity equation 

~ 3 '  P z z ---- - ----- + ---- p3'. [ P I  =erg-' , 
2m, 2m,, 4m,," (47) 

1 

( 1 1  1 where 
van (r) = - - C rj(r) l i , . ( r )cxP[i(x~~'  -x\ : )  ) r ] .  

3Zn6 ,, z=ep-e,,. ~ , , = e  (q,,), 

Here the superscript I numbers groups of adjacent tangency 
points, and the subscripts j and j' number tangency points 
belonging to the 1 th group. It is assumed here that tangency 
points belonging to different groups are sufficiently far from 
each other: for I # l '  we have the inequality 
Ixj" - x,!!" + bl 2 k,, where b is a reciprocal-lattice vector. 
The following two sections are devoted to an investigation of 
the anomalous part of the correlation function when its gen- 
eration results from proximity to an ETT. 

4. FORM OF ANOMALOUS PART OF THE CORRELATION 
FUNCTION NEAR ETT POINTS 

Owing to the presence of extremal FS cross sections of a 
small diameter, the function v( r )  contains near an ETT 
point' long-wave terms. This means that averaging over dis- 
tances of the order of k, ' does not remove the oscillations 
of v(r) .  

If the variation in the FS topology consists of the ap- 
pearance (or disappearance) of FS cavities, the anomalous 
part (46) of the correlation function (41 ) containing these 
oscillations decreases as r 4  regardless of the direction of r. 

m, and m,, are the electron effective masses at the origin q,, 
of the vector p. For simplicity it is assumed below that 
m, > 0, m,, > 0, and q,, = 0. It follows from Eq. (47) that 
the electron bridge of the FS existing at z >  0 is absent at 
z<o.  

In the following it is assumed that 

1pz1'"<2. ( 4 9 )  

In Fig. 4 (see Ref. 21) we show the shape of the FS near the 
point p = 0 for different signs of z  and fl. 

We calculate now the anomalous terms Y,, ( r )  (46) of 
the correlation function v ( r )  by using Eqs. ( 1 1 ) and ( 12). 
As shown in Sec. 1, the wave numbers x, - x, describing the 
oscillations of these terms about rare  the distances between 
the tangents to the FS planes perpendicular to r. These 
planes, the distances between them, and the tangency points 
themselves are easily found for any value of the angle 8 be- 
tween the vector r and thep, axis.9' Next, using the obvious 
fact that one of the principal directions on a surface of revo- 
lution always lies in a plane containing the revolution axis, 
one can describe with the required accuracy the FS deflec- 

FIG. 4. Disappearance ( a )  and appear- 
ance (b)  of lineofparabolic points during 
bridge formation (marked by thick 
lines)." 
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tion from the tangent plane near tangency points and, thus, 
find the coefficients in Eqs. (13), (23), (26), and (28). Cal- 
culating then by using Eqs. (2 l ), (27), and (3  l ) the corre- 
sponding tangency points xi of the function I,  ( r ) ,  which 
determine the asymptote ( 12) of integral ( 11 ), one obtains 
from Eq. (46) an expression for van ( r ) . 

The results of these calculations for different angles 8 
(0 < 0 < n-/2) and 0 < 0 are given in Table I.'" The equa- 
tions are given in the Appendix. The following notation is 
used (fi = 1): 

R= (2mll cos2 0+2m, sinZ 0) '"r, (51) 

Table I lists order-of-magnitude estimates for the spa- 
tial oscillation periods of the anomalous term of the correla- 
tion function and for the amplitudes of these oscillations.'" 
These results are valid for R values much larger than the 
largest period (for given 0, z, 0) of the spatial oscillations of 
the function v(R,a).  The last column of the table shows 
schematically the corresponding planes tangent to the FS. 
The complete equations for van (R,a) are gathered in the 
Appendix. 

It is seen from Table I that both the amplitude and the 
oscillation periods of the anomalous term v,, ( r )  depend 
substantially on the direction of the radius vector. This de- 
pendence is radically changed when the sign of z is reversed: 
the replacement z- - z is similar in some sense to the for- 
mal replacement a - ~ / 2  - a ,  P- - P (the latter denotes a 
transition to another crystal). Upon approaching the ETT 
point (i.e., with decreasing / z /  ) the oscillation wave-length 
naturally increases. 

Lines of parabolic points (see Fig. 4 )  appear on the FS 
near the point q,, whenPz> 0. The tangency points (Sec. 2) 
are parabolic for 

1 I - $3Pz) 'I.. z<0. 
ha= Aa, = (53) 

3 z 1  z>o. 

For angles Aa near Aa, the form of the function van ( r )  
changes correspondingly. When a approaches ha, + n-/4 
from the same side as Aa.Aa, > $pz, two tangency points 
appear near each line of parabolic points. Thus, in this case 
the number of planes perpendicular to the vector r and tan- 
gent to the FS near the point q,,, is equal to four. When 
a- ha, + n-/4 the tangency points approach each other, 
while the period of the corresponding oscillations in van ( r )  
increases like I h a  - ha, 1 3/2 (see Table I ) .  If the anglea is 
located on the other side of ha, + n-/4, the plane tangent to 
the FS near the point q,, does not exist at all. Consequently, 
there exist no corresponding long-wave oscillations. 

If the direction of the vector r corresponds to the para- 
bolic tangency point (53 ), the anomalous terms decrease 
with increasing r like r i.e., more slowly than the basic 
term v, [see Eqs. (43), (45); v, ( r )  decreases like r - 4  as 
r- m ] .  

We note that for pz < 0, when there are no parabolic 
points near q,, , there exists an angle 

at which both tangential planes coincide,I2) and thus van ( r )  
is a monotonically decreasing function of r if Aa = Aa,. 

The wave number corresponding to oscillations of 
van ( r )  as a function of r reaches, at z < 0, its maximum (at 
z = const) value (2mI  lzl ) '/2/fi4 kF when the vector r is di- 
rected along the p, axis (8 = 0).  If z < 0, a maximum will be 
reached at 8zn-/2 (i.e., rlp,). 

As mentioned in Sec. 3, along with the fundamental 
term v, ( r )  [Eq. (41 ) 1 (containing short-period oscilla- 
tions) and the anomalous term v,,, ( r )  (both in the presence 
of ETT and in its absence), for some directions of r there 
appears in the function v ( r )  one more term containing long- 
wave oscillations. The wave number of these oscillations can 
correspond to a distance between planes tangent to the FS at 
different unit cells of reciprocal space, or tangent to different 
FS cavities in one and the same cell, and at any rate vanish- 
ing linearly with angle. For variation of the angle 8 by less 
than or by an order of unity the wave number reaches values 
of the order of k,,  and, thus, the corresponding term drops 
out of the correlation function averaged over Ar- k , '. 
These are so to speak "random" long-period oscillations. 
The long-period oscillations contained in van ( r )  behave dif- 
ferently. Their main characteristic feature is rearrangement 
under ETT action (when the sign of the parameter z is re- 
versed). 

If several FS bridges are generated (broken) in a unit 
cell of the reciprocal lattice simultaneously at E, = E,, the 
anomalous term in the function v( r )  is (see Sec. 3) 

where the superscript ilabels the points q:;), and the function 
v::) ( r )  should be selected from the Appendix. 

In the approximate dispersion relation (47) of an elec- 
tron near a critical point we have assumed that near the point 
qcr the FS can be approximated by a mirror-symmetric sur- 
face. Generally speaking, this occurs only if q,, is an en- 
hanced-symmetry point. In all remaining cases it is not justi- 
fied to neglect the cubic term in the expansion of z in the 
quasimomentum p, i.e., instead of (47) one must write (it is 
assumed, as previously, that the FS can be approximated by 
a surface of revolution) 

Assuming that z is quite small, we have omitted the 
term containingp:: for this case the FS near the point q,, is 
shown in Fig. 5. 

We assume that the following inequality is valid 

Expressions for van ( r )  are given in the Appendix for 
various directions of r. 

We note that from the geometrical point of view this 
case differs from the preceding one in that, besides the de- 
pendences on the signs of y and z near the point q,, , there 
always exists one line of parabolic points (see Fig. 5). There- 
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fore, if the vector r is parallel to the normal to the FS at a 
parabolic point: 

then only one of the two adjacent tangency points x,,,  is 
parabolic; as a result, the long-period term in the function 

- van ( r ) decreases like r - "l6r = r - 23'6 - r - + as 
r--* 00. 

In this section we have assumed that even if several cav- 
ities or several bridges are generated in a topological transi- 
tion, they are quite far from each other. In wurtzite-type 
crystals two ETTs are located near each other. Several ellip- 
soids are generated as a result of the first and coalesce into a 
toroidal surface as a result of the It can be as- 
sumed somewhat roughly that a toroidal FS cavity is formed 
directly (as a result of a single transition). In the following 
section we consider the effect of such a transition on the 
properties of the correlation function. 

5. LOOP OF EXTREMA OF THE DISPERSION RELATION 

Let an extremum of the dispersion relation be continu- 
ously degenerate, i.e., the extremum points form a line in 
reciprocal space. In that case the ETT is manifested more 
sharply than in the case of isolated extremum points, for 
instead of having a square-root singularity ( cc (E - E,, ) I/') 

the electron density of states changes jumpwise at the point 
E = E,, . 22 

If the line of extrema corresponds to a minimum (maxi- 
mum) of the dispersion relation ~ ( q ) ,  then for 
E > E,, (E < E,, ) a new FS cavity in the shape of a tube is 
generated. If the line of extrema is a closed curve, or if it is 
infinite in extended reciprocal space, it can be stated that 
lines of parabolic points exist on this tube. We recall that 
lines of parabolic points are generated near an isolated extre- 
mum point only if the extremum is a saddle point. 

Consider the case in which the line of minima of the 
dispersion relation in reciprocal space is a circle, and the 
dispersion relation near it is 

where mil > 0 and m, > 0 are the effective masses, and the 
third-coordinate axis of the dependent variable is perpendic- 
ular to the plane containing the line of extrema-a circle of 
radius p, (Fig. 6). 

We shall assume that 

so that the FS tube has the shape of a torus; the lines of 

FIG. 5. Formation of nonsymmetric FS 
bridge [see Eq. ( 56) with y > 0 in text]. 
The heavy lines are lines of parabolic 
points. 

parabolic points are two circles with p, =p, and 
p3 = + ( 2 m , , ~ ) ' / ~ ;  from the mirror symmetry of the FS 
tube with respect to the plane containing the p, axis it fol- 
lows that these points cannot be parabolic points of general 
form [see (28) 1. Indeed, the FS deflection from the tangen- 
tial plane near a parabolic tangency point is given here by the 
following equation: 

where the 6, and f ,  axes are respectively parallel and tan- 
gent to the radius of the circle of extrema. 

We present expressions for the anomalous term van ( r )  
in the correlation function v( r  ) (4  1 ) . If the vector r is direct- 
ed along thep, axis ( 8  = 0) ,  then we obtain by exact integra- 
tion in a cylindrical coordinate system 

where J, is a Bessel function and TI = 1. For r (2mlz)  1 
we obtain from (62) 

where the notation (50), ( 5  1 ) is used. Proceeding as in Sec. 
3, we have',' for n/2 > a > 0 

/ 
P 1 

FIG. 6 .  Toroidal FS cavity in the case m l  = m, [see Eq. (59) 1. The thick 
lines are lines of parabolic points; Ak, are wave numbers of oscillations of 
v,, ( r )  for a given direction of r/r; the "small diameter" is Ak, a z"~.  
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4m,,mL2z 
v~t,, ( H ,  a) x - - {[pol (2m,) "'+z'" sin a]  " 

z4R4 sin a 

X c-os[R (p, sir1 a/ (2m,) "l+z"') ] 

+ [ p , /  (2m,) ".-z" sin a] ''I sin [ R  ( p ,  sin a /  (2mJ "'-z"') ]I2. 
(64) 

The validity range of this expression is: 

One of the oscillation wave numbers % ( a )  tends to zero 
linearly: 8 (a) a a - a,, , where a,, satisfies the condition 

sin a,,= (2m,z)'"/po. (66) 

We note that for all angles a there exist oscillations with 
a wave number a 2z1'*, as is also obvious from Fig. 6. 

If the tangency points are parabolic ( 8  = O), then 
Y,, ( r )  decreases as r P 3  with increasing r, i.e., more slowly 
than the principal term in (41 ). 

6. STRUCTURE OF RKKY INTERACTION NEAR ETT POINTS 

In the preceding sections we found the asymptotic form 
of the pair correlation function near an ETT point. These 
results make it possible to calculate the exchange integral 
within the model of RKKY-interaction between the spins of 
two atoms located at large distances from each other. 

Let the energy of exchange inteaction between a con- 
duction electron and ions or atoms of a magnetic impurity be 

Here a are Pauli matrices, and Si is the spin of an ion located 
at site ri. 

Within second-order perturbation theory, the interac- 
tion (67) determines the exchange interaction of atomic 
spins.23 The Hamiltonian describing this exchange interac- 
tion 

is called the RKKY interaction. 
The Ruderman-Kittel exchange integral JRKKy  ( r )  is 

specified by the expression 

For rare-earth metals J a  (OE,), where O is the magnetic- 
transition temperat~re.'~ 

It must be noted that the periodic fikld of the crystal 
lattice is not taken into account in the derivation of Eq. 
( 69 ) .23 Accordingly, the electron wave function is resolved 
into de Broglie waves, not Bloch waves. Thus, strictly speak- 
ing, expression (69) is not applicable to conduction elec- 
trons in a metal, but is applicable to a Fermi gas with an 
arbitrary dispersion relation. It is easy to write down an 
equation valid for a conduction-electron gas, as was done for 
the correlation function [see Eq. (3) 1. The exchange inte- 

gral JRKKy (r ,  ,r2 ) is then not a function of the difference of 
its arguments (see Sec. 1 ), and so on. We will use just expres- 
sion (69), since it is simpler. However, Eq. (73) (see be- 
low), which relates the asymptotic JRK,, ( r )  to the asymp- 
totic correlation function, and obtained by us for a Fermi gas 
with an arbitrary dispersion relation, is also valid for con- 
duction electrons. 

The Fourier transform of JRKKy  ( r )  is 

Integrals of type (70) are often encountered in the 
study of effects related to the electron-phonon interaction; 
their behavior has been investigated in detail. They have sin- 
gularities at vectors k corresponding to tangency of an FS 
with its analog shifted by fik. Two types of tangency are 
distinguished in this case: 

1) The electron velocities at the tangency points are 
antiparallel-the Migdal-Kohn ~ingularity.~,~ 

2) Parallel velocities-Taylor singularities.' 
Consider initially the first case, and turn to Eq. (69). 

Let the electron velocity vector v,, at some point q, on the 
FS be parallel to the radius-vector r whose direction is as- 
sumed below to be fixed. The asymptotic behavior of the 
quantity JRKK,  ( r )  is determined at large r by the singulari- 
ties of its Fourier transforms JRKKy  (k )  as functions of 
k = k.r/r. This singularity corresponds, in particular, to the 
tangency of the FS to its analog shifted by 2q, (we assume 
that q = 0 in the symmetry center of the FS). We change 
variables in (69 ) : 

Since we are interested only in the asymptote of the integral 
(69), it is clear we can restrict the integration there to a 
small neighborhood of the singular point: p, f 4 q, . Expand- 
ing the denominator of the integrand we have 

We initially integrate over d %, , where p, = p - pll n and 
pll = pn, and the unit vector n = r/r coincides in direction 
with the outward normal to the FS at the point q,. If the 
point q, is elliptic or hyperbolic, it is clear from geometric 
considerations (see Fig. 7) that we obtain subsequently in 
the numerator of (72) a difference of areas of intersections of 
the FS with planes perpendicular to n.l4) In turn, these areas 
can be found in this case by differentiating the Fourier-trans- 
forms ~ ( k )  of the correlation function ~ ( r )  with respect to k 
(we recall that the Fourier-transform of the correlation 
function is the volume of the FS intersection with its shifted 
analog; it was already noted above that in the present section 
we consider the model of a Fermi gas with an arbitrary dis- 
persion relation, when ~ ( r ,  ,r2 ) = v(r2 - r,  ) and v(K,k) 
(7)  are independent of K-see Ref. 2).  Thus, for the area 
S(xll ) of the FS intersection with a plane parallel to the 
plane tangent to the FS at the point q, and spaced a distance 
x = xn from it, we obtain 
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FIG. 7. The region in which the integrand expression in Eq. (72) is non- 
vanishing is shaded (the case of an elliptic tangency point). 

where the vector x, = x - xll n can, obviously, be assumed 
to be arbitrary: the relative shift of the FS and of its analog 
shifted by 2q0 - nxll  in a direction perpendicular to n adds, 
obviously, a higher-order correction to Eq. (73). Substitut- 
ing (73) into (72), we find 

The integration overp is carried out from - co to 0, and the 
integral over f reduces to S ( r  - r ') .  We finally have 

Here J'~~"',,,, ( r )  and ~ ' ~ ~ " ' ( r )  are the terms in the 
asymptotes of the Ruderman-Kittel integral and of the cor- 
relation function, and oscillate with a period fi/(2qon) .I5' 

We apply Eq. (75) to the case of an ETT resulting from 
broken symmetry of an FS bridge [see Sec. 4 above, Eq. 
(47) I .  Using the expressions (see the Appendix) for van ( r ) ,  
and calculating the velocity u,, at the tangency points, we 
find the anomalous part J'an'RKK, ( r )  of the Ruderman- 
Kittel exchange integral (as mentioned above, the form of 
JRKKy is more complicated in the transition to conduction 
electrons; the anomalous part can be separated in exactly the 
same manner as in Sec. 3 for the correlation function). Thus, 
for z < 0, 1 - tana) IPzI or z > 0, tan a - 1 ) IPz1 'I2 [us- 
ing the notation of Eqs. (50)-(52) ] we obtain16' 

x R - ~  cos (2R I z cos 2a 1%). (76) 

It is seen that when the sign of z is reversed Jk"l;ky (R,a) 

behaves as if it were rotated through an angle ~ / 2 .  
As indicated in Sec. 4, when Pz > 0 and ha = ha, [see 

Eq. (53) 1 the tangency points become parabolic; when the 
tangency points approach a parabolic point, long-wave 
terms are generated in van ( r  ), whose period becomes infinite 
when ha = ha,. It is seen from Table I that these terms 
correspond to Taylor singularities. To write down the corre- 
sponding terms in JRKKy it is initially necessary to find an 
equation relating JF&, ( r )  with v'@)(r) in the case of a 
Taylor singularity. 

Instead of (7 1 ) we make the following change of vari- 
ables in the integral (69): 

Here Sq is a vector joining the corresponding tangency 
points: 

Expanding in the denominator of the integrand, we ob- 
tain"' 

( ( ; 1 S ~ Y ~ P - L  (1 - P ~ - W ~ &  JL";:~-, (r) = , exp -r8q - 
vcr,E 11 

where fll = &/r. Multiplying both sides of Eq. (79) by 
exp( - ir.Sq/fi) and differentiating with respect to r for a 
constant dierction of r/r, we find 

Following integration over p, the first term in the integrand 
in the right hand side of Eq. (80) is independent of 6, and 
thus does not contribute to the asymptote of J,,,, ( r )  at 
large I rl . Following integration over p and 6,  the second term 
is proportional to exp( - irSq/fi) v'") ( r ) .  Assuming that 
r$fi/(nSq), we obtain following integration over r the re- 
quired equation: 

where L is the power of r and determines the damping of 
oscillations of the correlation function as r- co : 

In the case of an ETT resulting from a broken symmet- 
ric FS bridge, when the tangency point comes close to para- 
bolic, we obtain from Eqs. (81) and (A3) (see the Appen- 
dix) for the long-wave term in J & k y  (R,a) at z < 0 and 
P<O: 

197 Sov. Phys. JETP 74 (1), January 1992 D. I. Golosov and M. I. Kaganov 197 



2'" mL2mIl( i) '  (I ) I '  

( K ,  a)=----- - - ( ~ p ~ - l ) - ~ ~ R - ~  
9n1 I P I  

Since the denominator of (8  1 ) contains the small quantity 
v,,, expression (82) contains the factor Izl - 

If the tangency point coincides with the parabolic point 
itself,'*' it is not sufficient to restrict oneself to the first ex- 
pansion term in the denominator of the integrand of Eq. 
(69). Evidently, it can be stated that [in analogy with Eqs. 
(75) and (81) ] that the damping of the oscillations of the 
corresponding term in Jg&, ( r )  is determined in this case 
by the factor r -  ' I3.  

It is well k n ~ w n ' ~ , ~ ~  that the magnetic ordering result- 
ing from the RKKY interaction is intimately connected with 
the FS geometry. In particular, it was noted that the period 
of the helicoid is determined by one of the small extremal 
diameters of the FS.24 The results suggest that ETT can be 
accompanied by major changes in the magnetic state. 

7. CONCLUSIONS 

1. As noted in the Introduction, the treatment above 
does not include temperature effects and the influence of 
finite lifetimes of electron states. It can be ~ h o w n ~ . ~  that both 
lead to similar results: exponential decay of the correlation 
function as r +  W .  In other words, all equations derived 
above for the asymptotes of v ( r )  must contain an additional 
factor of the order of exp ( - r/l,, ), where I,, =: vFre, and 
fi/r,, - T + fi/r, with T the mean free path time, T the tem- 
perature, and v, the electron velocity at the FS. It is hence 
clear that, to observe long-period oscillations of v ( r )  it is 
required to use quite perfect single crystals at very low tem- 
peratures. Besides, one must keep in mind that without tak- 
ing into account the finite temperature ( T #0) and the finite 
electron-state lifetimes (T# w ), one cannot "reach" the 
ETT arbitrarily closely. All equations containing the transi- 
tion parameter z (describing the proximity to ETT) are val- 
id for lzl %fi/refl. 

2. The whole treatment was done within the gas approx- 
imation (without accounting for the electron-electron inter- 
action). Since electrons at and near the FS participate in all 
the effects investigated, we assume that a transition to a Fer- 
mi-fluid description will not change the results qualitatively, 
and will apparently only lead to renormalization of the coef- 
ficients in the equations obtained (for comparison see $23, 
25 of Ref. 8 and Ref. 26). 

3. Elucidation of the connection between the structure 
of the correlation function and the FS geometry has led to 
detection of long-period oscillations, as well as to establish- 
ment of a dependence of the asymptotic behavior on the local 
FS structure. To be sure, one must keep in mind that the 
nature of the decrease of v ( r )  as r+  CCI (aasuming that 
I,, = w ) depends weakly on the FS geometry. Indeed, in 
the "best" case of a toroidal FS v(r)  a r P 3 ,  as against 
v(r)  a r-4 in the standard case (see Secs. 2 and 5). 

4. Knowledge of the correlation function of conduction 
electrons in a metal is necessary for the construction and 
understanding of the theory of various effects in metals: al- 
loying, ~creening,~' exchange magnetism, and others. We 

have provided one example showing how an asymptote of 
the Ruderman-Kittel exchange integral is expressed in terms 
of an asymptote of the correlation function. 

5. Metallic crystals are traditionally described in two 
"supplementary" spaces: 

a )  coordinate r-space, where most attention is paid to 
the structure of the crystal cell, to the electron density distri- 
bution, and so on; 

b)  momentum p-space, where the main role is played by 
the Fermi surface. 

The correlation function of conduction electrons clear- 
ly shows the connection between the r- and p-spaces: the 
characteristic singularities of the correlation function are a 
consequence of the FS geometry. This is clearly manifested 
in the ETT. We recall that the ETT in p-space is a local 
"event": at one point p = p,, there appears a new infinitesi- 
mal FS cavity, or-again at one point-an FS bridge occurs 
(or is broken). Major restructuring of the correlation func- 
tion occurs then in r-space. This alone has seemed to us a 
worthy topic of discussion. 

We are grateful to M. Yu. Kagan and L. P. Pitaevskiy 
for their interest in our study and for stimulating discus- 
sions, as well as to 0. V. Tapatun for assistance in preparing 
this manuscript for publication. 

APPENDIX 

We present expressions for the anomalous parts of the 
correlation function near ETT points. In that case we use the 
notation of (50)-(52) in a system of units in which fi = 1. 
The validity conditions for all expressions written below for 
van (R ,a )  are written in the form rk,,, ( a , ~ )  % 1 (cf. Sec. 4).  

We consider initially the case of a broken symmetric FS 
bridge [see Eqs. (47), (49) 1. We introduce the notation 

1. Letz<O. Forp<Oand Ip I s 1  we then have 

4m12m' I z l  cos2[R ( l z  1 cos 2a)'"], van (R, a )  = - - 
n4fi R4 cos2 201 

for p < 0 and p = - 1 (parabolic tangency point) : 

8m,zmll (cp2+l)'"+(p 
v., (R, a )  =- ------ ---- R -' 

3n4np (cp2+ 1)'" 
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2. Let now z > 0. For $>) 1 we obtain 

4m12m,, z 
v.,(R, a)= sin2[R (z I cos 2a 1 )'"], 

n4ii R4 cos2 2a 
(A61 

forp<O and Ip 15 1: 

8m,'m11 (cpZ+l)'l'-cp R-4 van (R, a) = - - 
3n4n 1 p I (cpZ+zi ) l L  

for p > 0 and p = 1: (parabolic tangency point) : 

8mL'ml  (@Z-I)-%R-4 van (R, a) = - ------ 
3n4iip 

x{s in[2~($- )  '' I cp-1 1 " ~ ]  +cp). (A9) 

We turn now to the case of breaking a nonsymmetric FS 
bridge [see Eqs. (56) and (57) 1. We introduce the notation: 

Regardless of the signs of z and y, we then obtain for $ > 1 
and I $ -  l l < l  

2%rnL2rnll 1 4 
van (R.  a)= - 31n4R4 1 $1 '" { 3 + -- 

($- I ) 'I1 

-- S ~ ~ [ ~ - ' ~ ~ ~ Z ~ ~ " ( ~ - - I ) ~ R ] } .  ( A l l )  
(4- 1 ) '" 

This result has been averaged over AR - I yz21 - 
For $ = 1 (parabolic and elliptic or parabolic and hy- 

perbolic tangency points) we have 

I / *  + 2 1 1 17 I -'/.x( sin 5)  
2 7  3n 

X r ( - ) R-"/6 cos [ = ( I Y I Z ' ) ' ~ R + - ] } .  4 (A12) 

For $ < 1 it seems that near the point q,, there exists 
only one plane tangent to the FS and perpendicular to the 
vector r. As a result van (R,a) is a monotonically decreasing 
function of R: 

This equation is valid for 1 - $4 1 and R >) I yz21 - 
Finally, for z < 0 and 1 - tana >) / zy2 1 ,  or for z > 0 and 

tana - 1 % (zy2) '/3(tana) one may neglect the cubic 

term in Eq. (56); expression (A2) or (A6), respectively, is 
obtained for van (R,a) .  

" Moscow State University. 
2' To avoid misunderstandings we emphasize that the FS, consisting of 

one cavity when only the first Brillouin zone is used, is a surface having 
an infinite number of cavities, each in its own unit cell of reciprocal 
space. The integration over q is always performed in the first Brillouin 
zone (see below). 

" In the present section we find it more convenient to treat the singulari- 
ties of the correlation function, rather than the singularities of its Four- 
ier-components, which were discussed in Sec. 1. The two approaches 
are, naturally, equivalent, but the treatment of v( r ,  ,r,) (10) itself is 
simpler, since it requires the study of tangency to the FS by a plane (see 
below), and not by its shifted analog (see Sec. I ) .  This approach is 
possible because, according to Eq. ( l o ) ,  the function v(r ,  ,r2 ) can be 
expressed in terms of the square of the absolute value of the integral 
(11).  

" If the FS sizes are determined by a single scale, the Fermi momentum 
hk,, then obviously 1A I - IB 1 - k , I. Similarly, the total nth order 
derivative of 6, is in this case - k L .  ". 

5' In that case we must construct those terms, whose asymptotes at r8S 1 
contain e' "'. These terms are obviously unrelated to the singularity 
considered, and do not appear in the asymptotic integral ( 11 ). 

6' If B < 0, one obtains instead of Eq. ( 3  1 ) the complex conjugate of this 
quantity with the opposite sign: - Z,*(r). 

"In this section it is assumed that the points k, are located in the first 
Brillouin zone. 

" This expression is: 

3Ti P F ~  
v is  ( r )  = - COS' -- , rWTi/pF, 

2n2pFr4 Ti 

wherep, is the Fermi momentum. The FS cavities are in general ellip- 
soids, leading naturally to the appearance of angular dependence of the 
correlation function. 

9' Note that for B =  0 and tan0 = ( mil /m, ) 'I2 the tangency point 
goes off to infinity. It is precisely this nonphysical singularity which 
leads to the necessity of including fourth-order terms in (46). 

lo' Similar results can be obtained from Table I for the caseP> 0, replac- 
i ngaby? r /2 -aandzby  -z(seebelow). 

" ' I t  turns out that the monotonic term in y,, ( r )  is always of the same 
order as the oscillation amplitude (see the Appendix). 

12 '  As Aa- Aa, the wave number of the v,,, ( r )  oscillations vanishes lin- 
early with 1 Aa - Aa, / as a function of r. 

13' Whenp,sind f (2rn,z) '/'-k, the tangency points are separated into 
two groups far from each other, and expression (64) must be averaged 
over AR - ml'2/k,. 

I4'This is always the case if the intersection of the FS with its shifted 
analog is a planar curve. In that case one of the surfaces is inside the 
other on either side of the plane containing this curve. Thus, the differ- 
ence of areas in the numerator of Eq. (72) is also obtained if q,, is the 
flattening point due to crater formation on the FS (see Sec. 2) or a 
parabolic point on a toroidal FS cavity (Sec. 5).  This is not case, for 
example, for a parabolic point of general type (Sec. 2) .  

15' We note that, generally speaking, J,,,, does not contain monotonic 
terms.2' 

16' It is seen from the figures in Table I that we have here a Migdal-Kohn 
singularity. 

"'Here and below we denote by JPZ',, ( r )  and v'Oq'(r) the terms con- 
taining the factor exp(ir,bq/h) in the asymptotes of the Ruderman- 
Kittel integral and correlation function, respectively. 

I X '  With an ensuing Migdal-Kohn singularity (see Table I ) .  
I9'An averaging over A R - ( B h )  "4/1fi has been carried out in Eqs. 

(A3) and (A9) (see below). 
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