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The effect of a heteroboundary on nonradiative recombination of nonequilibrium carriers in 
semiconductor structures was investigated. It  is shown that the presence of the heteroboundary 
results in the appearance of a new no-threshold mechanism of Auger recombination: an electron- 
hole pair is annihilated in the volume of the narrow-band-gap semiconductor and a fast Auger 
particle is ejected from the subbarrier-motion region located next to the heteroboundary. It was 
established that the new recombination mechanism has a weak power-law temperature 
dependence and, owing to the efficient long-range action, it is the dominant process of 
nonradiative recombination in micron-size heterostructures at sufficiently low temperatures. The 
rates of nonradiative recombination were calculated for heterostructures with different values of 
the parameters. 

The principal objects of investigation in the physics of 
semiconductors are at present heterostructures, such as 
quantum drops, quantum wells, superlattices, etc. The dis- 
tinguishing feature of these structures is their strong spatial 
nonuniformity, resulting from the existence of the hetero- 
boundaries, It is obvious that the heteroboundaries have a 
fundamental effect on the behavior of the energies and wave 
functions of carriers in quantum-size systems, while their 
effect on the properties of macroscopic objects was believed 
to be negligibly small to the extent that the ratio of the num- 
ber of surface (boundary) states and volume states is small. 
In particular, the efficiency of nonradiative Auger-recombi- 
nation processes was assumed to correspond to the standard 
volume  characteristic^.',^ The presence of a heteroboun- 
dary, as such, nonetheless substantially affects the electron- 
electron interaction in semiconductor structures, and this 
effect is fundamental. The heteroboundary removes the re- 
strictions which the energy and momentum conservation 
laws impose on the interelectron collision processes, and this 
results in the appearance of no-threshold, weakly tempera- 
ture-dependent channels for Auger recombination. 

In this work we observed and investigated a new mecha- 
nism of Auger recombination of volume states-so-called 
combined Auger decay. The rate of this no-threshold pro- 
cess exhibits a weak power-law temperature dependence, 
and the process itself is the dominant mechanism of nonra- 
diative recombination of nonequilibrium carriers in micron- 
size and smaller heterostructures at sufficiently low tem- 
peratures. For example, at room temperature the combined 
Auger process competes with the standard volume mech- 
anism of Auger decay, but in contradistinction to the latter it 
does not have a threshold dependence. We give a qualitative 
interpretation of the processes occurring with the combined 
type of Auger recombination. 

1. The restrictions imposed on the Auger decay process 
by the momentum conservation law are lifted if at least one 
of the quasiparticles (say, the electron) is located in the re- 
gion of subbarrier motion near the heteroboundary. Actual- 
ly, the wave function of the volume motion of quasiparticles 
in this region is a wave packet consisting of quasimomenta, 

including momenta which correspond to the final momen- 
tum of the fast Auger electron. 

2. In order for a combined Auger transition to be real- 
ized an energy equal to the energy released when an electron- 
hole pair is annihilated must be imparted to the particle in 
the subbarrier region. In contrast to the standard volume 
process the quasimomentum transferred in a Coulomb colli- 
sion of the particles need not be large, and therefore there is 
no need for close particle collisions. The processes in which 
energy is transferred to a subbarrier electron occur in a large 
volume region of free motion of the collapsing electron-hole 
pair. The size of this region is determined by the long-range 
character of the Coulomb interaction and is limited by the 
screening radius or by the thermal wavelength of the recom- 
bining particles. 

3. The process of energy transfer to the fast Auger elec- 
tron is resonant (to a large extent analogous to resonance 
photoexcitation) and does not have the standard exponen- 
tial temperature dependence due to the existence of a kine- 
matic threshold of the reaction for free quasiparticles. The 
absence of a threshold is a consequence of the strong spatial 
nonuniformity of the heteromedium. 

4. The fast Auger electrons are ejected predominantly 
in the direction perpendicular to the heteroboundary, i.e., 
the direction of maximum spatial nonuniformity in the sys- 
tem. In what follows we shall study heterostructures in 
which an Auger electron arises as a result of recombination 
(n-type structure). The basic results can nonetheless be ex- 
tended to processes in which Auger holes are formed (p-type 
structures). 

The aim of our theoretical investigation is to clarify the 
role of the heteroboundary in the formation of no-threshold 
mechanisms of Auger recombination. We intentionally 
avoid systems with strong size quantization,') in order to 
study the exclusive role of the heteroboundary as a source of 
spatial inhomogeneity. We shall calculate below the rate of 
Auger recombination at different temperatures and for dif- 
ferent values of the physical parameters of a semiconductor 
structure with a flat heterojunction. 
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1. WAVE FUNCTIONSOFCARRIERS IN THE 
HETEROSTRUCTURE AND THE AUGER RECOMBINATION 
RATE 

To find the Auger recombination rage G it is first neces- 
sary to calculate the wave functions of the carriers in the 
presence of the heteroboundary. Figure 1 shows schemati- 
cally the energy-band diagram of an ideal flat heterojunction 
of a narrow-gap semiconductor (x  < 0)  and a wide-gap semi- 
conductor (x  > 0)  with band gaps E ;  and E l ,  respective- 
ly. The nonequilibrium carriers are generated in the narrow- 
gap semiconductor crystal under conditions of stationary 
excitation. As established for volume Auger proce~ses,~ the 
wave functions of the carriers must be calculated in the mul- 
tiband approximation, since the probability of an Auger pro- 
cess is proportional to the small overlap of the electron and 
hole wave functions. We employ below the simplest multi- 
band approximation-Kane's model6-with vanishingly 
small spin-orbit interaction. In this model the basis wave 
functions at the bottom of the conduction band and at the 
top of the valence band are chosen to be of the form of IS ) 
and JX ), 1 Y ), and ) Z  ) states (the x axis is perpendicular to 
the plane of the heterojunction). 

The wave functions of the quasiparticles are sought in 
the form of a superposition of band states 

where u( r )  and v(r)  = {v, (r);v, ( r ) ; ~ ,  ( r )}  are smooth 
Bloch envelope functions. The system of equations for the 
envelope functions is obtained by the standard method:' 

h 

where k = - iV, 

The spectrum of energies E in the volume of the conductor is 
divided, according to Eq. ( 1 ) , into an electron branch E, 
and a light-hole branch E,, with Dirac dispersion relation 
E,,, + (A2 + y2k2)'I2 and a heavy-hole branch 
E, = fi2k2/2mh that does not interact with the other two 
branches. The effective mass m, of a heavy hole in the Kane 
model, which we have chosen, is an independent parameter 
and is determined by the interaction with other bands not 
included in the basis. 

To be specific, we study the wave functions of the elec- 
trons and light holes. The boundary conditions at the hetero- 
junction have the form7 

The wave function components v, and v, parallel to the in- 
terface are discontinuous. The thermal kinetic energy of the 
carriers is, as a rule, less than the barrier height of the hetero- 
structure, i.e., T&A + - A - , so that for the initial states of 
the quasiparticles the heterojunction is a perfectly reflecting 
boundary. Using Eqs. ( 1 ) and (2),  we express the amplitude 
of the reflected wave in terms of the amplitude of the wave 
incident on the heteroboundary with quasimomentum k. 
The electron or light-hole waves formed on reflection have 
the same functional form and differ only by the sign of E 
( E  > 0 for electrons and E < 0 for holes): for x < 0 (the re- 
gion of free motion) 

I exp ( ik ,x)  + exp (- ik,x $- 2 i 6 )  I 

1 EY?A- 
[exp ( i k , x )  - exp (- ik,x -+ 2ib)l  

Yk (r) = AkeiqP Yq2/ [exp ( ik ,s )  + exp (- ik,x + %ti)] I E + A -  

I "' [exp ( i k , r )  + exp (- ik,..r + Zi6)l E + A  
1 , -  

is the Kane matrix element, which is the same for the wide- 
and narrow-gap semiconductors, and A(x) = Eg/2 is the 
only x-dependent structural parameter in Eq. ( 1 ). Every- and for x > ~  (subbarrier part) 
where below we shall be concerned with a structure having a 
vertical barrier 

FIG. 1 .  Schematic band diagram of a heterojunction. The point x = 0 
corresponds to the heteroboundary; E z  = 2A * . 

yl\ (r)  = 2Ak cos6e16eiqp-xr 

In the formulas ( 3 )  and (4)  26 is the phase shift arising 
when the wave is reflected; k =  (K,,q) is the wave vector of 
the incident particle (k, > 0); x is the subbarrier decay con- 
stant of the wave; A,  is a normalization factor; and, 
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The normalization corresponds to an incident wave of unit 
amplitude. From the formulas (3)-(5) presented above it 
follows that the electron and hole waves are reflected from 
the heteroboundary differently for different components of 
the envelopes. Thus, in contrast to all components in Eq. 
( 3 ) ,  the IX ) component of the reflected wave acquires, apart 
from the standard phase 26 due to reflection, an additional 
minus sign owing to the change in the sign of the x-compo- 
nent of the quasimomentum on reflection: k ,  -+ - k,. The 
sign of the components of the valence band depends on the 
direction of k because of the vector nature of the Bloch am- 
plitudes of the states at the top of the valence band. In the 
limit of small quasimomenta the behavior of the wave func- 
tion should actually correspond to the single-band approxi- 
mation, i.e., it should correspond to the standard reflection 
from a potential barrier. Indeed, in the limit k+O it follows 
from Eq. (5 )  that for electrons ( E >  0 )  

yk. ( A +  t A -  j" . , L8,mn+- --- 
A- A+- A- 

while for holes ( E  = - ( A 2  + y2k2) <O)  incident at an 
angle 0 with respect to the interface 

The phases of the reflections for electrons and holes in the 
case of normal incidence on the interface (6' = 0 )  differ only 
by T;  this is taken into account by the change in the sign of 
the hole function on reflection. The dependence of 6, on the 
angle of incidence on the heteroboundary is related with the 
different behavior of the parallel q and normal k ,  compo- 
nents on reflection: q is conserved while k, changes sign. The 
values of the scattering phases are important for calculating 
the rate of the combined Auger process, since the phases, 
essentially, fix the value of the wave functions at the hetero- 
boundary and in the subbarrier region [see the formula (4)  
for x>O].  

The wave function of fast Auger electrons is a superpo- 
sition of the incident and reflected waves in the narrow-gap 
part ( x ( 0 )  and the transmitted electron wave in the wide- 
gap part of the heterostructure: 

( exp (ikfrx) + f exp (- ik;xx) I 

where f and d f  are the reflection and transmission ampli- 
tudes; kff - ( k z  , q f )  and k~ = ( k f ,  , q f )  are the wave vec- 
tors of the Auger electron in the wide- and narrow-gap mate- 
rials, respectively; Akf is a normalization factor; and, 

X 

We note that the wave functions (8) correspond to si- 
tuations when the narrow-gap material is the source of Au- 
ger electrons, while in the wide-gap material there are no free 
carriers, with the exception of electrons which have passed 
through the heterobarrier from the narrow-gap part. Using 
Eq. (8) ,  we calculate the probability that electrons are trans- 
ferred from the narrow-gap into the wide-gap region for the 
most important physical process. 

According to the standard rules of the theory of Auger 
processes,5 the rate of nonradiative Auger recombination is 
calculated to first-order perturbation theory in the electron- 
electron interaction as follows: 

x g (k , )  gh(kh) [ 1-g ( k f  1 

. 3 -  lexp(Lkfxx) - f '3x1) (- LH- f lX ) ]  
Ef + A- 

Yqfv [exp ( i k t , ~ )  + f ex[) (- r k t , . ~ ) ]  Ef + A- 

d3ki ddk2 d3kh d3kr 
X 6 (El+ E2-Eh-Er) ----;--we-- --- 

(an)  ( 2 ~ ) ~  ( 2 ~ ) ~ '  

3 J < O ,  

( 1 0 )  
where g ( k )  is the mumentum distribution function of non- 
equilibrium electrons and g, ( k )  = 1 - g ( k )  is the momen- 
tum distribution function of holes; E ,  and E2 are the initial 
energy states and Ef and E, are the final energy states of the 
electrons (we regard the hole state as the final state for one of 
the electrons participating in the Auger process); M is the 
Auger transition matrix element, calculated with antisym- 
metrized electronic wave functions of the initial and final 
states;'after taking the statistical average over the spin states 
of the system, the squared modulus of the matrix element has 
the form 

( 1  M ( k l ,  k,, kh, k , )  12>=M12+MI~2-M~M~~,  

eZ 
r) \Y k,' ( r )  d3r Y k f  ( T ' )  Yk;(r')dsr', 

3co 1 r-r' I 
( 1 1 )  
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where ?to is the permittivity of the medium. We recall that 
the wave functions in Eq. (1 1) are column vectors whose 
components are the corresponding components of the enve- 
lope functions, while MI,,, are called the direct and exchange 
matrix  element^.^ For the processes which we are studying 
M I  and M I ,  are obtained by interchanging the indices of the 
quasimomenta of the initial states k, and k, (or the final 
states kf and k, ). We shall analyze in detail the Auger decay 
matrix elements. This will allow us to determine the most 
important recombination processes. 

2. CLASSIFICATION OF AUGER DECAY PROCESSES IN THE 
PRESENCE OF A HETEROBOUNDARY 

We now study the matrix element MI (k ,  ,k2 ,k, ,kf) for 
Auger decay in the presence of an ideal flat heteroboundary. 
In this case, according to Eq. ( 1 1 ), the integrals over the 
coordinates of the interacting particles separate, in a natural 
manner, into the wide- and narrow-gap regions: x ,  xi<O for 
processes occurring in the narrow-gap region, which we 
shall call below volume processes (0 processes); x,  x')O for 
processes occurring in the wide-gap region, where all wave 
functions (except that of the final electron) are subbarrier 
wave functions (Pprocesses); x < 0 ,  x ' )O andx > 0 ,  x' ( 0  for 
combined processes, when one of the electrons is located in 
the subbarrier region and the other is located in the volume 
part of the narrow-gap semiconductor (K processes). 

It is convenient to set in correspondence to all types of 
terms in a matrix element diagrammatic representations of 
the amplitudes in which both the waves incident on and re- 
flected from the heteroboundaries as well as the subbarrier 
terms are taken into account: 

where the thin lines designate electron and hole waves with 
momenta k, and k,, respectively, while the same lines with 
rectangles designate waves arising on reflection from the he- 
teroboundary; a wavy line designates the effective Coulomb 
interaction between particles while double lines designate 
subbarrier electron and hole states (we recall that kf+ is a 
superbarrier state of the Auger electron in the wide-gap re- 
gion). To the diagrams ( 12) indicated above it is easy to set 
in correspondence analytical expressions for the probability 
amplitudes; in so doing, as follows from Eq. ( 12), MI sepa- 
rates into three types of processes: 

where MI0' are volume processes (0 1-0 16); MIK' are 
combined processes (K  1-K 8) ;  and, M fP' are subbarrier 
processes (P 1 ). In deriving the analytical form of MI it is 
necessary to take into account the fact (see, for example, 
0 1 ) that the standard Coulomb interaction of the particles, 
4.rie21 k,. - k,  I - 2 / ~ , ,  is multiplied by the product of overlap 
integrals of the Bloch wave functions of the initial and final 
states of the electrons, I,, (k ,  ,kf) .I,, (k2,kh ). We write out 
the explicit form of the matrix element for the volume Auger 
processes (0 1-0 16), where to each diagram there is asso- 
ciated the law of conservation of quasimomentum of the re- 
combining particles: 

+ lo (kt, k,,) Zcc  (k,, kh) 

(¶,--¶A ,+ (kzf+k*,)2 

x {exp (-2ih2)+f exp[Zi (6h-6,) 116 (kX,-kx,-k~r-kxh) 
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+ 2  cos 6, .2  cos 6h e x p [ i  ( f i h - G 2 ) ]  rec(k1, k t )  
( q + - q I l 2 +  ( ~ x j - k x l ) z  

The overlap integrals in the nakrow-gap region have the 
form 

where k, ,  = ( - k,,;q) is the wave vector of the reflected 
wave. We note that in deriving Eq. ( 1 4 )  from the diagram- 
matic representation ( 1 2 )  the reflected states of the incom- 
ing lines k , , ,  correspond to multiplication of the amplitudes 
by exp( - 2i8, , ,  1, while the outgoing lines k,- and k ,  corre- 
spond to multiplication by f and exp( 2i6, ), respectively. 
The appearance in Eq. ( 1 4 )  of delta functions corresponding 
to momentum conservation is a characteristic of volume 
processes, while the role of the heteroboundary in Eq. ( 14) 
reduces to the appearance of interference terms which de- 
pend on the phases ai of the reflected waves and onf: Thus 
the processes ( 1 4 )  satisfy a more complicated form of the 
law of conservation of energy-momentum and, as will be- 
come evident in what follows, they have a kinematic thresh- 
old. This means that the rate of the volume (0 )  processes 
depends exponentially on the temperature of the nonequilib- 
rium carriers. 

We write out the explicit expressions for the amplitudes 
of the combined Auger processes ( K  1-K 8 ) ,  for which the 
law of conservation of "momentum" along the x axis is not 
satisfied because at least one of the quasiparticles is located 
in the region of subbarrier motion x>O: 

{ Zcos 6 , d i  e x p ( - i d l )  
- (kt+, k') 

(q2-qh) 2 f  (kxh-kr2) 

+ exp (2i61,) I' [ x , ~ ~ ~ ~ ~ ~ ~ k z z )  x , - i (kz f -kxh-kzz j  n 

+ 2 cos 6 , .2  cos 8h e x p [ i ( 6 , - 6 , ) ]  
r c c  k , ) Ic ,  (kz', khC) (sf-si)'+ ( k ~ , + k , 0 2  

exp ( - 2 i 6 , )  + f 
x [ x z + x h - i ( k z , + k , l )  A x2+xh+i (kxI+kr i )  

where k' = (q,;k, ) is the quasimomentum in the subbar- 
rier region for the states i  = 1, 2,  h of the particles, and 
lo ( k :  , k f )  and I,, ( k , t  , k c  ) are the overlap integrals of the 
Bloch functions in the subbarrier region and are obtained 
from the corresponding integrals ( 1 5 )  by making the substi- 
tution k ,  -+ k,+ and then forming the complex conjugate of 
the wave functions of the initial states. For example, 

In calculating Eq. ( 1 6 )  using the diagrams K  1-K 8, the rules 
0 1-0 16 formulatedabovemust besupplemented by integra- 
tion over all possible values of the x component of the quasi- 
momentum k ,+ of the particles in the subbarrier region. In- 
deed, the decaying wave exp( - x x )  (for x > 0 )  is a wave 
packet with probability amplitude a ( k :  ) for having an x 
component k :. For example, for an electron with the mo- 
mentum k ,  

a (k , , ' )  =2  cos 6,eibtAk, 

where 6 ,  is the phase of the reflected wave ( 5 ) .  It is obvious 
that the integration over all possible values of k > actually 
removes the delta functions for the x components of the qua- 
simomentum. This in turn removes the restrictions imposed 
by momentum conservation on the Auger decay processes in 
K  1-K 8 .  Thus M iK' describes no-threshold Auger recombi- 
nation processes, which do not contain the exponential tem- 
perature dependence observed in volume processes of the 
type M jO'. 

Subbarrier Auger decay processes correspond to the 
matrix element 

x 2 cos 6,e-"*.2 cos 62e-'62 
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In principle, the matrix element MI = M fO' + M iK' 
+ M IP', which we obtained above, makes it possible to cal- 

culate, after substituting the quantity G into the formula 
( 10) for the rate of the Auger process, and thus to solve the 
problem posed. It is easy to see that the large number [ ( 14), 
( 16), and ( 19) ] of processes accompanying Auger recombi- 
nation makes it impossible to obtain in the general case ana- 
lytical expressions for G as a function of the parameters of 
the heterostructure and the temperature. There is no need to 
do so, however, since the two types of Auger recombination 
processes which we established above-the threshold pro- 
cess (of the type MI0') and the no-threshold process 
(MIK' + MIP))-play a significant role in different para- 
metric regions. The threshold processes are the main pro- 
cesses occurring in large samples at sufficiently high tem- 
peratures, while the no-threshold processes predominate in 
small samples at low temperatures. We shall analyze below 
the efficiency of Auger processes and we shall determine the 
parametric limits of the regions where each of the Auger 
processes studied is efficient. 

3. RATE OF AUGER DECAY WITH FORMATION OF A FAST 
PARTICLE 

For many semiconductor heterostructures, parametric 
relations ensuring that the electron formed as a result of the 
Auger process has a high energy are satisfied: 

The inequality (20) will be employed below to derive 
asymptotic expressions for the Auger recombination rate. 
We shall examine the volume Auger recombination rate in 
the narrow-gap part of the heterostructure. According to the 
formulas ( 14), we have 

x [ (l+fZ+2f cos 2(6h-62-61)) 1 lee(k,; kl+kz-k,) l 2  

xlI,,(ki,; k,,+k2-kh) 1'6 (E (k,) 

The Auger recombination rate is proportional to the volume 
of the specimen V = SL (S is the area of the heterojunction 
and L is the width of the narrow-gap specimen), appearing 
when the squared delta functions of the matrix element 
lMj0'12 are integrated. In the formula (21) are dropped 
small terms - l/Lkf, which appear when the products of 
delta functions ( 14) with different arguments are integrat- 
ed. The dropped terms represent processes whose phase vol- 
umes are smaller than the main processes (for example, the 
product of delta functions from the first two rows of (14) 
corresponds to the process with k,, = 0, which signifies the 
indicated smallness for a system of finite size). The specific 
recombination rateg'O' = G 'O'/V 1s ' a volume-independent 
characteristic. Analysis of the expression ( 2  1 ) shows that 
there appear interference terms owing to the presence of the 
heteroboundary. The phases Si are, in principle, functions of 
the quasimomenta k,,, and averaging over the quasimo- 
menta smoothes the interference terms. In addition, and 
most importantly, in a real system the quasiparticle mo- 
menta are reoriented at distances from the heteroboundary 
of the order of the mean-free path length, i.e., the phase rela- 
tions between the incident and reflected waves are lost and 
hence complete averaging of the interference pattern occurs. 

For the cases (20) studied above the reflection ampli- 
tude is small, f-(A, - A -  ) / (A+  + A -  )gl, and the 
corresponding terms in Eq. (21 ) can be neglected. Analysis 
of the integrand in G 'O' shows that the last term in Eq. (2 1 ) 
makes the main contribution to the process of Auger ejection 
of electrons from a narrow-gap semiconductor into the wide- 
gap semiconductor. We shall demonstrate for the example of 
the calculation of this contribution the method of analysis 
employed in the case of structures with a high barrier (20): 
T 4  (A + - A ). The integrand in Eq. (21 ) contains two 
"steep" dependences: The energy delta function and a Boltz- 
mann distribution function: 

where ~ ( k , , ,  ) and E,  (k, ) are the kinetic energies of the elec- 
trons and holes, the relation between which is determined by 
the laws of conservation of energy and momentum. The re- 
gion where the kinetic energy of the initial electrons and 
holes (22) is a minimum under the condition that the con- 
servation laws are satisfied makes the main contribution to 
the integral: 

E (ki) + E  (kz) +&h(kh)=fnin, 

E ( k l ) + ~ ( k z ) + ~ h ( k l , ) + E p - = ~  (k,+k,-- k,,,). (23) 

The conditional extremum (23) with respect to k,,, and k, 
can be calculated by the method of indeterminate Lagrange 
multipliers for arbitrary dispersion relations. Next, expand- 
ing the integrand near the extremum k,,, k,,,, k,, ) in the 
exponential (22) up to second-order infinitesimals, we re- 
duce the problem to calculation of Gaussian integrals. All 
terms in (2 1 ) can be analyzed analogously. The minimum 
value of the energy in Eq. (23) gives the kinetic threshold of 
the reaction. For information we present the computed val- 

178 Sov. Phys. JETP 74 (I), January 1992 G. G. Zegrya and V. A. Kharchenko 178 



ues of the specific recombination rate gLy' = G h l  ' O ' / V  f or 
quasiparticles with a quadratic dispersion law and 
me = m,,: 

where En = mee4/2fi21ti is the characteristic (Bohr) intere- 
lectron interaction energy; n , ,  is the carrier density in the 
narrow-gap semiconductor; and, E: -- E gp = E, . We note 
that the threshold process corresponds to all quasimomenta 
being parallel to one another, and in addition Ik,, I = (k,, I 

2 1/2 
= (khol  = [m,Eg/3fi ] . 

For the processes which we are studying in semiconduc- 
tor crystals the process of volume Auger recombination with 
participation of a heavy hole has the lowest kinematic 
threshold. For the case when the difference of the effective 
masses of the particles is large (me <m, ) in the threshold 
process all initial particles (electrons and heavy hole) have 
the same velocities. It is important to note that the final fast 
Auger electron has a significantly nonparabolic dispersion 
relation &(kf).  On the basis of this fact, and expanding in the 
small parameter B= m,/mh < 1, we calculate by the pre- 
viously indicated method the rate of Auger recombination 
with participation of a heavy hole: 

To find the specific rate (24a) the overlap integrals I,, were 
calculated using the well-known  rule^.^.^ It is interesting to 
note that the factor of 2 in the exponent of the threshold 
exponential is due to the "Dirac" nature of the energy spec- 
trum of the electrons, i.e., owing to the nonparabolicity of 
the dispersion relation. Thus the nonparabolicity of the spec- 
trum doubles the kinematic threshold of the Auger process 
with participation of a heavy hole. 

4. LONG-RANGE COULOMB EFFECTS IN THE COMBINED 
AUGER PROCESS 

A feature of the volume recombination processes exam- 
ined above is that the momentum transferred to the Auger 
electron in an electron-electron collision must be large: 
Ak- I kf - k ,  I - kf; this is possible only at small distances 
between the colliding electrons. This has the consequence 
that the probability of an Auger process in the volume has an 
additional power-law smallness. The volume process is sup- 
pressed primarily by the exponential threshold dependence. 
We shall calculate the recombination rate for the no-thresh- 
old process in the range of values of the parameters where 
this process predominates. For this we derive an analytic 
expression for the matrix element M jK' when the conditions 
(20) are satisfied. We write out the values of the quantities 
appearing in MiK' [see Eqs. (16)] at low temperatures 
( 20), recognizing that because of the absence of a kinematic 
threshold (law of conservation of momentum) the small 
quasimomenta k,,, and kh of the particles make the main 
contribution to the recombination process ( 16): 

where 8 is the angle between the quasimomentum of the hole 
and the normal to the boundary between the semiconduc- 
tors. The transmission coefficient df z 1 (since 
f-(A, -A-  ) / ( A +  + A -  ) < I ) .  Inthematrixelement 
M iK' the terms that make the main contribution to the Au- 
ger process under the conditions being studied can be sepa- 
rated: These are Coulomb matrix elements, in which the mo- 
mentum transferred in a Coulomb interaction is small, i.e., 
the first and second terms in Eq. ( 16) (the diagrams K 1, K 4 
and K 2, K 3, respectively). They contain the long-range part 
of the Coulomb interaction, so that the squared matrix ele- 
ment 

The last two terms in Eq. ( 16) correspond to processes in 
which the transferred momentum is large (the denomina- 
tors in the expression for the Coulomb interaction contain 
the momentum kf $ ki ), so that their contribution is small in 
the parameter T/E,  1. Of the two main terms in the 
expression for MiK'  the first term, containing the factor 
4.rr/l k2 - k, l 2  and diverging for small values of the relative 
quasimomentum of the electron k, and hole k,, is the princi- 
pal and truly long-range term. The denominator of the sec- 
ond term contains the difference of the quasimomenta of the 
incident and reflected waves and approaches zero at bound- 
ed points of the phase space, when kxh , kx2 - 0 simultaneous- 
ly. On the basis of all these circumstances and substituting 
into Eq. ( 16) the corresponding values of the overlap inte- 
grals, 

we obtain 

4ne2 exp [ i ( B ~ ? - f i ~ - f i ~ )  ] 
M , ' ~ )  =2n2G(q,+q,-qh-q,)-- 

~ ~ I k h - k ' I "  

In systems with sufficiently high electron density the long- 
range action in the Coulomb matrix element (27) is limited 
by screening. This can be taken into account by introducing 
the screening radius ro in the Coulomb matrix element: 
Jk, - k, 1 -2-*{lkh - k2I2 + rc2}- ' .  However, when cal- 
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culating the recombination rate G 'K' in an Auger process, 
the "divergence" typical for Coulomb interaction at small 
values of the relative quasimomentum k,,, = k2 - k, is eli- 
minated because the corresponding overlap integral2' (26) 
approaches zero rapidly 1 I,, 1 a I k, - k, 1 2, and thus the re- 
gion of quasimomenta of the order of thermal momenta 
k,,, - (2mc T) '"/fi plays a significant role. The rate of the 
combined Auger process is, according to Eqs. (25)-(27), 

It is obvious that the rate of the combined process G 'K' does 
not depend on the width L of the narrow-gap sample, but 
contains rather only the area S of the heterojunction. The 
absence of a threshold exponential temperature dependence 
in the rate of combined Auger processes (28), as we have 
already mentioned, is a consequence of the fact that the re- 
strictions imposed by momentum conservation are removed, 
i.e., it is consequence of the existence of the heteroboundary 
as such. We recall that the formula for G 'K' was derived in 
the case T&E; - EL and depends significantly on the 
height of the heterobarrier E ; - E; . It is obvious that in 
contrast to the volume process the combined process is very 
sensitive to the phases of the reflected waves. The values of 
the phases determine the probabilities of finding in the sub- 
barrier region phases proportional to (cosS, 12, and the value 
of the squared Coulomb matrix element ( 19) (for example, 
the factor cos2(6, - S, ) =sin2(Sh - kX2/x2 ) characterizes 
the phase shift of the electron and hole waves near the heter- 
oboundary). The formula (28) can be rewritten in a form 
that is more convenient for comparing the relative intensity 
of volume and combined processes. Introducing the charac- 
teristic energy of size quantization in a narrow-gap semicon- 
ductor, E~ = fi2/m,L 2, we obtain for G 'K' (28) 

We shall make a qualitative and quantitative compari- 
son of formulas (28) and (29) with the formulas for volume 
Auger recombination, for example Eq. (24), by investigat- 
ing the ratio G 'O'/G 'K' for light holes: 

where E, =E :, E L  is the average width of the band gap. 
The factor (30) has a clear physical meaning: The quantity 
( E ~ / E ~  ) - k f L)  1 characterizes the relative probabili- 
ties of finding the ejected Auger electron in the volume of the 
narrow-gap semiconductor and in the subbarrier region sig- 
nificant for the combined Auger process. The size of this 
region is of the order of A,- - l /kft  - fi/(m, E, ) and is 
significantly smaller than the characteristic dimensions x - ' 
of the wave function beneath the barrier, since k f > x in the 
approximation (20) we are considering. Actually the rela- 
tion (30) conveys the main characteristic features of the 
competition between the volume and combined processes, 

even in a wider range of values of the structural parameters 
than (20). Indeed, 

. G ( O )  exp (-Eg/2T) -- 
G'K' ( k f t  L ) - I  

The realization of a combined process with a rate G 'K' 

is always advantageous owing to the absence of a threshold 
exponential, but the required probability that one of the par- 
ticles is located in the subbarrier region is small, in the ratio 
ilf/L. Therefore, at sufficiently low temperatures, speci- 
mens with a narrow narrow-gap layer will be sources of fast 
Auger electrons, which are ejected into the wide-gap part. 
Electrons are ejected in a direction perpendicular to the he- 
teroboundary in a narrow range of angles 
A$- (T/Eg ) 1. The intensity of the Auger-electron 
flux arising as a result of the combined process depends quite 
weakly (linearly) on the temperature. 

Completing this qualitative review of the results, we 
note that Auger recombination occurring exclusively in the 
subbarrier region (MiP' process) likewise does not have a 
threshold. But it is easy to show that this process has an 
additional, as compared with the combined process, small- 
ness in the ratio &/L = ( E ~  /Eg ) < 1. This smallness arises 
because the two electrons and the hole must be located in the 
subbarrier region. Thus there is no special reason for writing 
out the explicit form of G 'P'. 

Using our expressions for the ratio 7 of the rates of 
Auger recombination in the volume process G 'O' and the 
combined process G 'K', it is possible to determine the range 
of the parameters of heterostructures where one or the other 
mechanism predominates. Indeed, from the condition 7 = 1 
we obtain a transcendental equation for the temperature 
T * (L)  at which the rate of the volume process is equal to the 
rate of the combined process: 

where y = Eg/T. The solution of Eq. (3  1 ) gives the charac- 
teristic curve T * (L)  , shown in Fig. 2 for three specimens 
with typical band parameters of the heterostructures. At 
temperatures below T * (L )  the main Auger recombination 
mechanism is the combined process with the weakly tem- 
perature dependent rate G'K', while for T >  T*(L)  the 
threshold volume process predominates. For small speci- 
mens, when spatial quantization becomes important, no- 
threshold Auger processes become dominant at any reason- 
able temperature; this is observed for quantum 
micro crystal^.^ 

For the record, we present the characteristic values of 
the rate G 'K' of the combined processes at room tempera- 
ture T =  300 K for carrier densities n, = n, = 1018 c m 3 .  
For GaSb and GaAs heterostructures 

The numbers obtained are in good agreement with the ex- 
perimentally measured values of the rate of nonradiative 
Auger recombination in GaSb heterostructures under the 
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FIG. 2. The characteristic temperature T * as a function of the width L of 
the narrow-gap semiconductor. The curves 1, 2, and 3 correspond to 
GaAs, GaSb, and InAs heterostructures, respectively. The region above 
the characteristic curves corresponds to volume Auger recombination 
and the region below them corresponds to the combined process. 

same conditions: G Els, =: 3 - loz0 s - ' (Ref. 9).  We note that 
the experimentally observed rate of nonradiative recombina- 
tion is determined almost entirely by the combined Auger 
process investigated here. The combined Auger process sig- 
nificantly reduces the internal quantum yield in the system, 
since the rate of radiative recombination R=: 1. 1019 s -  ' 
(Ref. 9) and R < G  'K'. The quantum yield, in this case, 
reaches several percent. According to the theoretical esti- 
mates (32) presented above, for GaAs structures the rate of 
nonradiative Auger transitions G kt;K,k, is comparable, in or- 
der of magnitude, to the rate of radiative recombination 

R,,,, ~ 4 . 8  1019 s - ' (Ref. 10). Thus the combined Auger 
process can significantly affect the quantum yield of the 
GaAs heterostructures employed. 

In conclusion we call attention to the role of combined 
Auger decay processes in the formation of electrooptical 
properties of heterostructures such as superlattices, quan- 
tum wells, etc. The existence of an efficient no-threshold 
mechanism of Auger decay can significantly affect the trans- 
fer of nonequilibrium carriers from one quantum well into 
another. Charge is transferred by ejection of fast Auger elec- 
trons over quantum barriers even at very low temperatures 
by means of the combined process, especially since the pre- 
dominant orientation of the momenta kf of the ejected Au- 
ger particles is concentrated in a narrow solid angle along 
the normal to the heteroboundary. Combined Auger decay 
can have a pronounced effect on the quantum yield and 
threshold characteristics of semiconductor heterostructure 
lasers. In our opinion, effects analogous to those studied in 
this paper should also occur near a solid-vacuum boundary; 
this could be manifested in a dependence of the Auger decay 
rate on the size of the objects under study. 

We thank R. A. Suris for a helpful discussion of the 
results. 

I' The effect of size quantization on Auger recombination is discussed in 
Refs. 3 and 4. 
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