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We consider the spectrum of collective excitations of a system with coexisting superconducting 
and dielectric correlations (of the charge-transfer or of the charge-density-wave type). 
Excitations are observed that are not connected with long-wave fluctuations of the electron 
density, and hence do not go over into plasma excitations when account is taken of Coulomb 
interaction. If the dielectric-order parameter phase is not fixed, the system undergoes low-lying 
collective excitations with frequency in the energy interval of the superconducting gap. We 
discuss the possible manifestation of this excitation in the infrared and Raman spectra of high- 
temperature superconductors. 

1. INTRODUCTION main features of the onset of a superconducting state against 
According to recent experiments, high-temperature su- the background of an ordering of the CDW or of the charge- 

perconductors have very high static dielectric constants in transfer type are the same in the model of Ref. 7. This makes 
the long-wave limit. '-' This is interpreted as an indication of it possible to consider, within the framework of a single 
the proximity of these materials to the instability point with scheme, both copper oxide systems and systems of the 
respect to a transition to a ferroelectric phase. From the mi- Ba, -,K,BiO, type. 
croscopic standpoint an instability of this kind can be con- 
nected with electronic instability of the charge-transfer type. 
A convenient way of describing it in the framework of the 
band approach is the excitonic-dielectric model.4 An insta- 
bility of the exciton type in CuO, layers was considered in 
Refs. 5 and 6 as a cause of the radical rise of the supercon- 
ducting-transition temperature T, due to the singularities of 
the momentum and frequency dependences of a renormal- 
ized interelectron interactions in systems with charge trans- 
port. 

In the present paper, without specifying the Cooper- 
pairing mechanism, we take into account, in the calculation 
of the spectrum of the collective modes of a superconductor, 
the coexistence of superconducting and dielectric (electron- 
hole) correlations within the framework of the model of Ref. 
7. We have in mind here the following qualitative picture of 
the development of a superconductor in a copper-oxide sys- 
tem. When the electron band is half-filled, the system is un- 
stable to transition into a dielectric antiferromagnetic state. 
As the system becomes alloyed with holes, the Fermi level 
drops into the oxygenp-band and the antiferromagnetic or- 
der is partly suppressed. This is manifested by a decrease of 
the antiferromagnetic splitting of the d-bands. The upper 
Hubbard d-band is then close to thep-band inside the Hub- 
bard gap, an exciton-type instability becomes possible and is 
manifested by a redistribution of the charge either among 
the Cu and 0 sites, or among the bonds. It should be noted 
that YBa,Cu,O, -, contains at S = 0, according to band cal- 
culat ion~,~ almost superimposed sections of the Fermi sur- 
face, i.e., the situation is close to Fermi-surface nesting. One 
can therefore not exclude the possibility of formation of 
short-range-order regions with charge or spin density 
(CDW or SDW) waves. If a CDW instability develops be- 
fore an exciton instability, ferroelectric fluctuations can re- 
sult from the proximity of the system to the point of extrinsic 
ferroelectric ordering, of the type considered in Ref. 9. The 

We describe, in the band approach, a system of correlat- 
ed electrons and holes. That this approach is valid for high- 
temperature superconductors is convincingly confirmed by 
a number of experimental facts. These include first of all the 
observability of the Fermi surface in photoemis~ion'~ and 
galvanomagnetic" experiments. The notion of evolution of a 
superconducting gap is confirmed by the appearance of cor- 
responding singularities in photoemission spectral2 and in 
tunnel spectra" with transition to the superconducting 
phase. 

However, electron Raman scattering and submillimeter 
IR spectroscopy experiments, where the so-called combined 
density of states is measured, exhibit many discrepancies in 
the low-frequency region of the spectrum. In particular, it is 
impossible as a rule to observe in Raman-scattering spectra 
the threshold that would correspond to a nonzero minimum 
two-particle excitation energy. l 4  

Many IR spectroscopy experiments (e.g., Refs. 15-1 7) 
have revealed spectrum singularities interpreted as super- 
conducting gaps. Worthy of attention is Ref. 17, in which 
two singularities were observed in the reflection spectrum of 
YBa,Cu,O, + , (with superconducting compositions) at 
150 and 430 cm -- ', corresponding to two absorption thresh- 
olds. The singularity at 430 c m '  is present in spectra of 
samples with different oxygen contents (x) and consequent- 
ly with different T,. Moreover, a trace of it is preserved also 
in the normal phase. The low-frequency ( 150 cm - ' ) singu- 
larities vanish on going to the normal phase, but can appar- 
ently not be reliably interpreted as a superconducting gap, , 
owing to the weak correlation of its position with T, for 
samples with T, - 90 K. The authors of Ref. 17 indicate that 
the low-frequency singularity is resolved at the sensitivity 
limit of their apparatus. A similar singularity, however, with 
frequency 130 cm - ' ( - 1.9 k ,  T, ) was observedI5 in a thin- 
film 1-2-3 sample, where a better signal/noise ratio than in 
Ref. 17 could be reached. 
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It follows from the foregoing that special interest may 
attach to low-lying collective excitations whose characteris- 
tic frequencies land in the superconducting-gap energy in- 
terval. The question of low-lying collective modes was ac- 
tively discussed earlier in connection with experiments on 
Raman scattering in the superconductor 2H - NSe, with 
CDW.'s-zo The authors of these references considered Ra- 
man-active amplitudes of the CDW oscillation and of the 
superconducting order parameter. 

We consider below the IR-active phase oscillation of 
the dielectric order parameter and its connection with the 
oscillations of the phase and amplitude differences of super- 
conducting condensates in different bands. In the case of the 
single-band picture with " nesting" the latter correspond to 
excitations of types + id and s + d, respectively. In contrast 
to the Bogolyubov-Anderson mode," whose frequency goes 
over to the plasma-frequency region when long-range Cou- 
lomb potential is taken into account, the collective excita- 
tions considered by us are not connected with long-wave 
electron-density oscillations. Such modes were phenomeno- 
logically considered in Ref. 22. Low-lying excitations were 
obtained in Ref. 23 microscopically in the framework of the 
model of a two-band superconductor without allowance for 
dielectric considerations. In the latter case the oscillations 
are not optically active. 

2. HAMlLTONlAN OF MODEL AND BASIC RELATIONS 

The Hamiltonian of the model is given by 

where ij = 1,2 are the band indices, E ,  (p)  is the dispersion 
law in band i, a& is the creation operator for an electron 
with quasimomentump and spin a in band i, whileAU are the 
interaction constants: A , ,  and A,, are the intraband con- 
stants that cause Cooper pairing of electrons in bands 1 and 
2. We do not specify the pairing mechanism and assume A ,  
to be phenomenological constants that describe the Cooper 
attraction in the energy region G. The interband Coulomb 
interaction is simulated by the constant A,,. According to 
Ref. 7, the interband interaction in the Cooper channel can 
differ from A,, because it has a different renormalization 
when account is taken, for example, of electron-phonon in- 
teraction; we therefore assume below that it is not equal to 
A, ,  and denote it by A,,. In addition to "density-density" 
terms it is necessary to add to ( 1 ) terms that describe scat- 
tering processes of the type A2aT a: a,a2 and A2a,+ a,+ a,a2 
and single-particle g,,a,t a, transitions. Allowance for these 
terms leads to different effective coupling constants for dif- 
ferent types of dielectric order parameter24925 (see below). 
In particular, the coupling constants A,, and A,, for the real 
and imaginary dielectric parameters are different. 

The unrenormalized spectrum of the system is assumed 
for simplicity to be isotropic: 

Here E, is the Fermi energy (E, > 0)  in the case of overlap- 
ping bands 1 and 2 (the unrenormalized phase is a semime- 
tal), or half the band gap ( c ,  < 0)  in the semiconductor mod- 

el. The parameter p determines the position of the chemical 
potential, and m is the effective mass. 

As shown in Refs. 4, 7, and 24, the unrenormalized 
phase with Hamiltonian ( 1 ) and spectrum (2)  has an insta- 
bility called excitonic. In the semiconductor model this in- 
stability sets in as soon as the energy of electron and hole 
binding into an exciton exceeds the band gap.4 Depending on 
the spin structure of the electron-hole pair and the phase 
shift of the wave functions of the electron and hole that form 
the exciton, the model ( 1 ) , (2)  describes different types of 
spin, charge, or current ordering. Their classification can be 
found, for example, in Ref. 24 and we shall not dwell on it. 
We note only that if the phase shift of the wave functions of 
the electron and hole that form a singlet exciton is a multiple 
of T, and for a nonzero interband matrix element of the mo- 
ment um 

v 
( I ) - - (2)  

2 

ferroelectric ordering is realized in the system.2h We consid- 
er below just this type of order. The problem of supercon- 
ducting ordering in a system with exciton instability of the 
priming phase was solved in Ref. 7. We have indicated in the 
Introduction that in high-temperature superconductors 
with superconducting compositions only fluctuations offer- 
roelectric type are observed and not a true long-range order. 
If the reciprocal lifetimes of these fluctuations do not exceed 
the binding energy of the electrons in a Cooper pair, the 
qualitative picture of establishment of superconductivity 
against the background of short-range ferroelectric order 
will be similar to that considered in Ref. 7 in the mean-field 
approximation. As shown there, the phase diagram of a sys- 
tem with coexisting superconducting and dielectric correla- 
tions has a region in which the superconducting transition 
contributes to dielectric ordering. One should therefore ex- 
pect an increase of the dimensions of the short-range order 
region and of the lifetime of the dielectric-type fluctuations, 
with transition of the system into a superconducting phase. 
This points likewise to qualitative validity of the model of 
Ref. 7. 

The Hamiltonian of the model acquires in the mean- 
field approximation the form 

The anomalous mean values describe here the dielectric 
(8$) and superconducting intraband (AED) and interband 
( A g )  orderings. We shall consider hereafter anomalous 
mean value with a spin structure 

(0, is a Pauli y-matrix), corresponding to singlet pairing in 
the exciton and Cooper channels. 

In the superconductivity model considered by us one 
can separate two independent electron-state spaces: the 
space of band states and the space of states inverted in time. 
To make the notation compact it is convenient to introduce a 
pseudospin representation of the creation and annihilation 
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operators, similar to the Nambu representation and reflect- 
ing the presence of these state spaces.I9 We introduce the 
operator 

We write the Hamiltonian (3)  in this representation: 
9 

In (5)  we have expanded the Hamiltonian (3) ,  which kas in 
the representation (4)  the form of a four-row matrix H,, in 
terms of a complete system of matrices of form u, o as, 
where u1,2,3 are Pauli matrices, u, is a unit two-row matrix. 
The direct product of the matrices is so defined that in the 
four-row matrix a, o us the blocks us are arranged in an 
order specified by the elements of the matrix a,, and are 
additionally multiplied by them, e.g., 

The elements h, in (5)  are expressed in terms of the param- 
eters of the Hamiltonian (3)  as follows: 

where 

As shown in Ref. 7, one can assume without loss of genera- 
litythatA,, = i l , ,= i l , .Thus~A, ,~  = (A,,landwehavetwo - 
types of solution: symmetric A,, = A,,-A, A,,=A#O and 
antisymmetric A,, = - A,,-A, A,, = 0. In the case of a 
real dielectric order parameter Z = Z,  $0 the maximum su- 
perconducting-transition temperature corresponds to a 
symmetric solution. We have then in a wide range of param- 
eters x (A and we shall neglect them hereafter. The effective 
parameter Z is realized if its effective coupling constant /Z ., 
turns out to be the largest.24 

We introduce the Green's function in the representa- 
tion (4); 

where A, (T) and A ,+ (7) are operators whose components 
a& and a,,, are taken in the Matsubara representation. 

In the mean-field approximation the system is homoge- 
neous in space, so that 

The mean-field order parameters (6)  satisfy the self-consis- 
tency equations 

where iw = i(2n + 1 ) ~ T i s  the fermion Matsubara frequen- 
cy. The subscripts r ands  run through the same values as in 
(5) ,  except 30 and 33. These values of g, are expressed in 
terms of the interaction constants A,, A,,, A,, and 

'Im : g10,13,20,23 = 'ST gll.21 = '129 g31 = 'Re 7 go2 'Im. 
The elements of the matrix Green's function G,(p,iw) 

were calculated in Ref. 7. Neglecting x, then take for the 
symmetric solution the form 

GI,  (p, io)  ={(io+ez(p) ) [ ( ~ O + E I  (P) ) (io+ez (P) -Zzl 
-AZ(io+el(p)) )ID, 

G,, (p, io)  =Z{(io+el (P ) )  (io+eZ(p) )-xZ--A2}lDl 

F,,+ (p, io) = - ~ { ( i o ) ~ - ~ , 1 . ( ~ )  -A2-x2}/D, (11) 

Fzlf (p, io )  =-A~{Ez ( p ) + ~ l  (p)}ID, 

D - ( ( i ~ ) ' - o + ~ ( p ) )  ( ( i ~ ) ~ - o - ~ ( p )  1, 
a, (p) =[ ( (~2(P)+22) 'h+p)2+A21 '['. 

where w + (p) is the spectrum of the elementary excitations 
of the superconducting phase. A 

The Green's functions ( 11 ) enter in G,(p,iw) as 2 X 2 
block components: 

Gij(p, io) F,, (p, I . I I ) )  
G, (p, io)  = (Fi , (p, io)  - p.-iw) 1 

The block components ( 12) given in ( 1 1 ) can be obtained in 
the following manner. The functions G,, and F ;  are ob- 
tained from the expressions for GI,  and F A ,  respectively, by 
the interchange E,  SE,. In the case considered here, of real 
dielectric and superconducting order parameters (the latter 
can always be made real by a suitable gauge transformation) 
we have 

G12=GZ1, Fij+=Fji, Flz=Fzl. 

3. LINEAR RESPONSE TO AN EXTERNAL FIELD AND 
COLLECTIVE-EXCITATION SPECTRUM 

To find the spectrum of the collective modes of the sys- 
tem we consider its linear response to an external field. As 
indicated in the Introduction, we are interested in low-lying 
modes of the collective-excitation spectrum. Therefore, be- 
fore we proceed to consider the linear response, we make the 
following remark concerning the low-lying excitations. The 
principal candidates might obviously be the Goldstone 
modes of the system, which are the consequence of violation 
of the gauge invariance in the Hamiltonian (3) .  It is known 
from field theory that if the Lagrangian of a system has a 
continuous symmetry group G, and the vacuum state has as 
a result of symmetry breaking a lower symmetry with group 
H which is a subgroup of G, then the number of Goldstone 
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particles is equal to the number of those group-G generators 
which are not generators of H (Ref. 27). The Hamiltonian 
( 1 ) is invariant to phase shifts of the operators a ,  and a,, i.e., 
to transformations of the G = U(1) X U( 1 ) symmetry 
group having two generators. For the state described by 
Hamiltonian (3) ,  one cannot indicate any subgroup H dif- 
ferent from a unit group whose transformations leave (3)  
invariant. It follows therefore that the number of Goldstone 
modes in the discussed system is two. The foregoing pertains 
to a situation with a singlet dielectric parameter. In the case 
of a triplet parameter there is one more Goldstone mode 
(transverse spin wave). This case calls for separate treat- 
ment and is outside the scope of the present paper. 

One of these modes corresponds to the collective Bogo- 
lyubov-Anderson mode," and the second to an analogous 
exciton-dielectric mode." In the first case, however, the 
long-range Coulomb potential pushes out the low-lying exci- 
tation into the plasma-frequency region, and in an excitonic 
dielectric fixing the phase is unavoidable when account is 
taken of the interaction terms corresponding to particle in- 
terband  transition^,^^'^' while the second mode has a gap 
spectr~m.~"or the latter, however, there remains the possi- 
bility of landing in the energy interval of the superconduct- 
ing gap. This possibility will be discussed below. 

Let us consider the linear response of the system to an 
external field V in which the unrenormalized interaction 
vertex has in the representation (4)  the form 

3 

where p = (p,io), k = ( x,io), i a  = i(2n + l)n-T, and 
i n  = i2naT is the Bose frequency. 

In the field V the equilibrium (mean-field) order pa- 
rameters acquire induced increments which we write in the 
form +j V, where 

The subscripts rand s run through the same values as in ( 5), 
except rs = 33. The physical meaning of the quantities 7, in 
( 14) is the following. Vv33 (p + k,p) = Vv33 (k )  corresponds 
to the scalar-potential oscillations due to the electron-den- 
sity fluctuations. This potential is connected with the den- 
sity by a Poisson equation, which can be treated alongside 
the self-consistency equations ( 10) if the corresponding in- 
teraction potential is taken to mean the Coulomb potential 
g3, = 477e2/k2. Vv3, and V7702 correspond to the amplitude 
and phase oscillations of the order parameters, while VT,, 
and Vv,, correspond to oscillations of the amplitude and 
phase of the symmetric component of the superconducting 
order parameter or, in other words, oscillations of the sum- 
mary amplitude and phase of the intraband superconducting 
parameters. Vv,, and VvZ3 correspond to the oscillations of 
the differences of the amplitudes and phases of the supercon- 
ducting parameters of bands 1 and 2 or to oscillations of the 
antisymmetric component of the superconducting order pa- 
rameter, while Vv, l and Vv,, describe oscillations of the 
amplitude and phase of the interband component of the su- 
perconducting order parameter. 

It is appropriate to point out the similarity of the model 

considered by us to the model of a single-band model with 
inserted sections of the Fermi surface. The symmetric solu- 
tion for the superconducting ordering in the model of Ref. 7 
corresponds then to the s-wave of the superconducting pa- 
rameter in conventional classification, and the antisymme- 
tric corresponds to the d-wave. The antisymmetric oscilla- 
tions considered by us are similar to transitions induced by 
an external field of the s state in the s + d (amplitude oscilla- 
tion) and s + id (phase oscillation) states. These oscilla- 
tions are produced even if the interaction potential contains 
only s-harmonics. This is the result of renormalization of the 
unrenormalized Cooper-channel constant by the dielectric 
ordering on the background of which the superconductivity 
sets in. 

The total Hamiltonian of the system takes, with 
allowance for ( 13 ) and ( 14), the form 

To simplify the notation, we have not identified expli- 
citly in ( 13)-( 15) the tensor character (scalar, vector, etc.) 
of the external field. 

The Green's function (8)  satisfies the equation of mo- 
tion 

( - H )  ~ ( p .  p'; r. r ' ) = f i ( ~ - ~ ' ) f i ~ ~ - o , , @  o... (16) 

h 

Separating in the Green's function the increment SG which 
is linear in the field^ and linearizing ( 16) we obtain after 
substituting Go + SG in the self-consistency equation ( 10) 
the following system of dynamic equations for 7, (p + k,p) : 

where 

It follows from ( 17) that 7, (p + k,p) depends only on k. 
We have written in (17) g, ( k )  in lieu of the gV employed 
above, so as to include together with the interaction con- 
stants the Coulomb potential produced by oscillations of the 
electron density. The quantity vm, ( k )  + ym,, (q + k,q) is 
the total vertex "dressed" by the interelectron interaction. 
Denoting it by T,, (q + k,q), we obtain for it the usual ran- 
dom-phase-approximation equation: 

The generalized susceptibility for the action of the field V is 
given by 
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from which we can calculate the contribution of the collec- 
tive excitations to the system susceptibility 

The system ( 17) contains nine unknowns. In the quasi-two- 
dimensional state corresponding to layered high-tempera- 
ture superconductors the system ( 17) breaks up into two in- 
dependent equations with dimensionalities 6 X 6 and 3 X 3. 
The first contains the dynamic equations for the amplitude 
oscillations of the dielectric order parameter, the scalar pa- 
rameter, the scalar potentials, and the amplitude and phase 

oscillations of the symmetric and interband components of 
the superconducting parameter. We shall not solve this part 
of the system, since it was already investigated several 
times. l8-*' 

The long-wave Coulomb potential impeding the onset 
of the Goldstone mode in an ordinary superconductor turns 
out not to be connected with the phase oscillations of the 
dielectric order parameters and with the oscillations of the 
phase and amplitude differences of the superconducting 
condensates of bands 1 and 2, since these oscillations do not 
cause the electron density to oscillate. The possibility of low- 
lying collective excitation is therefore preserved. 

The investigated part of the homogeneous set of equa- 
tions corresponding to ( 17) is 

2 -- 
A I I,, 

110202 (kt (4 - 1 1 ~ 2 2 3  (kl0)  - '0213 (k7 Q) 

2 
- I 2  k 1 )  - - 112~23 (k, O) - n2313 (kt (1)  

A s  

\ - 1 1 1 3 ~ 2  (ky 0) - 111?23(kt Q) 
2 -- 

n u 1 3  (kt (4 
A s  

We have introduced here the notation 

ZL 
P +-(I - o++o- 

E' 
and carried out in the quantities n,,, (x,i  R )  an analytic 
continuation from the discrete imaginary frequencies if2 to 

PI323 ( E .  Q)=P23ta (Er Q )  the region of real frequencies, iR + R + is. The expressions , 

for the quantities n,,, (x ,R) are very unwieldy. We present 
them taken to the limit as k-0 and for a temperature T = 0, 5' =Q-( E+P - E-P 
using the notation E2 a+ ( 4 ~ + ~ - 5 2 ~ )  o- (40-'-Q2) 

where N(0)  is the density of states of the unrenormalized 
phase on the Fermi level, 

Here 

Being interested in low-lying oscillations, we solve the sys- 
tem (22) in the frequency region R<2A in the limit as k-0 
and at T =  0. Expanding in (23) up to second order in 
w = R/A we have 
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In the limit AX &4n2 =4(p2 - 2') we can use the asymptote 
of the elliptic integral A: 

It follows from (24) that in the limit a = 0 the charac- 
teristic equation has a root o = 0. This root corresponds to 
the dielectric-ordering Goldstone mode referred to at the 
beginning of this section. The low-lying root of the charac- 
teristic equation of system (22) is 

This expression was obtained in the limit 

The condition for the validity of the expansion in o = R/A is 

It is more stringent. Thus, if a 4 A2/,u2 the frequency of the 
collective mode lands in the energy interval of the supercon- 
ducting gap and the mode turns out to be weakly damped. 

4. MANIFESTATION OF LOW-LYING EXCITATION IN IR 
SPECTRA OF SUPERCONDUCTORS 

Let us examine the manifestation of the obtained low- 
lying collective excitation in IR spectra. We describe the 
electromagnetic-wave vector by the vector potential 
A(k,O) = A exp(zkr - Ot). The vertex ofthe interaction of 
the electrons in this system with the field A(k,fl) can be 
established by replacing p in ( 5) by p - ( e / c )  A and taking 
into account the possible interband transitions relative to the 
nonzero interband matrix element of the momentum 

Allowance for the term 

in the Hamiltonian ( 1 ) adds to the spectrum of the dielectric 
phase (beside establishment of the phase) corrections of or- 
derpk,/m,8 (k, is the Fermi momentum and m, is the free- 
electron mass). We assume hereafter for simplicity that this 
parameter is small, so that the spectrum corrections can be 
neglected. 

The unrenormalized vertex of the interaction with the 
electromagnetic field is given by 

It follows from (26) that the discussed low-lying mode 
can be excited by an electric field in proportion to P in an 

approximation linear in A .  A similar situation was pointed 
out earlier in Ref. 29 as applied to an excitonic dielectric. 
The system (22) becomes then inhomogeneous. The column 
of free terms takes the form: 

iePA (k. ( o )  

m,c 
(nOLoL(k, 521,  n0223(k, Q ) ,  Ho2,3(k, 52) ) I ,  

where T denotes the transpose. 
We determine the system susceptibility QaB (k,R) in 

the usual manner in terms of the current j (k ,R) 

The contribution of the obtained oscillation to the transverse 
part of Q,@ (k,fl) is given by 

The contribution of the third term of (27) at low frequencies 
is small, since Il,2,,(k-0,R) - a ,  as follows from (23). 

Near the frequency R, [Eq. (25) 1,  the response (27) 
becomes resonant 

Let us discuss the response differences between the su- 
perconducting and normal phases. We disregarded in (28) 
the damping of the collective mode. Its damping will obvi- 
ously be different in different phases, and larger in the nor- 
mal than in the superconducting. This is due, first, to decay 
of this collective excitation into single-particle excitations 
with phonon emission. The probability of such a process is 

where M(p,k,q) is the matrix element of the process, ~ ( p )  is 
the single-particle excitation energy, and w,, (p) is the 
phonon energy. In optical experiments k+O, so that we can 
put k = 0 in (29). Such processes are energy-forbidden in 
the superconducting phase at fl, < 2A, whereas in the nonsu- 
perconducting phase they contribute to the damping. If the 
unrenormalized phase is not alloyed, such processes are en- 
ergy-forbidden also in the phase with dielectric ordering. 
Our solution (25) turns then into the corresponding solu- 
tions of Refs. 29 and 30, dealing with collective modes of an 
undoped excitonic dielectric (p = 2 ) .  To avoid misunder- 
standings, we note that doping of the unrenormalized phase 
is an obligatory condition for realization of superconductivi- 
ty in the model of Ref. 7. 

Second, in connection with the fluctuating character of 
the dielectric parameter Z, the collective-mode damping is 
inversely proportional to the fluctuation lifetime. We have 
noted above that the phase diagram of the system contains a 
region in which superconductivity contributes to the in- 
crease of the lifetimes and sizes of the regions with short- 
range dielectric order. The collective-mode damping will be 
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weakened. The obtained collective mode can therefore be 
resolved better in absorption spectra of the superconducting 
mode than in those of the normal phase. 

In accordance with (28) and (25), the frequency of the 
response singularity due to the low-lying mode depends little 
on the superconducting parameters of the system, such as 
the gap A, and consequently on the temperature T, of the 
superconducting transition. Within the framework of the 
model of Ref. 7 the connection between these parameters 
with X and p is: 

where 0 = In (XO/A,), while I,, and A, are the dielectric 
and superconducting parameters in the absence of interac- 
tion between the superconducting and dielectric correla- 
tions, and n2 = p' - X2 is the free-carrier density, expressed 
in energy units, corresponding to the deviation of the devi- 
ation of the unrenormalized band from half-filled, with 

Z= ( Z ,  (Z,-2n)  )". 

It follows from (30) that the parameter A reaches as a 
function of n a maximum at the point n,,, = 2Z,/0. Near 
this point, 

The frequency of the collective mode (25) can be expressed 
in terms of 2,) and n: 

From (32) we obtain the frequency change 
SR = R, - R,,,, when n deviates from n,,, . We shall con- 
nect this deviation next with the deviation of A from A,,, 
(31): 

The signs correspond here to the cases n < n,,, and 
n > n,,, , respectively. We have assumed throughout that 
the dielectric-parameter phase is weakly fixed, i.e., a 4  1. 
Thus, the dependence (33) is weak in the region of small 
deviations of A from A,,,, ,just where the expansion (3  1 ) is 
valid. In the weak-coupling limit we have in the weak-cou- 
pling theory7 as well as in BCS T, = (y/n-)A( In y is the 
Euler constant), and the dependence of SRO on 
( T  ,,,,, - T, ) is similar to the dependence on (A,,, - A) 
in (33). 

Note that the qualitative variation of 
R, = Qn,,,, + SR, with T,. (actually with the doping) near 
the maximum temperature T,,,,, agrees with that observed 
in experimentI7 in that there is practically no correlation 
between the position of the low-frequency singularity of the 
reflection spectrum and the temperature of superconducting 
YBa,Cu,O, + , specimens with T, - 90 K. It is noted in Ref. 
17 at the same time that the absorption edge of specimens 
with non optimal composition ( T, < 60 K )  the absorption 
edge shifts towards lower frequencies when T, is lowered. 

This behavior can apparently be interpreted as follows. 
The singularity in (28) has the character of a steep peak in 
the region fLn<2A. The last condition may not be satisfied 
for samples with relatively low superconducting tempera- 

tures. The connection with amplitude excitation 7,,(k,R) 
which lies higher than 2A and is therefore strongly attenuat- 
ed is no longer weak in the system (22), and the low-lying 
mode will also attenuate. This broadens the absorption line 
and thus shifts the absorption edge into the low-frequency 
region. Note that in a number of  experiment^'^-'^ were ob- 
served spectrum singularities whose frequency position on 
the T, scale is w / k ,  T, -- 8. It is remarkable that a trace of 
these singularities is preserved also at a temperature 
T? Tc.16,17 In our opinion this singularity is made to con- 
tribute to the absorption by the quasiparticle generated as a 
result of pair breaking by .he external field, and reflects the 
state-density singularity connected with the presence of di- 
electric correlations." 

5. CONCLUSION 

We have considered here the spectrum of the collective 
excitations and their manifestations in the optical spectra of 
superconductors with dielectric correlations. The latter 
make the system close to a ferroelectric transition in a nonsu- 
perconducting phase and is the cause of the high tempera- 
ture of the superconducting transition. The proximity of the 
system to ferroelectricity was described by us in terms of 
excitonic instability of a doped semiconductor with nonzero 
interband momentum matrix element. The last circum- 
stance is not decisive, although it does simplify the calcula- 
tion considerably. In the case of proximity to an instability of 
the charge-density-wave type, which cannot be excluded 
from high-temperature superconductors based on 
YBa,Cu,07 , in the region of superconductive compounds 
in view of the presence of almost congruent sections on the 
Fermi surface as 6 - 0, ferroelectric fluctuations are possible 
as a manifestation of the proximity to the point of extrinsic 
ferroelectric ordering9 and our present results remain qual- 
itatively in force. 

In contrast to Refs. 18-20, dealing with Raman-active 
amplitude oscillations of the superconducting and dielectric 
(CDW) order parameters, we consider IR-active phase os- 
cillations. Under conditions of sufficiently strong electron- 
phonon interaction, the oscillations considered by us may be 
manifested also in Raman-scattering spectra, particularly as 
singularities of the form of the phonon lines (Fano antires- 
onance). In all likelihood, however, unequivocal separation 
of their contribution to Raman-scattering spectra is a very 
complicated task. A more reliable method of observing the 
considered collective excitation is IR spectroscopy. 

In conclusion, we thank V. S. Gorelik for a discussion of 
the experiments on Raman and IR spectroscopy. 
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