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A model of a large-scale fluctuation potential in a lightly doped compensated semiconductor is 
suggested. The model is used to calculate the chemical potentialp at absolute zero as a function of 
the degree of compensation K in the interval 0.8 < K < 1. It is shown that only by allowing for a 
small-scale potential is it possible to fit the calculated functionp (K) to the results ofnumerical 
modeling. The dependence of the spatial scale ofthe fluctuation potential on the degree of 
compensation is established, and the probability density of the large-scale potential, its 
dispersion, and the density of the impurity states are calculated. 

1. INTRODUCTION 

At low temperatures the properties of a compensated 
semiconductor depend primarily on the structure of the im- 
purity bands. To be specific, we will consider a semiconduc- 
tor of the n-type doped with shallow donors and acceptors 
with average volume concentrations Rd and w,. We will 
assume that the conditions of light doping are met, namely 
%,,a:,, 1, where a, and a ,  are the respective Bohr radii. 
This inequality makes it possible to speak of donor and ac- 
ceptor impurity bands in the classical sense, when the shift in 
a level of an impurity center can be assumed equal to the 
potential energy generated by the other charged impurities 
in this center. A review of the research into the structure of 
the impurity band of such semiconductors, that is, the densi- 
ties of states, the values of the chemical potential, and the 
configuration of the vacant and filled states in space at abso- 
lute zero, can be found in Refs. 1 and 2. 

Regarding doped semiconductors it is known'.' that 
the higher the compensation degree K = 8,/md the greater 
the role of the large-scale fluctuation potential, that is, a 
potential with a characteristic scale R much greater than the 
average distance between the impurities, X,'''. 

What is the current state of affairs in studies of the clas- 
sical impurity band? On the one hand, there are researchers 
who employ direct numerical minimization of the Coulomb 
energy of the interaction of electrons with each other and 
with the charged impurities. Such work has been carried out 
primarily by the group of Shklovskii and Efros, and the main 
results can be found in Refs. 1-4. An essential drawback of 
such modeling is the long computing time. In addition, the 
question of the characteristic spatial scale of fluctuations has 
yet to quantitatively be resolved. On the other hand, ap- 
proximate analytical calculations are not in quantitative 
agreement with the results of numerical modeling. 

The most consistent analytical theory of the large-scale 
fluctuation potential in a lightly doped semiconductor, I be- 
lieve, has been developed by ChenskiL5 However, his esti- 
mate of the large-scale fluctuation potential (and, respec- 
tively, the absolute value of the chemical potential) is half 
the value obtained by numerical modeling in Ref. 2. Besides, 
the applicability range of the theory developed in Ref. 5, 
obtained from the requirement that the number of acceptors 
in a characteristic fluctuation be greater than one, is restrict- 
ed to a narrow range of compensation degrees near unity 
( 0 . 9 5 9 K ~  1 ). 

Using the Chenskii model as a basis, I proceeded from 
the following assumptions. Since the characteristic scale of 
fluctuations proves to be relatively small, the Gaussian dis- 
tribution employed in Ref. 5 for impurities in a fluctuation 
must be replaced with the more exact Poisson distribution. 
Also, the characteristic fluctuation amplitude in Ref. 5, that 
is, the chemical potential p, was found from an electroneu- 
trality equation in which the small-scale fluctuations of the 
potential were ignored, and only one of two closely spaced 
donors proves to be charged by the Coulomb interaction (a  
similar situation is true for acceptors). 

Thus, the aim of the present study is to establish the 
justification for replacing the Poisson distribution of impuri- 
ties with a Gaussian distribution. We will see that to exclude 
the "self-action" of charged centers it is advisable to calcu- 
late the electrostatic energy of the system and then use this 
value to determine the chemical potential. The minimum of 
the chemical potential determines the characteristic spatial 
(optimum) scale of potential fluctuations, R, which is ex- 
pressed here in terms of the average number of donors in a 
fluctuation as follows: zOp = 47~R 33d/3. This fact makes it 
possible to refine the Eop (K) dependence and "move" the 
calculations into the region of smaller values of K (Kh0.8). 
Development of an approximate procedure for allowing for 
the small-scale potential leads to a substantial increase i n p  
and makes it possible to reconcile the calculation of p with 
the results of numerical modeling.' 

2. THE CHARGE DISTRIBUTION AND THE FLUCTUATION 
POTENTIAL 

Let us mentally divide the semiconductor into spheres 
of radius R. For the Poisson distribution, the probabilities of 
n donors and m acceptors in such a sphere are, respectively, 

(Kii) " 
W, ( m )  = - exp (-Kii)  , 

m! 
with = 41rR 3xd /3. 

To find the fluctuation potential in a semiconductor one 
must determine the potential generated by a separate fluctu- 
ation with n donors and m acceptors, - V * (r*,n,m), where 
r* is the radius vector of the coordinate (an asterisk desig- 
nates a dimensional quantity). As is the common practice 
(e.g., see Ref. 1 ), the concentrations of donors and acceptors 
are assumed constant within one fluctuation: 
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Nd (r ' )  =3n/4nR3, N, (r')  =3m/4nP.  

To determine V * (r*,n,m) we follow a procedure devel- 
oped and substantiated in Ref. 5, which leads to the follow- 
ing qualitative picture. An average potential F* is estab- 
lished in the semiconductor, it is assumed that outside the 
fluctuation the potential must tend exponentially to F* with 
a characteristic screening length R ,*, . This corresponds to a 
slowly varying density of states near the Fermi level. To find 
V * (r*,n,m) inside the fluctuation, one must solve the Pois- 
son equation and match the electrostatic potential and the 
field strength at the fluctuation boundary. In the semicon- 
ductor there is a single Fermi level po , and all donors below 
this level are filled and neutral. Thus, po is the maximum 
energy of a neutral donor. It differs insignificantly from the 
chemical potential (see below) because of the existence in 
the donor-state density of a Coulomb gap separating vacant 
states from filled. All fluctuations can be divided into 
screened and unscreened, depending on the ratio of the ener- 
gies at the donor level in a fluctuation and on the Fermi level. 
In unscreened fluctuations the donor level is higher than the 
Fermi level, all donors are charged, and the fluctuation- 
charge densityp* is e(N, - No ), with e the electron charge. 
In screened fluctuations the donor level reaches the po level , 
and near the center there is an electroneutrality region where 
p* = O  (Fig. 1).  

Here are the basic equations for the potential. Inside a 
fluctuation 

with E the dielectric constant of the semiconductor. At this 
point it is expedient to introduce the dimensionless variables 

Now we take into account the spherical symmetry of a fluc- 
tuation and rewrite the Poisson equation ( 3 ) in terms of the 
dimensionless variables: 

By employing the probability density P( V )  of the potential, 
we can easily write the expressions for the average value of 
the potential, 

V = j VP(V)dV, 
- cc (5 

and for the screening radius R,, outside the fluctuation nor- 
malized to R, 

FIG. 1 .  The qualitative potential patterns for screened (curve 1 )  and 
unscrezned (curves 2 and 3)  fluctuations. 

Here the potential is reckoned from the average value of the 
potential into the conduction band interior. The solution of 
the Poisson equation outside the fluctuation is 

where a, is a constant determined by the boundary condi- 
tions. 

The solution for unscreened fluctuations, that is, with 
p = const inside the fluctuation, is 

( r )  =p (12-6), (8 )  

where 

For screened fluctuations (p  > - po/S), which at the 
center for r<r,  have an electroneutrality region withp = 0, 
solving Eq. (4)  yields 

Fo. OGrGr,, V ( r )  = { pl-3r:+rz+2r,'/r] r ,<rGi ,  (9 )  
The equation for r, can be found from the boundary condi- 
tions and has the form 

It can easily be shown that in terms of dimensionless vari- 
ables the fluctuation-charge density is equal to the difference 
between the number of donors and the number of acceptors 
in the fluctuation: 

The distribution in p is given by 

3. THE ELECTRONEUTRALITY EQUATION AND THE VALUE 
OFTHE CHEMICAL POTENTIAL 

The average concentration of the neutral donors in 
screened fluctuations (only in such fluctuations do neutral 
donors reside if we do not allow for the small-scale poten- 
tial) is equal topr: N,/E. Multiplying it by the probable oc- 
currence of such fluctuations and summing over all the fluc- 
tuations, we should get the average concentration of neutral 
donors, that is, impose the electroneutrality condition on the 
sample, 

where p,,, = [ -po/S] + 1, with [ - po/S] the integral 
part of - po/S. 

Simultaneous solution of Eqs. ( 10) and ( 13) yields 
pO (K,E), where E, or respectively the fluctuation radius, is 
the intrinsic parameter of the problem. The solution must be 
optimized in E, meaning the possibility of varying the donor 
occupancy. 

In Ref. 5 the optimum radius is found by minimizing 
po ( E ) .  Replacing the Gaussian impurity distribution with 
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functions of the fluctuation size for a compensation degree K equal to 0.9. 

I 
FIG. 2. The Fermi energy p, and the chemical potentialp in units of Ed as Q2 a3 

I-K 

Curves I and 2 correspond to p, (n) at p,,. = [ -po/6] + 1 and 
p,,, = max(2, [ - po/6] + 1 ), respectively, and curve 3 to p (n )  at FIG. 3. The minimum size of a fluctuation, A,,, , plotted against the com- 
p,,, = max(2, [ -pO/6]  + 1). pensation degree K. 

the more exact Poisson distribution alters the way in which 
po (Ti) varies (Fig. 2).  First, letting Ti tend to zero, we find 
thatp, (Ti )  a - Ti - (recall that for the Gaussian distribu- 
t i o n ~ ~  (Ti)  a - see Refs. 2 and 5), which follows from 
the fact that the characteristic charge in a fluctuation proves 
to be of the order of unity and not Ti'/2, as is the case for the 
Gaussian distribution. This charge is actually equal to K, 
since employing the Poisson distribution makes it possible to 
operate with an averaged fractional charge. As K-+ 1, the 
plot ofp, against Ti acquires an additional minimum at rela- 
tively large values of Ti coinciding with the value of Ti,, ob- 
tained for the Gaussian di~tribution.~ This appears, specifi- 
cally, at R, = 1 for K >  0.98. The tendency of - po (Ti) 
to become infinite as 5-0 can be arrested by imposing 
a restriction on p,,, and assuming that p,, 
= max(2, [ -po/S] + 1) (see Fig. 2).  Physically this 

means ruling out the possibility of a fraction of the donor 
charge creating a potential for itself. However, the "reper- 
cussions" of such self-action are sure to be retained even 
under such a restriction as soon as Ipo I becomes smaller 
than 6, since the charge of the screened fluctuations, 
p [ 1 - r: (p) 1, becomes of the order of unity. 

Actually, for any degree of compensation one can de- 
fine a partitioning of minimal size, Timin, at which the solu- 
tion to Eq. ( 13) still has physical meaning. The value of Emin 
can be found by the following reasoning. The minimum 
charge in screened fluctuations cannot be smaller than unity, 
that is, the maximum number of neutral donors is p - 1. As 
a result, by analogy with Eq. (13), we arrive at an equation 
for Ern,,, : 

The solution to Eq. ( 14) in the form of Ti,,, plotted against 
K is depicted in Fig. 3. For a definite value of K the range of 
admissible values of Ti is restricted by the inequality ii > Timin. 
At K = 0.74 the value of Ti,, tends to infinity, that is, the 
solution to Eq. (14) in this range of K loses all meaning. 

The calculations can be improved in the region of 
"small" K by defining the electrostatic energy of the semi- 
conductor in such a way that the self-action of a charge is 

automatically excluded. This "renormalized" energy can 
then be used to find the chemical potential. 

The expression for the electrostatic energy Fof the sys- 
tem, has the following form: 

m I - 
~ = & z ~ t ( p )  j 3pv(pt,r)?c-ir. 

2fi 9 ~ - m  r , (p )  (15) 

Here r, (p) vanishes for p <pmin and is founa rrom Eq. ( 10) 
for p >p,, , and potential V(pl,r) is given by Eqs. (8) and 
(9)  for, respectively, unscreened and screened fluctuations 
in which the charge density is diminished by unity: 

P ' = { P I ~ - ~ I ~ ( P ) I  - s ign~) l I i - - r~~(p )  I .  (16) 

Substituting (8)  or ( 10) into ( 15), allowing for the fact that 
p ( r )  = const, and integrating we find the average potential 
( V(p)) acting on the charge in the fluctuation: 

P' (3/~-6), p<prnint 
pt{3r5(~-r:)+3rla(~-r:) 

Having calculated the dependence of F on Ti and K, we 
can determine the chemical potential p .  For this we must 
find the derivative of F with respect to the electron concen- 
tration Ti, on donors or, bearing in mind that 
Ti, = Rd ( 1 - K), we find that 

By calculating p as a function of Ti for a fixed K and finding 
on the plot of this function the value Ti,, corresponding to 
the function's minimum we obtain the optimum partitioning 
of the sample, that is, the occupancy of the donors at which 
the ground state of the system is realized. Figure 4a shows 
the results of calculating p, and p for the Poisson distribu- 
tion of impurities, and pO for the Gaussian distribution, as 
functions of K (see the Appendix). All curves have been 
calculated with R,, = 1 and the energies have been normal- 
ized to the average interaction energy of donors, 
Ed = e 2 ( + - R d ) " 3 / ~  From Fig. 4a one can see that in the 
region where K+ 1 all the curves merge. The difference be- 
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FIG. 4. (a)  Diagrams ofp vs K and ofp, vs K for the Poisson distribution 
(curves I and 2, respectively) and ofp, vs K for the Gaussian distribution 
(curve 3 ) .  (b) The chemical potential as a function of the compensation 
degree without allowance for the small-scale potential (curves 1-3) and 
with allowance for such a potential (curves 4-6). Curves I and 4 corre- 
spond to R,, = 0.1, curves 2 and 5 to R,, = 1, and curves 3 and 6 to 
R,, = 10; all energies are given in units of Ed.  Curve 7corresponds to the 
results of numerical modeling taken from Ref. 2. 

tweenp, andp plotted against K for the Poisson distribution 
in the range of moderate values of K (0.8 < K  <0.95) is 
caused by the existence, between the vacant and filled donor 
states, of a Coulomb gap where the chemical potential level 
resides2 Note that within the framework of the model con- 
sidered here the width of the Coulomb gap depends on E,, 
and decreases as E,, (and, hence, the degree of compensa- 
tion) grows. The resulting curves representing thep ( K )  de- 
pendence for different screening lengths R ,  are depicted in 
Fig. 4b, and the E,, ( K )  plot is shown in Fig. 5. 

Comparison of the absolute values of the Fermi energy 
with the results of numerical modeling2 (see curve 7 in Fig. 
4b) shows that allowance for only the large-scale potential is 
insufficient to explain the sharp increase i n p  (K) as K +  1. It 
is in this region that one must take into account the small- 
scale potential. 

4. THE EFFECT OF A SMALL-SCALE POTENTIAL 

Let us consider a fluctuation with n donors and m ac- 
ceptors. The probability of finding k donors and not a single 

FIG. 5. The optimal fluctuation size E,, as a function of the compensation 
degree K with (curve 4) and without (curves 1-3) allowance for the 
small-scale potential. Curve I corresponds to R = 0.1, curve 2 to R = 1, 
and curve 3 to R = 10. 

acceptor in a region of volume r3 is 

where C is the number of combinations of k objects from a 
set of n. Multiplying this number by k - 1, summing over k 
from 2 to n, and dividing by r3, we obtain the number of 
donors residing within the given fluctuation at distances 
from one of the donors ranging 0 to r: 

Note that as r-0 this dependence yields the number of do- 
nor pairs residing at distances ranging 0 to r; that is, the 
dependence corresponds to the nearest-donor approxima- 
tion. ' 

To determine the potential whose effect the donors 
"feel," we average the large-scale potential within the fluctu- 
ation region: 

1 

V.,=3 I V ( n ,  m, r)? dr. 
0 

Substituting the expression for the potential of unscreened 
or screened fluctuations, ( 8) or (9 ) , we find that 

Recall that r, (n,m) is determined by Eq. (10). Using the 
value of F,,, , we can express the energy in the fluctuation 
region at a distance r from a charged donor in the form 

E (r) =VnVL-2/r. (23 

To find the number of donors with an energy below the 
Fermi level, we use formula (20) for N(r)  with - 
r = r,, = min [2/( V,, - p, ), 1 1. However, for fluctu- 
ations with a potential close to the Fermi level 
(Fn, -p0 < 1/2), where it would seem easiest to force a 
donor to sink below the Fermi level, Eq. (20) yields 
N( r  = 1) = 0. For such fluctuations we find the position of 
the N(r) maximum attained at r = r,,, , and assume that the 
number of donors occurring below the Fermi level is still 
determined by Eq. (20) with r = r,,, . Thus, the number of 
donors that prove to be neutral in the given fluctuation as a 
result of interacting with the nearest charged donor is given 
by Eq. (20) with r = r,, , where 

As a result, the fluctuation's charge density diminishes: 

p (n ,  m)  =n-m-.N (r, ,)  . (25) 
Thus, the "small-scale" fraction of the neutral donors is 

This term must be added to the left-hand side of the electro- 
neutrality equation: 

cz, rn 

We have thus arrived at a self-consistent and closed sys- 
tem of equations ( l o ) ,  (25), and (27). Carrying out the 
necessary calculations, we find p, (2,K). To determine the 
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optimal fluctuation size, we also calculate the electrostatic 
energy and, via ( 18), find Tiop . The minimum ofp is attained 
at values of Z, that approximately agree with those ob- 
tained earlier without allowing for small-scale fluctuations 
(see Fig. 5) .  However, the value ofp, increases substantially 
in the region where K+  1 (see Fig. 4b). Figure 4b shows how 
the p, (K) curve can be fitted to the numerical-modeling 
results by varying the screening parameter R,, outside the 
fluctuation. The screening radius increases with K, owing 
both to the increase in the fluctuation potential and to the 
decrease in the electron concentration on the donors. 

5.THE PROBABILITY DENSITIES OFTHE POTENTIAL AND 
OF THE DONOR STATES 

Having determined the ground state of the system, it is 
expedient to compare the density of donor states, obtained 
within the framework of the developed model, with numeri- 
cal-modeling results taken from Ref. 2. To this end we calcu- 
late the probability densities of the large-scale fluctuation 
potential and of the donor states. 

Recall that by employing the probability density of the 
fluctuation potential, P (E) ,  it is relatively easy in the quasi- 
classical approximation to calculate the "tails" of the state 
densities of the conduction and valence bands1 and the dis- 
persion of the fluctuation potential. We can assume, to first 
approximation, that the densities of the donor and acceptor 
states are proportional to P(E) (see Ref. 5).  However, 
knowing the structure of the fluctuations, we can calculate 
these functions more accurately. 

In an individual fluctuation the potential probability 
density is 

Integrating and going over to dimensionless variables yields 

Substituting the expression (8)  for the potential of an un- 
screened fluctuation into (29), multiplying the result by the 
probability of such a fluctuation, and summing over all the 
fluctuations that produce the potential E, we find the proba- 
bility density of the potential generated by unscreened fluc- 
tuations: 

where the summation is over all the fluctuations that satisfy 
the inequalities p ,  <p(n,m) <p,,  with p ,  = - E /6 and 
p, = - E / ( S  - 1). 

Similar calculations with the expression (9)  for the 
screened fluctuation potential substituted for (8)  yield the 
probability density of the potential generated by screened 
fluctuations: 

where r, (p) is found by solving Eq. ( 10) with a known p,, 
the function r(E,p) is found by solving (9) and ( lo), and 
the summation is over all the fluctuations that obey the in- 
equalities p,, <p(n,m) <p, , with p, the maximum charge 

density at which the potential at the boundary of a screened 
fluctuation still attains the value E, or 

V(r=I, p3) =E. (32) 

Note that the function V, (p)  = V(r = l , r ,  ( p ) )  monotoni- 
cally decreases a sp  grows. 

The total probability density of the potential is the sum 
of the probability densities for screened and unscreened fluc- 
tuations, 

and is shown in Fig. 6. Allowance for small-scale fluctu- 
ations (Fig. 6b) leads to a decrease in the number of 
screened fluctuations and flattens the "excessive" peak (ex- 
cessive from the standpoint of numerical simulation) that is 
near the Fermi level and is caused by the contribution P, (E) 
of the screened fluctuations. 

In the model developed here the probability density of 
the large-scale potential has two delta-like peaks. The first 
lies near the Fermi level (E = p, ) and has the amplitude 

while the second corresponds to E = 0 and has the ampli- 
tude 

P(E=O) = 12 Wd (n) W,(m). 
n rn 

(35) 

The summation here is over all fluctuations with 
p(n,m) = 0. 

From the standpoint of physics it is clear that the two 
peaks must spread out, the first largely because of small- 
scale fluctuations, and the second because of fluctuations of 
the boundary conditions. For one thing, the spreading of the 
peak at E = 0 balances the dip in the potential's probability- 
density caused by the fact that this energy region corre- 
sponds to the screening potential outside the fluctuation and 
is not taken into account when P(E) is calculated. 

Knowing the probability density of the potential, we 
can calculate the dispersion y of the large-scale potential as a 
function of the compensation degree K of the semiconduc- 
tor: 

Note that in comparison top,, the dispersion y proves to be 
less sensitive to whether or not the small-scale potential is 
taken into account (Fig. 7 ) .  

When calculating the density of charged donor states, 
we must exclude self-action (just as we did when calculating 
the electrostatic energy); that is, we must replacep withp' 
when calculating the potential of charged centers. In addi- 
tion, in the case of screened fluctuations we must bear in 
mind that the density of vacant donor states, p,, is inhomo- 
geneous over the fluctuation volume, 

As a result, for the density of donor states we have 
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where summation is carried out over all fluctuations with 
potential E. 

For the density of neutral donors we obtain a delta-like 
peak at p, with the amplitude 

and the term caused by small-scale fluctuations, 

where N(r )  is defined by (20), and r (E)  is obtained by solv- 
ing Eq. (23). The total density of donor states at K = 0.95 is 
depicted in Fig. 6c, where the presence of a Coulomb gap 
between neutral and charged donors is evident. 

6. CONCLUSION 

The calculations show that the large-scale fluctuation 
potential for a strongly compensated semiconductor can be 
calculated by allowing for the fact that a small-scale poten- 

FIG. 6.  The probability density of the potential without allowance ( a )  
and with allowance (b) for the small-scale potential at K = 0.95 and 
R,, = 1 ,  and the donor-state density ( c )  at K = 0.9 and R,, = 1 .  

FIG. 7. The dispersion of the large-scale potential as a function of the 
compensation degree without allowance for the small-scale potential 
(curve 1 )  and with allowance for such a potential (curve 2) (R,, = 1 ). 

tial may exist simultaneously with the large-scale potential. 
Moreover, it was found that when K <0.74, allowing only 
for the large-scale potential cannot satisfy the sample's elec- 
troneutrality equation. Here it is assumed that a fluctuation 
becomes screened, that is, the potential reaches the Fermi 
level, if only one donor is excessively charged. 

We have also established that the characteristic spatial 
size of a fluctuation potential coincides with Ti,, for the 
Gaussian distribution of impurities when K- 1 (see the 
Appendix). For moderate compensation degrees 
(0.8 < K < 0.95) it is necessary to employ the Poisson distri- 
bution of impurities and to calculate the chemical potential 
p using the value of the electrostatic energy of the semicon- 
ductor. At Kz0 .8  the characteristic spatial scale ap- 
proaches the average distance between impurities; that is, 
the potential ceases to be large-scale. 

The density of the donor states has a Coulomb gap near 
the Fermi level and is close to the results of numerical model- 
ing.2 

Let us discuss the assumptions used in the model. 
1. It was assumed that outside a fluctuation the poten- 

tial tends to its average value ~exponentially. In the present 
model this question can be evaded more precisely. Namely, 
by using the densities of donor and acceptor states we solve 
outside the fluctuation a Poisson equation in which the spa- 
tial distribution of the charge is determined by these densi- 
ties.5 This, however, would complicate the model consider- 
ably, since for each fluctuation we would have to solve 
numerically the Poisson equation outside the fluctuation 
with the parameters of n donors and m acceptors and then 
achieve additional self-consistency in the density of states. 

The calculation results show that the value of the chem- 
ical potential greatly depends on the outer screening radius 
of a fluctuation, R,, , and that the characteristic spatial size is 
practically independent of R,, , except in the region where 
K- 1 (Fig. 5 ) .  

Using the results of numerical modeling taken from 
Ref. 2 and comparing p (K,R,, ) with p (K) obtained in Ref. 
2, we can solve the inverse problem of finding R,, (K). Three 
characteristic points of thep vs K dependence can be found 
from the points of intersection of curves 4-6 with curve 7 
representing the results of numerical modeling (Fig. 4b). 
The values of R,, obtained in the process range from 0.1 to 
10 and are in my opinion reasonable. Note in this connection 
that it is wrong to use outside the fluctuation an unscreened 
potentiaL that decreases like r - I  and corresponds to 
R,, = m ,  as is often done in calculations of the probability 
density and the density of states of a potential (see Refs. 1 
and 6).  
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2. It is usually assumed that the concentration is con- 
stant within a fluctuation. In Ref. 5 the effect of the concen- 
tration inhomogeneity o f p  was calculated. A fluctuation of 
radius R was "partitioned" into two concentric regions of 
equal volume; in each region the concentration was assumed 
constant. It was found that the difference in the values of p 
amounts to less than one percent. Allowance for small-scale 
fluctuations has practically no effect on the sensitivity of the 
calculation to the structure of the large-scale potential, that 
is, allowance for inhomogeneities in the concentration inside 
a fluctuation can be said to lead to deviations in p of the 
order of one percent. 

3. In allowing for small-scale fluctuations we limited 
our discussion to the case of two closely spaced donors. The 
case of two closely spaced acceptors is clearly unimportant 
when the parameter Ip/AE,,  1 is much less than unity, with 
AEd,, the energy interval between the donor and acceptor 
levels. The case of a pair of closely spaced donor and accep- 
tor may lead to the violation of electroneutrality in the cen- 
ter of screened fluctuations. However, when the condition 
1 - K &  1 is met, the "center of gravity" in the sample's elec- 
troneutrality equation (27) is shifted to the "small-scale" 
fraction of the neutral donors. Actually, as K +  1, the small- 
scale fraction also tends to unity. This is directly corroborat- 
ed by our calculations. For small-scale fluctuations it is easy 
to obtain a parameter that permits neglect of the probability 
of an acceptor landing in the region of closely spaced donors. 
The maximum separation r,, between a neutral donor and 
the nearest charged donor is determined by the sample's 
electroneutrality equation and is equal to' 

According to Eqs. ( 1) and (2) ,  the ratio of the probability 
W, of finding two donors and one acceptor in a volume of 
radius r, to the probability W, of finding only two donors in 
the same volume is 

It is the smallness of this parameter that permits neglect of 
the direct effect of an acceptor on the charged state of a 
donor in small-scale fluctuations. 

The author is grateful to E. V. Chenskii for helpful dis- 
cussions and critical remarks. 

APPENDIX 

In Ref. 5 only the case with R,, = co was studied in 
detail. For this reason we now calculate R,, for a Gaussian 
distribution in an interval of practical interest, 0.1 <R,, < 10. 

Since the Poisson equation contains the difference ( 11 ) 
between the donor and acceptor concentrations, this differ- 
ence can also be shown to be given by the Gaussian distribu- 
tion? 

W ,  ( x )  =n-'I2 e x p  [- ( x - x , )  '1, (A1 

FIG. 8. C vs R,, (curve I )  and X,, vs R,, (curve 2 )  for a Gaussian 
distribution of impurities. 

According to ( 11 ), the charge density in terms of the x 
variables has the form p = E ( 1 - K)x/x, . Substituting Eq. 
( A l )  into the electroneutrality equation yields 

I ~ r , ~  (z) W ,  (z) dx=xo,  
x, 

where 

As in the case of the Poisson distribution, by solving Eqs. 
(10) and (A2) simultaneously we determine the depend- 
ence of the maximum energy p, of a neutral donor (the Fer- 
mi level) on the partitioning radius x. The minimum of this 
quantity corresponds to the optimum partitioning radius 
X,,. The calculated dependences of X,, and C on R,, are 
illustrated in Fig. 8. Using these calculations, we find the 
asymptotic behavior of the optimal size and the position of 
the Fermi level in the absence of the small-scale potential as 
K-. 1: 

Z,,=2XOp2 ( I f  K ) / ( I - K )  ', (A31 

Note that according to our calculations, the Ti,, (K) de- 
pendence defined by Eq. (A3) represents the asymptotic be- 
havior of E,, as K -  1 with allowance for the small-scale 
potential. 
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