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Frequency dependences of the indices of light absorption and refraction for supersmall polarons 
are obtained. The model considered differs from the small-polaron one in that the effect of 
thermal displacements on the resonance integral is taken into account. Such an effect is important 
only when the localization radius is smaller than the rms atomic displacements. Therefore the 
corresponding electron-phonon formations are called supersmall polarons. The optical 
properties of supersmall polarons are described by a two-oscillator model, i.e., the frequency 
dependence of the light absorption has two peaks. The current-voltage characteristic has an 
exponential form with a non-traditional temperature dependence of the exponent. 

1. INTRODUCTION AND PROBLEM FORMULATION 

For small radius polarons we use a Frohlich-type Ham- 
iltonian describing the electron-phonon intera~tion' .~ 

Here H,, is the Hamiltonian of the phonon field 

HPh =z hq (bq+bq+'12), (2)  
, 

w, is the frequency of a phonon with momentum q belonging 
to a jth phonon branch (below we omit the index j, implying 
that q denotes the set {qi)); Jtn,, is the resonance integral 
between the lattice sites m and m', a, and b, are the electron 
and phonon operators, respectively, and 

1 ~ m  (9) =yq exp (-iqRm) 1 (2N)Ih, ( 3  

where y, is the constant of the electron-phonon coupling, 
R,  is the radius-vector of the site m, and N is the total num- 
ber of the atoms in the system. 

The small-polaron model in the high temperature re- 
gion, where the current transport is by hopping, leads to an 
activational dependence of mobility: lnp, cc - Ea/kT. 

However, it has been noted in Ref. 3 that, generally 
speaking, the resonance integral depends on phonon vari- 
ables. In particular, if we assume that J,,, exponentially 
depends on the difference between instantaneous (nonequi- 
librium) distances between the sites 

Jmm~=Jo exp {-a I L - R , ,  I ) ,  ( 4 )  

then, assuming that 9, = R ,  + p,, where p,, is the ther- 
mal atomic displacement (p, <R, - R,, ) and going on to 
second quantization with respect to the phonon variables 
p, , we have 

~ m m r = ~ . . ~ e x p { - ~ [ ~ m m ( q ) b q + u ~ m ~ ( q ) b q + ~ )  (5)  
q 

Here 

Imm.=Jo exp (-alRm-R,, ( ), 

where eq is the eigenvector of the phonon branch, and M is 
the atomic mass. 

The small-polaron theory, taking into account the ef- 
fect of phonon displacements on the resonance integral, is 
developed in Ref. 4. It is shown there that, after the polaron 
canonical transformation in the one-electron approxima- 
tion, such a modification of the small-polaron model leads to 
a Hamiltonian of the form 

+ ~ ~ ~ ~ a . ~ + a ~ ~ . , ~ .  
mm' 

For u = 0, of course, the Hamiltonian (8)  reduces to the 
standard Hamiltonian of the small-polaron theory. 

The main difference between the considered model and 
the small-polaron one lies in a more complex temperature 
dependence of the hopping mobility, which has the form In 
p, a A T  - Ea/kT (see Ref. 4). Note that such a tempera- 
ture dependence has been apparently obtained for the first 
time in Ref. 5. Having analyzed there numerous experimen- 
tal data, the authors have shown that a temperature depend- 
ence of this type is typical for a large number of materials 
(see also Ref. 6 ) .  It should be stressed that a nontrivial con- 
tribution A T  to lnp, is important only if the parameter 
a2 2 2 1, where 2 is the rms value of the thermal atomic 
displacement, and a- '  is the radius of the localized state 
[see (4 ) ] .  In other words, the model becomes nontrivial 
only for very small localization radii a p ' .  Therefore the 
electron-phonon formation in question is called below a su- 
persmall polaron. 

The important feature of the small-polaron model is the 
presence of the Gaussian peak of the light absorption at the 
frequency k = 4E,  (Refs. 7,8). This is one of the basic, if 
not the most important, features in the analysis of experi- 
mental data in specific materials, when one is to confirm or 
reject the concept of current transport by small polarons. 
Therefore, in this paper, we have performed calculations of 
optical properties of supersmall polarons. Their basic result 
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is that the optical properties of supersmall polarons are de- 
scribed by the two-oscillator model, whereas the standard 
small polarons are described by the single-oscillator model. 

Using the formal analogy between the expressions for 
light absorption and current-voltage characteristics in the 
hopping regime, we have calculated the latter for supersmall 
polarons. In the range of moderate fields (up to the dissocia- 
tion of the polaron state) the field dependence of the current 
has the form lnj cc E /Eo, as in the case of small polarons. 
However E, is not simply proportional to T, as in the stan- 
dard theory, but has a more complex temperature depend- 
ence. 

2. GENERAL EXPRESSIONS FOR THE TEMPERATURE 
DEPENDENCE OF THE ELECTRIC CONDUCTlVlTY 

The optical properties of a substance are fully described 
by the frequency dependence of the complex dielectric con- 
stant & ( a ) ,  which can be written in the form 
E ( W )  = E ( w )  + 4~ria(w)/w, where a (w)  is the frequency 
dependent electric conductivity, and E (w ) describes the con- 
tributions of other mechanisms (e.g., interaction with phon- 
ons). In the frequency range considered we assume that E is 
independent of w and is real. Assuming also that the absorp- 
tion is weak ( E " / E '  4 1 ), we can find a simple relation be- 
tween the indices of light absorption a(@) and refraction 
n (w), and the imaginary a "  and real a' parts of the electro- 
conductivity: a(@) = 2raf(w)/n0w, n(w) ='no 
- 2~ra"(w)/n,w, where no = 6. Thus, the frequency de- 

pendence of o(w ) fully determines the optical properties of a 
substance. ' 

The hopping contribution to a(w) can be calculated 
straightforwardly, using the Kubo formula to the lowest 
(second) order in I,,, [see Eq. (8)  1. Such calculations, in 
the framework of the standard small-polaron theory, have 
been performed in Ref. 10 (see also Ref. 2). Since the trans- 
formed ~amiltonian* for supersmall polarons given by Eq. 
(8)  very much resembles the simple polaron one, the corre- 
sponding calculations are identical. The technique of calcu- 
lating matrix elements of many-phonon operators is given in 
Ref. 4. The final result is 

e' 
a  1 R m - m m  a .  ( 9 )  

2kTV 
mm' 

Here Vis the system volume, the index x denotes the projec- 
tion on the direction of the electric field, f = (exp p + 1 ) 
is the probability of site occupation, and p is the chemical 
potential. Note that, contrary to Ref. 4, the occupation prob- 
ability f is not considered small. 

The probability Wmm, of the transition between the sites 
m and m' is given by the expression 

m 

2 2 W,,. = - ,, Zmma exp (-2Sm.r) j dte-'mi 
0 

I-cos q (Rm--Rm,) 
X dh exp [F 2Nsh(fioq/2kT) [ (yq+6mm- (9) )' 

-'Is 

The dimensionless quantities y, and S(q)  are defined by 
Eqs. ( 3 )  and (7),  

In what follows we restrict ourselves to the approxima- 
tion of hops between the nearest neighbors, i.e., 
R, - Rm, = g, where g is the radius-vector of the nearest 
neighbor. Then (9)  acquires the form 

where a = lgl is the lattice constant, 

HereI-I,,, S=Sgo, 6, -ago. For a cubic lattice, Sand I do 
not depend on g, whereas S, = - S ,, see (7) .  The last 
relation, as seen from (12a), gives rise to the symmetry 
W-,(w) = Wg( - w). 

Let us recall also that the subtraction of unity from the 
exponential in the braces in Eqs. ( 12a) and ( 10) corre- 
sponds to the subtraction procedure and ladder summation 
ofthe subtracted contributions. As a result, the expression in 
the braces vanishes as t- a. Such a ladder summation even- 
tually gives rise to a tunnel contribution to the conductivity, 
which is added to the hopping contribution and which domi- 
nates in the low temperature range.Ip2 In this temperature 
range the frequency dependence a (w)  for supersmall polar- 
ons (and for small polarons as well) most probably has the 
Drude-Lorentz form u f ( o )  = a(0) / (1  + u2r2) .  

Now we can go on to specific calculations of the fre- 
quency dependence of the electric conductivity. 

3. LIGHT ABSORPTION COEFFICIENT 

In the expression for the real part of Wi (w) one can 
integrate over t from - to a. After shifting t by 
- iM /kT, the integration over t becomes trivial. As a re- 
sult, Eq. ( 12a) yields 

As w - 0, this expression reduces to the one for the prob- 
ability of intersite hopping obtained in Ref. 4. Integration 
over twill be performed using the saddle point method. The 
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first saddle point to = i r is  on the imaginary axis of the com- 
plex time, and r obeys the equation 

As for the next saddle points having nonvanishing real parts 
their contribution is small due to phonon dispersion, and 
they are not taken into account in the theory of small polar- 
ons. 

Expanding the exponent in ( 13) in a power series in t in 
the vicinity of the saddle point t = i r  accurate to quadratic 
terms and integrating over t, we find 

To obtain a simple analytic dependence of W i  on w and 
T, consider only the case w , ~ g  1. In this limit we find an 
explicit expression for T from Eq. ( 14) : 

Expanding now the exponent in ( 15) in a power series in r 
accurate to r2 and setting T equal to zero in the factor preced- 
ing the exponential, we find 

P 

Consider, finally, the most interesting high-tempera- 
ture limit 2kT> %.Iq. This limit is the most interesting one 
because only in the range of sufficiently high temperatures 
can the effect of phonon displacements on the resonance in- 
tegral be noticeable. In this temperature range we get from 
(11) 

W"'(w)=W(O). 
sh (fid2kT) fro 

tiw/2kT 

where W(0) is the intersite hopping probability governing 
the hopping static conductivity4 

The following quantities, having the dimension of energy, 
are introduced here: 

The dimensionless parameter A, is defined as 

Ea is the activation energy for the intersite hopping in the 
standard small-polaron theory. The probability W(0) in the 
form ( 19) has been found in Ref. 4, and it gives rise to the 
aforementioned temperature dependence of the hopping 
mobility of the type In ph a AT - E,/kT ( A  = k / E ) .  

Substituting now the expression ( 18) for WL (w) into 
the formula ( 12) for a' (w) we get the final expression for the 
real part of the conductivity, giving the frequency and tem- 
perature dependences of the light absorption 

where 

is the static hopping conductivity. The subscript g of A is 
omitted in (22), since this expression does not change when 
- A is substituted for A. 

The obtained frequency dependence (22) of a' reduces 
to the well-known expression for the real part of the electric 
conductivity of small polarons for 8, = 0, i.e., A = 0, 
E = Ea,  which constitutes Gaussian peak of width 
4dE,kT and with a maximum at %.I = 4Ea. For supersmall 
polarons, however, as follows from (22), this dependence is 
formed by superposition of two Gaussian peaks of equal 
width 4 , / m  [it is larger than in the case of small polar- 
ons, since, according to (20), E :, >Ea ]. The maximums of 
these peaks correspond to the frequencies 

Therefore the pair of peaks mentioned above is resolved in 
experiment only if A2> E;/4kT. It is assumed that 
E:, > (AlkT, so that the frequency w, >O [see (24) l .  

Thus, in the theory of supersmall polarons, as in the 
case of small polarons, the frequency dependence of the light 
absorption conveys important information about the char- 
acter of the current transfer, especially when compared to 
the temperature dependence of the static electric conductiv- 
ity. 

Note, in conclusion, that the light absorption maximum 
is preserved also in the limit of weak coupling with phonons, 
when yq +O, i.e., A = 0, Ea = 0, 

1 
E: = --x tioq6,'(q) (1-cos qg). 

4N 9 

In this limit two peaks merge into one Gaussian at frequency 
fiw = 4E i. The temperature dependence of the static elec- 
tric conductivity in this limit has the form In ph =AT. 
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4. REFRACTIVE INDEX OF LIGHT 

As noted above, the refractive index of light is deter- 
mined by the frequency dependence of the imaginary part of 
the electric conductivity, a" ,  [i.e., by W:(w) 1.  The calcula- 
tions of a "  (w) may be performed with the help of formulas 
( 12) and ( 12a). However, a simpler way is to use the disper- 
sion relations. According to ( 12a), the function W, (w ) 
[and, consequently, a(@) ] is analytic in the lower half of the 
complex plane o .  Hence a'(@) and a "  (w) are related by the 
expression 

c. 

where the integral is taken in the sense of the principal value. 
Substituting expression (22) for a l (w)  into (25), we get 

exp (-zZ116E,'kT) 
X 

z"_fi202 

As noted above, the integrand is a superposition of two 
Gaussian curves with the maxima at z = h , , , ,  where the 
frequencies w,,, are given by Eq. (24). In the frequency 
range lying at a distance exceeding the peak width 4 , , / m  
from the resonant frequencies w = a,,, one can integrate 
over z in (26) as follows: 1) substitute exp(z/2kT)/2 for 
sinh(z/2kT); 2) integrate overzfrom - bo to co; 3) discard 
the factor {z(z2 - fi2m2)) - ' from theintegrand at the points 
z = h,,, . After such operations the integration overz is car- 
ried out without difficulty. As a result, we have 

Note that the transition to the small-polaron model in (27) 
by the substitutions E - Ea and w, = w, = 4Ea/fi yields a 
result consistent with the well-known one., 

Thus, the optical properties of supersmall polarons are 
described by the two-oscillator model with resonant fre- 
quencies w = w,., and the lifetime for both oscillators is 

equal to f i / 4 J / .  However, the optical properties of 
small polarons are described by the one-oscillator model. 
This fact shows, in principle, how to identify small and su- 
persmall polarons in experiment. Near the resonance points 
o = w , ,  the function a "  ( o ) ,  as usual, reverses sign. The 
divergencies of a" (w) at w = w,,, in Eq. (27) reflect the 
presence of two peaks of finite amplitude in the exact formu- 
la (26) and a drastic change of a "  (w), with reversal of the 
sign in the vicinity of the resonances in the interval 
fihw - 4 4 m .  In these vicinities the simple analytical 
expression (27) is not valid, and one has to use the exact 
expression (26). Note that the double reversal of the sign of 
the function a" (w) in the vicinity of the resonances (as w 
grows the signs alternate as + , - , + , - ) occurs only un- 
der the condition of good resolution of the two absorption 
peaks, when A2 > E :/kT (see Sec. 3). If this inequality does 
not hold, the pair of oscillators is strongly coupled, and the 
sign of u"(o) changes only once, as in the small-polaron 
theory., 

5. CURRENT-VOLTAGE CHARACTERISTIC FOR 
SUPERSMALL POLARONS 

The calculations of the frequency dependence of the 
electroconductivity performed above allows, practically 
without any extra calculations, to write the result for the 
field dependence of the current for supersmall polarons in 
the hopping regime. To do that, it is necessary to use the 
formal analogy between the expressions for the current in 
the hopping regime in an arbitrary field and for the real part 
of the electric conductivity as a function of frequency. 

The current j in the hopping regime can be written as 

j=erz R , , , W , , , ~ ( E ) ~  (28) 

where W,, ( E )  is the probability of hopping from the site 0 
to the site m in an external electric field E. Inclusion of the 
electron-field interaction 

in the zeroth Hamiltonian does not change this contribution 
under the polaron canonical transformation, since the den- 
sity operator a,+ a, is invariant under this transformation. 

If the interaction with the field is included into the 
Hamiltonian, then, in the diagram t e ~ h n i ~ u e , ' , ~ , ~  each inter- 
action point i should be associated with an extra factor 

where mi (m:) is the index of the electron line terminating at 
or leaving the point i (cf. the algorithm for taking into ac- 
count the diagonal disorder in Ref. 4, when the role of ran- 
dom energy &, at a site is played by the external-field poten- 
tial - eER, ). Such an algorithm makes the probability 
W,, ( E l  of hopping between the nearest neighbors in the 
electric field formally equal to the real part of W;, (w) given 
by Eq. ( 13) with the substitution h - e E g .  Comparing 
expression (28) for the current with expression (12) for 
a (@) ,  we get the formal equality 

where a is the lattice constant. Substituting here a l (w)  in the 
form (22) yields the following current-voltage characteris- 
tic for supersmall polarons: 

For A = 0 and E, = EL this expression reduces to the well- 
known current-voltage characteristic for small polarons" 
(see also Refs. 1 and 2). As in the small-polaron theory," 
the expression (29) is apparently valid only in the region 
where the current increases with the field, i.e., for 
eEa < h,,, . As the analysis of the two-site model in the elec- 
tric field shows,2 for small polarons and for fields eEa>4E, 
the potential barrier for intersite hopping vanishes, resulting 
most likely in dissociation of the polaron state (the electron 
is detached in the field from the polaron cloud). 

In the range of moderate fields, when eEa < 4 4 m ,  
but eEa > 2kT, 2E :/A, the current-voltage characteristic 
(29) acquires a particularly simple exponential form 

where 
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Thus, in the supersmall-polaron model in the range of 
sufficiently strong electric fields the current-voltage charac- 
teristic increases exponentially, as in the case of small polar- 
ons. However in the range of weaker fields the current-vol- 
tage characteristics for supersmall polarons are more 
diverse. When considering possible forms of the j (E )  curve 
in weaker fields one has to discern two cases. 

1 ) AkT> EL. In this case, as seen from (24), w, <0, 
i.e., the absorption frequency dependence (22) has only one 
peak with the maximum at w = w , .  For these parameters 
there is a field range kT> eEa/2 > E :/A, in which the cur- 
rent-voltage characteristic also has the exponential form 
(30), but with other constants: 

so that the characteristic field Eo does not depend on tem- 
perature at all. As the field increases, for eEa 2 2kT, a transi- 
tion to characteristics with the parameters jo and Eo given by 
Eq. (3 1 ) occurs, with E,, decreasing and becoming tempera- 
ture-dependent. 

2)  AkT < E ;. In this case, as described above, the opti- 
cal properties of supersmall polarons are given by the two- 
oscillator model. Under these conditions there is a range of 
fields kT< eEa/2 < E :/A, in which the current-voltage 
characteristic is again given by Eq. ( 30), but jo and Eo have 
the following form 

For these parameters, in this range of fields, the characteris- 
tic field E,, is proportional to the temperature, as it is in the 
standard theories of hopping transport, small polarons in- 
cluded. Note here that in the case of weak coupling with 
phonons, when A -0, the current-voltage characteristic in 

the whole range of fields (in the nonlinear region) corre- 
sponds to a simple exponential growth with E, with jo and Eo 
given by Eqs. (33 ). 

Such a correlation between optical and electric proper- 
ties of supersmall polarons may, in principle, become an ef- 
fective test for the verification of the presence of supersmall 
polarons in a system. However the current-voltage charac- 
teristics in the polaron models in crystalline substances be- 
come nonlinear in sufficiently strong fields, when 
E-2kT/ea- 10)-104T (here Tis the absolute temperature 
in K, and E is in V/cm). In such strong fields break-downs 
and electrodissociation of the polaron state may occur in real 
materials. Also the Frenkel-Pool effect and other parasitic 
effects may become important, so that the observation of the 
current-voltage characteristics in the form (30) becomes 
impossible. In this respect, natural and artificial superstruc- 
tures having a large lattice constant a may be more promis- 
ing for experiments in strong electric fields. 
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