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The rate of electron-phonon surface energy exchange in small metal particles is derived by a 
quantum-mechanical approach. This rate is found to be sharply lower (by about two orders of 
magnitude) in such particles than in bulk samples. An expression is derived for the local electric 
field which arises in an ensemble of metal ions to which the electromagnetic wave of a CO, laser is 
applied. The local fields and the electron-phonon energy exchange in small particles are studied 
and discussed in connection with the problem of laser heating of electrons in island metal films. 

INTRODUCTION 

Recent experiments have demonstrated convincingly 
that the application of power to island metal films gives rise 
to hot electrons in these films.'-3 An emission of electrons 
and photons from island films of gold and copper on insulat- 
ing substrates was observed in these experiments when the 
pulsed laser beam from a CO, laser was applied to the films 
(at power densities of 5.104-5.106 W/cm2 and at pulse 
lengths of s) .  

Remarkably, when continuous films of the same mate- 
rials were subjected to the same laser pulses, these effects 
were not observed. 

The observed electron emission from these island films 
could not be explained in terms of either a single-photon 
photoelectric effect (the work function was more than an 
order of magnitude larger than the energy of the absorbed 
photon) or a multiphoton effect (a  nonlinearity of such a 
high order would not be expected at these power levels). It 
was pointed out in Refs. 1-3 that the electron emission pulse 
has the same shape as the laser pulse; i.e., the emission occurs 
under essentially steady-state conditions. The reason is that 
the pulse length is orders of magnitude longer than all the 
relaxation times involved. The laser power densities used in 
those experiments were below the levels at which damage 
would be caused to the film structure. 

It was shown in Refs. 4-6 that the effects observed in 
Refs. 1-3 stemmed from a heating of the electron gas by the 
absorbed power. The idea of hot electrons had been used 
previo~sly',~ to explain some similar effects which arise dur- 
ing current flow through a tunneling-coupled system of met- 
al islands of this sort. Hot electrons thus arise in island metal 
films under steady-state conditions regardless of the mecha- 
nism by which the power is introduced (by light or an elec- 
tric current). On the other hand, it is known that hot elec- 
trons cannot be produced in the steady state in bulk metals 
or continuous metal films. During the application of laser 
beams to continuous metal films, hot electrons can be ob- 
served only for ultrashort times9 ( t  < 10 'O s) .  

The reasons why a highly nonequilibrium electron gas 
(with an electron temperature an order of magnitude or 
more above the lattice temperature) can be produced under 
steady-state conditions in island magnetic films, in contrast 
with continuous films, were found in Refs. 4-6 to be the 
following: 

1) Electron-phonon energy exchange is greatly sup- 
pressed in small metal islands. 2) High power densities can 

be introduced into island metal films. 3) Small metal islands 
with good thermal contact can transport high energy fluxes 
without being destroyed. 

Let us briefly examine the reason for the strong suppres- 
sion of the electron-phonon energy exchange in small metal 
 island^.'^^" The primary mechanism by which hot electrons 
lose energy in a bulk metal is known to be the excitation of 
longitudinal acoustic waves in the lattice by the moving elec- 
trons, via a Cherenkov mechanism (Ref. 12, for example). 
The equation for these waves induced by the moving elec- 
tron isI2 

Here U is the longitudinal component of the displacement 
vector,p is the mass density, Wis the interaction constant, v 
is the electron velocity, and s is the sound velocity. 

The energy lost by a moving electron per unit time can 
be expressed in terms of the vector U in the following way:'' 

A summation of (2)  over all the nonequilibrium electrons 
(with energies above the Fermi energy) gives us the power 
which the electrons transfer to the lattice. 

From ( 1 ) we find the following expression for a Fourier 
component of the vector U: 

1 W ik6(o--kv) 
U ( o ,  k)=--- 

(2n)3 02-kZs2 . ( 3  

We see from this expression that the driving force due to the 
moving electron has a nonzero Fourier component at the 
resonant frequency of the lattice vibrations (w = ks). This is 
the essence of the Cherenkov mechanism for the excitation 
of acoustic vibrations (resonant pumping). This is the situa- 
tion as it prevails in a bulk metal. 

We turn now to a small metal island, with a length scale 
Ro smaller than the mean free path If The electron then 
oscillates in a potential well with a frequency v/R,. In this 
case the argument of the S function in ( 1 ) is no longer r - vt 
but r - r ( t ) ,  where r ( t )  is the trajectory of the vibrational 
motion of the electron [e.g., r, = const, r,, 
=z = Rosin (vt /Ro ) 1. The Fourier transform of the driving 
force now contains only harmonics which are multiples of 
the oscillation frequency v/Ro. If this frequency is above the 
maximum frequency of lattice vibrations, w, (the Debye 
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frequency), a resonant excitation is not po~sible. '~~" It can 
thus be asserted that in metal islands with a length scale R, 
which satisfies the conditions 

the energy-loss mechanism which is the primary mechanism 
in a bulk metal drops out of the picture. 

In this situation, the electron-phonon energy exchange 
which stems from collisions of electrons with the vibrating 
surface of the island emerges as the predominant factor. Ac- 
cordingly, our primary task in this paper is to derive a theory 
for surface electron-phonon energy exchange in small metal 
particles. In addition, we will analyze (in Sec. 3) the local 
electric fields in an island metal film, which are determined 
by the level of the power absorption during the application of 
laser beams to island films. We will thus be examining two of 
the reasons listed above for the appearance of hot electrons 
in island metal films. The third reason-the possibility that a 
small metal island can transport large energy fluxes without 
being damaged-is discussed in Ref. 13. 

1. SURFACE VIBRATIONS OF SMALL PARTICLES 

Since we will be discussing metal films with dimensions 
on the order of or less than the mean free path, we can use the 
following model to calculate the surface energy exchange. 

The electron gas is in a spherical potential well of radius 
R, (if thermal vibrations are ignored) and height V,. This 
model was used in Ref. 14 to study optical absorption in 
island metal films. 

As we have already mentioned, the reason for the ener- 
gy exchange is an interaction of the electron with thermal 
vibrations of the surface. These vibrations can be classified 
somewhat crudely as either shape vibrations (so-called ca- 
pillary vibrations), in the course of which the volume does 
not change, or surface vibrations, which are accompanied by 
a change in density (acoustic vibrations). A theory for the 
surface vibrations of a spherical particle is set forth in detail 
(for the case of vibrations of the surface of an atomic nu- 
cleus) in Ref. 15. 

We begin our analysis with the capillary vibrations. We 
expand the radius of the vibrating surface in spherical har- 
monics YAP ( 8 , ~ )  : 

The Hamiltonian of the capillary vibrations can then be 
written in the following form, in accordance with Ref. 15: 

Here rAP =D,a:p is a generalized momentum, and 
w, = (C,/D,) ' I2 is the frequency of the capillary vibra- 
tions. The constants D, and C, depend on the island dimen- 
sions in different ways. According to Ref. 15, they are given 
by 

DA=MnRo5/h, CA=o,RoL(h-1) (hi- 2 ) .  (6)  

Here Mis the mass of the atom, n is the density, and a, is the 
surface energy. 

It can be seen from (6) that the frequency of the shape 
vibrations depends strongly on the radius of the metal island, 
R, : 

For the discussion below we will take a quantum-mechanical 
approach in which T,, and a,, are replaced by correspond- 
ing operators, which are related to the operators which cre- 
ate (b ) and annihilate (b,, ) vibrations by 

After this replacement, the Hamiltonian of the capillary vi- 
brations takes the standard form: 

To find the electron-phonon energy exchange, we need an 
explicit expression for the corresponding Hamiltonian. Ac- 
cording to the model adopted above, the potential energy of 
an electron in a metal island is 

where 

Using expansion (4)  for R (8,q,), we find from ( 11 ) 

W (r) V d  (r-Ro)+S(r-R.) Vf io  CahryAw' (0, ( 13) 

The second term in ( 13) describes the energy of the electron- 
phonon interaction associated with the surface vibrations. 
Writing this term in the second-quantization representation 
[using (9) ] ,  we find 

The operators a;, and a,,, in ( 14) create and annihilate an 
electron in the corresponding state. The meaning of the sub- 
scripts on these operators becomes clear when we recall that 
the electron wave function in a "spherical potential square 
well" is 

Here C,, is a normalization factor, and the radial wave func- 
tion is 

j l  (klnlr),  for r<Ro 
~1 (r)= { h ( i K r )  for r>Ro' 

The quantity j, ( x )  in ( 16) is the spherical Bessel function, 
and h I" (x) is the spherical Hankel function. In addition, 
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Here m,  is the mass of an electron, and E,, is the energy of the 
electronic levels in a spherical squarc potential well. These 
conditions are found from the condition for the joining of the 
electron wave function and its derivative at the point r = R,  . 
In view of the rapid decay of the electron wave function 
inside the barrier, we write k ;, in the following form, as in 
Ref. 14: 

where k,, are the roots of the equation 

Equation ( 19) corresponds to the case of an infinitely deep 
potential well. Assuming that Ak,, is small in comparison 
with k,, (this point is easily checked), we find the following 
result from (again) the condition for the joining of the wave 
function and its derivative at the point R,  : 

Here we have used the asymptotic expression 

Since we will be interested below in the electron levels near 
(and above) the Fermi energy, we can use the method of 
Ref. 14, finding approximate solutions of ( 19) through the 
use of the asymptotic representation of the spherical Bessel 
function: 

n 
k,, = - ( 2 n + l )  

2R0 

Now, in accordance with ( 18), (20), and (22), we have an 
explicit expression for k ;, . Consequently, the electron wave 
functions in ( 15) and ( 16) have been determined complete- 
ly. Using them, we can put the Hamiltonian for the electron- 
phonon interaction, ( 14), in the form 

x dp d0 sin OYl:(O, cp) 
0 0 

2. SURFACE ELECTRON-PHONON ENERGY EXCHANGE 

Now that we have explicit expressions for the electron 
and phonon spectra and also for the Hamiltonian of the elec- 
tron-phonon interaction, we can move on to the problem of 
determining the electron-phonon energy exchange. This ex- 
change can be taken into account systematically by a kinetic- 
equation approach. For brevity we will be using the notation 

The change caused per unit time in the distribution of elec- 

trons among states by the scattering of electrons by phonons 
is then given by 

Here fvv = (a: a,) is the electron distribution function, and 
N, = (b ,+ b,) the phonon cristribution function. As usual, 
the angle brackets mean an average over the statistical oper- 
ator. Furthermore, in our case we have E, = E,, , w, = w,; 
i.e., the spectrum is degenerate. It is a simple matter to derive 
an explicit expression for the transition probabilities, by first 
writing interaction Hamiltonian (23) in the compact form 

Then 

The energy transferred from the electrons to the phonons 
per unit time is 

We note that the electron distribution in a metal island, f,,, 
depends on only the electron energy: f,, = f ( ~ ,  ). 

Treating the phonon system as a heat reservoir (with 
respect to the electron subsystem), we take the phonon dis- 
tribution function N, to be Planckian with a temperature T. 
Expanding collision integral (25) in a series in the small 
quantity ha, (i.e., actually expanding in the ratio of the 
phonon energy to the Fermi energy), we find the following 
result for expression (28 ) : 

We can now write an explicit expression for the electron 
distribution function. Because of the intense electron-elec- 
tron interaction, the power acquired by the electron subsys- 
tem from the external source becomes distributed among 
many electrons rapidly. As a result, a Fermi distribution 
with some effective electron temperature T, is established: 

f ( e V ) =  { exp [ ~ ~ ~ R ] + ~ } - i ,  - 

where E~ is the Fermi energy. Substituting (30) into (29), 
we find 

To pursue the calculations we need to use the explicit 
expression for Wtfv,, which follows from (27) and from a 
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comparison of (23) and (26) : 

x { jdcp d0 sin 0~,:(0, cp) ylr.,(0,q) YG (~ . cp )}~ .  (32) 
0 0 

Substituting (32) into (3  1 ) we find that an explicit de- 
pendence of the integrand on the indices characterizing the 
electron states remains in only the spherical harmonic, be- 
cause of the presence of the function S(E, -E,) 

- E ~ )  in the integral. We can thus sum over the 
electron indices in (3  1 ) . In doing so, we make use of the 
orthogonality of the spherical harmonics: 
r 1  

6 (cp-9') 6 (8-0') 
sin 8 

. (33) 
1-0 " , = - I  

In our case the summation over l is bounded by the condition 
E,,, <cF. This circumstance does not introduce any signifi- 
cant error, however, since the maximum value of l is large, 
I,,, - lo2. This estimate of I,,, follows from the relation 

As a result of these calculations, we find from (3  1 ) 

Here po = Vo - E~ is the work function of the metal, and 
NA = N(wA ) is the Planckian distribution function of the 
capillary vibrations. 

We are left with the task of evaluating the phonon sum 
in (35): 

Amax A A m m y  

In (36) we have recognized that the energy corresponding to 
the Debye frequency of the capillary vibrations is consider- 
ably smaller than k ,  T (at room temperature). It follows 
from ( 7 )  in this case that 

As a result of these calculations we find 

In the literature, the power transferred from the electrons to 
the phonons is customarily written in the form 

Here we have assumed that the particle is a sphere in our 
case. The constant a, which is a measure of the rate of the 
electron-phonon energy exchange, is given in our case by 

Let us evaluate this quantity for a gold particle (a 
sphere) with the following parameter values: n = 6. 
cmP3, u, = 10' cm/s, R, = 10 - cm, vs = lo3 erg/cm2, 
w, = 3-10'' s - '  (Ref. 16), and (Vo/po)2 = 5. We find 
a = 2-10" erg/(cm3.s.deg). 

The value found for a is two orders of magnitude lower 
than the corresponding value in bulk metals. A recent exper- 
iment carried out to determine a in small particles" has 
indeed shown that this value is two orders of magnitude 
smaller than in the case of the bulk metal. 

As we mentioned earlier, the shape vibrations (the ca- 
pillary vibrations) of the particles are accompanied by some 
surface vibrations which do involve a change in density 
(acoustic vibrations). The dispersion relation for these 
phonons isI5 

where s is the sound velocity, and the wave vector k,, is 
determined by the roots of the equation 

The interaction of the electrons with these vibrations can be 
dealt with by an approach like that taken above. As a result 
we find the following expression for the value of a deter- 
mined by the surface acoustic vibrations: 

Here wh is the Debye frequency of the acoustic vibrations, 
and p is the density of the material. 

An estimate of a from (42) for the same gold particles 
as discussed above yields a value an order of magnitude 
smaller than the result in (39). Consequently, the interac- 
tion with capillary waves is predominant for these parti- 
cles." We would simply like to point out that the idea of 
classifying the vibrations as either capillary or acoustic is 
valid only if w, and w; are quite different. This condition is 
satisfied in the case under consideration here. 

3. LOCAL FIELD IN SMALL METAL PARTICLES 

As we mentioned back in the Introduction, in the laser 
method of introducing power into islands, an important role 
in the appearance of hot electrons is played by the strength of 
the local electric fields induced by the external wave (this 
factor acts in addition to the pronounced weakening of the 
electron-phonon energy exchange). 

What is the difference between the absorption of the 
incident light by an individual metal island and that by an 
island metal film? The power absorbed by a metal island is 

Here Vis the volume of the island, J (w ) is the density of the 
high-frequency current, v(w) is the high-frequency conduc- 
tivity, and EL is the local electric field in an island. (The 
notation used in this section of the paper is independent of 
the notation used previously. ) 

Writing the dielectric constant as 
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we find that the local field EL associated with the external 
wave field E is given by the following expression for a spheri- 
cal island: 

EL=E-'/,nP=E -'I, (e- 1 )EL.  (45) 

Here Pis  the dipole moment per unit volume, and w, is the 
plasma frequency. From (45) we can find an expression for 
the local field within an island in terms of the external field 
E: 

If the island is not a sphere, the relationship between the 
local field and the polarization is instead 

Here 9 is a depolarization factor. In this case, the factor of 
1/3 in the denominator in (46) should be replaced by 9. 

Substituting (46) into (43) [and using V 
= (4/3)?rR i] ,  we find 

where c is the velocity of light. 
Dividing the power in (48), i.e., the power absorbed by 

the island, by the incident power density, we find a known 
expression for the absorption cross section of a small spheri- 
cal island: I *  

12no eNRO3 
X = ----- 

c (2m+e')Z+e"2 ' 

(49) 

Note that the relation w <w, holds at the output frequencies 
of a CO, laser, so we have 16'1 $1 (or, more precisely, 

=: 10'). In this frequency range the external field thus 
penetrates only very slightly into an individual spherical 
metal island. The absorbed power is accordingly also small. 
The situation changes radically when we deal with an ensem- 
ble of islands of various shapes. In this case the field inside a 
given island is formed not only by the field of the incident 
wave but also by the fields of the dipoles induced by this 
external wave in the other islands. The ensemble will contain 
islands with small values of the depolarization factor 9. If 
we assume that all the islands are identical, then the local 
field in a given island isI9 

Here ri is the distance between the given island and island i, 
and 6, is the angle between the vector ri and the direction of 
the incident-wave field (which induces the dipoles). The 
sums over the dipoles are calculated by placing the identical 
islands on a regular lattice. We find 

where p is a numerical factor which depends on the lattice 
geometry, and a is the distance between islands. 

It can be seen from this expression that under the condi- 
tion 12 - PV/a31 < 1 the local field may be close in value to 
the external field, regardless of the value of E. However, 
there is the question ofjust how applicable expression (52) is 
at small distances, since this expression was derived in the 
dipole approximation, i.e., for distances on the order of the 
size of the islands themselves. As we know, the dipole ap- 
proximation arises when we expand the exact expressions in 
powers of the ratio of the size of the system to the distance at 
which the potential is determined. For our purposes here, 
that approach is not valid. 

We accordingly consider a very simple model which 
makes it possible to incorporate the distribution of the 
charge induced by the wave field at the surface of a metal 
island and the mutual effects of the charges of different is- 
lands. Specifically, we assume a uniform, periodic arrange- 
ment of identical metal islands along a certain axis. We as- 
sume that the electric field of the wave is parallel to the same 
axis. Since the dimensions of the islands and the distances 
between islands are much smaller than the wavelength of the 
incident wave in our case, the problem of determining the 
resultant field reduces to one of solving a Laplace equation 
under corresponding boundary conditions: 

where the + and - correspond to the limiting values of the 
functions inside and outside the surface S, and n is the 
outward normal to the surface. 

A solution of (53) can be written in the form 
m 

where the surface charge density 6 ( r )  (we are taking the 
assumed periodicity into account) satisfies the following in- 
tegral equation (Ref. 20, for example): 

m 

e ( r ) + 2  j6(r11 
cos 6 1 l-E 

dS,, = - --En,. 
l+e R = - ~  2n ( r-r'-ak 1 2n l+e 

Here 9 is the angle between the vectors r - r' - ak and nr,, 
n, is the outward normal to the surface of the island at the 
point r, and a is the on-center distance between islands. 

In the case of an isolated island, i.e., with k = 0, Eq. 
(55) has the exact solution 

3 e-l a =--En.. 
4 n  ~ + 2  

Substituting (56) into (54), and retaining only the term 
with k = 0, we find the known result for a dielectric sphere in 
a uniform external field. (At frequencies w <w,, a conduct- 
ing metal island behaves as if it were a dielectric.) 

When there is a chain of spherical islands, &(r)  depends 
on only 6, i.e., the angle between the field E and the radius r 
to the point on the surface of the sphere. In general, we can 
thus expand 6 in a series: 
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It is clear from the symmetry of the problem that (57) con- 
tains only odd terms in terms of the Legendre polynomials 
Pm (cos6). Substituting (57) into (55), multiplying by 
P, (cos6)sin6, and integrating over 6, we find a system of 
algebraic equations for the coefficients C,, : 

The indices m and n in (58) take on only odd values. The 
sums over k rapidly converge on one. For example, 

It is easy to see from (58) that even at az3Ro ,  i.e., even 
when the gap between the islands is equal to the radius, the 
coefficient C3 and the following coefficients are much lower 
than C,  . When the islands are nearly touching, in contrast, 
C3 is comparable in magnitude to C,  . 

Knowing the charge distribution, we can find the elec- 
trostatic potential with the help of (54). However, our prob- 
lem is simplified substantially by the circumstance that the 
power absorbed by an island is determined by the component 
of the local field inside the island which is normal to the 
surface. This component can be calculated easily from the 
boundary conditions (with known a): 

(E,-EL) n.=4na, (60) 

Ein,=eELnr. 

Here Ei is the field on the outer side of the metal island. 
From (60) we find 

The normal component of the local field has its maxi- 
mum value (which is the same as the total local field) when 
it is directed along the external field E, i.e., at the value 6 = 0 
in expansion (57). 

If we retain only the coefficient C,  in (57) and (58), 
and substitute it into (6  1 ), we find the following expression 
for the total local field inside a spherical metal island in a 
periodic chain of such islands: 

rn 

Actually, we have derived expression (52), but now the 
meaning of the parameters involved has been made concrete. 
Since the maximum value of the local field [according to 
(6  1 ) 1 is expressed in terms of 51, = , = ZC,, this value can 
be found easily, at any desired accuracy, with the help of 
(58). 

Correspondingly, we could consider a periodic chain of 
metal islands of ellipsoidal shape (an ellipsoid of revolution 

whose long axis is directed along the chain). Making use of 
the explicit form of the right side of (55), we then specify the 
charge distribution to be 

Here 6 is the angle between the radius vector to the point on 
the surface of the ellipsoid and the long axis of the ellipsoid 
(this axis is directed along the external field), and RII  and R, 
are the major and minor semiaxes of the ellipsoid, respec- 
tively. To determine the coefficients C,, in (63), we can 
again derive a system of algebraic equations like (58). In the 
same approximation which we used in deriving (62), we find 
the following expression for a chain of ellipsoids: 

(64) 

Here 

is the depolarization factor of the ellipsoid, and 
e, = [ 1 - (R, /RI1 ) 2 ]  Expression (64) naturally be- 
comes (62) in the limit e, -0. We also see that as e, - 1 the 
local field EL tends toward the external field E (despite the 
comparatively large value of E at these frequencies). The role 
played by the neighbors in determining the local field is also 
clear. In particular, in the case described by (62), incorpor- 
ating these neighbors may double the local field in a given 
island. 

We thus see that the local field in a specific island is 
determined by the depolarization factor (which depends on 
the shape of the island) and by the effect of the neighbors. In 
an inhomogeneous island metal film, the local fields in the 
different islands will of course be quite different, so such 
films will produce a nonuniform emission. 

The problem of determining local electric field presents 
serious difficulties even in the case of two identical spheres 
(Refs. 21 and 22, for example), and in the case of an ensem- 
ble of such particles are the difficulties of course much more 
formidable." 

It seems to us that the method proposed here for calcu- 
lating local fields is the simplest one. 

CONCLUSION 

We have derived an analytic expression for a coefficient 
which characterizes the energy exchange of hot electrons 
with surface vibrations of small metal islands. For certain 
island dimensions (specified in the Introduction), this ener- 
gy-exchange mechanism becomes the predominant one. Pre- 
vious attempts have been made to evaluate the surface ener- 
gy-exchange constant in small metal films.8s24 In Ref. 8, the 
fraction of the energy transferred by an electron in a collision 
with a surface atom was assumed to be proportional to the 
ratio of the masses of the electron and the atom. In Ref. 24, 
the fraction of the electron energy which was given up in a 
single collision with a surface was assumed to be proportion- 
al to the ratio of the mass of the electron to the mass of all 
surface atoms within a circle of diameter A,, where A, is the 
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electron wavelength. The number of such atoms is 
( 1 4 )  n u .  Using n ,,,, = n2" and A, = 2 d / p ,  
-- 2n - we find that this result reduces to the result of Ref. 
8, within a factor on the order of unity. 

Note. however. that an estimate of the fraction of its 
energy which an electron gives up in a collision with the 
surface on the basis of a mass ratio can be justified only at 
electron energies well above the Fermi energy. 

We have derived here a constant which characterizes 
the electron-phonon energy exchange in small metal parti- 
cles. We have shown that this constant is smaller than the 
corresponding constant in a bulk sample by two orders of 
magnitude. This circumstance is one of fundamental impor- 
tance for the existence of hot electrons in island metal films. 

It has also been shown here that the local field in the 
individual islands can be arbitrarily close to the external 
field of the CO, laser wave, depending on the shape of the 
islands and their relative arrangement. It can thus be said 
that the hypothesis, first offered in Refs. 7 and 8, that hot 
electrons exist in island metal films has now acquired a de- 
finitive theoretical foundation as well as direct experimental 
proof. 

"We have been discussing the vibrations of a smooth surface. A real 
surface may be rough. (On the other hand, as the size of the particles 
decreases, their surfaces become smoother, and their shape becomes 
more nearly symmetric.) A surface roughness has a substantial effect on 
elastic scattering of electrons, but it appears to have no significant effect 
on inelastic scattering. In particular, it can be seen from (36) that the 
inelastic contribution is determined integrally, by the entire spectrum of 
surface vibrations, although frequencies near the Debye frequency are 
predominant. Such frequencies could be sensitive to only very small 
roughnesses. 

L. I. Andreeva, A. A. Benditskii, L. V. Viduta et al., Fiz. Tverd. Tela 
(Leningrad) 5, 1519 (1984) [Sov. Phys. Solid State 26,923 (1984)l. 

'A. A. Genditskii, L. V. Viduta, Yu. A. Kulyupin etal.,  Izv. Akad. Nauk 
SSSR, Ser. Fiz. 50, 1634 ( 1986). 
A. A. Benditskii, L. V. Viduta, V. I. Konov et a / . ,  Poverkhnost' 10,48 
(1988). 
P. M. Tomchuk, Poverkhnost' 5, 59 ( 1989). 

5E. D. Belotskii and P. M. Tomchuk, Int. J. Electron. 69, 173 (1990). 
bE. D. Belotskii and P. M. Tomchuk, Surf. Sci. 239, 143 ( 1990). 

P. M. Tomchuk and R. D. Fedorovich, Fiz. Tverd. Tela (Leningrad) 8, 
3131 (1966) [Sov. Phys. Solid State 8, 2510 (1966)l. 
' P. M. Tomchuk and R. D. Fedorovich, Fiz. Tverd. Tela (Leningrad) 8, 
276 (1966) [Sov. Phys. Solid State 8, 226 (1966)l. 
B. B. Agrant, A. A. Benditskii, G. M. Gandel'man etal.,  Zh. Eksp. Teor. 
Fiz. 79, 55 (1980) [Sov. Phys. JETP 52.27 (1980)l. 

I0E. D. Belotskii and P. M. Tomchuk, Ukr. Fiz. Zh. 34, 1050 (1989). 
' I  E. D. Belotskii and P. M. Tomchuk, Int. J. Electron. 69, 169 (1990). 

M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, Zh. Eksp. Teor. Fiz. 
31,232 (1956) [Sov. Phys. JETP 4, 173 ( 1957) 1. 

"A. A. Benditskii, L. V. Viduta, V. I. Konov etal.,  Preprint 291, Institute 
of General Physics, Academy of Sciences of the USSR, Moscow, 1987. 

I4A. Kawabata and R. Kubo, J. Phys. Soc. Jpn. 21, 1765 (1966). 
A. Bohr and B. R. Mottelson, NuclearStructure, Benjamin, New York, 
1969. 

IbYu. I. Petrov, Physics of Small Particles, Nauka, Moscow, 1982. 
l 7  S. A. Gorban', S. A. ~ e ~ i j k o ,  and P. M. Tomchuk, Int. J. Electron. 69, 

311 (1990). 
I". D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Me- 

dia, Addison-Wesley, Reading, Mass. ( 1960). 
I9A. Woraun, J. G. Bergman, J. P. Heritage et ol.,  Phys. Rev. B 24, 849 

(1981). 
'OD. Ya. Petrina, Zh. Vychisl. Matem. Matem. Fiz. 24, 709 (1984). 
* 'A.  Goyette and N. Navon, Phys. Rev. B 13,4320 (1976). 
'' R. Ruppin, J. Phys SOC. Jpn. 58, 1125 ( 1989). 
''R. Rojas and F. Claro, Phys. Rev. B 44,3730 (1986). 
24E. A. Manykin, P. P. Poluektov, and Yu. G. Rubezhnyi, Zh. Eksp. 

Teor. Fiz. 70,2117 (1976) [Sov. Phys. JETP 43, 1105 ( 1976)l. 

Translated by D. Parsons 

Sov. Phys. JETP 74 (I), January 1992 Belotskil etal. 94 


