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The miniband spectrum of semiconductor superlattices containing layers of a narrow-gap or 
gapless semiconductor is studied analytically in the Kane model. The dispersion equation for the 
spectrum of the minibands of electrons and of light and heavy holes is obtained, as well as the 
expressions for effective masses of minibands with allowance for carrier transformation at 
heterostructure interfaces. An analysis of general properties of the energy spectrum of 
superlattices of the GaAs-Ga, Al, _ , and HgTe-CdTe type is performed. The rearrangement of 
the spectrum of the HgTe-CdTe superlattice with change of the structure parameters is 
described. 

1. INTRODUCTION 

Numerous experimental and theoretical studies of the 
band spectrum of semiconductor superlattices (SL) have 
shown (see Refs. 1,2) that, when calculating the band struc- 
ture, fairly good results are obtained with the help of the 
method of envelope functions in the multiband Kane mod- 
els. This method differs, for example, from the tight-binding 
method, the pseudopotential method, etc. in that it is rela- 
tively simple and gives the possibility of studying analytical- 
ly the general mechanisms of spectrum formation." How- 
ever, in the framework of the method of envelope functions, 
the main results are obtained chiefly numerically, and the 
available analytical solutions of the problem, reducing it to 
the solution of a dispersion equation (DE) of the Kronig- 
Penney type, are found under strong simplifying assump- 
tions4 either in the approximation of an infinite mass of 
heavy holes or considering carrier motion only along the 
superlattice axis. The analysis thus ignores the effects of car- 
rier transformation under reflection from the interfa~e,~ as 
well as the effects related to the surface The latter 
effects play an important role in the formation of the SL 
spectrum and alter the effective masses of the carriers mov- 
ing along the SL layers. Moreover, the absence of a realistic 
model admitting of an analytical solution makes it hardly 
possible to interpret and analyze many numerical results (in 
view of the large number of input parameters describing 
such structures2 ), as well as compare them with the experi- 
ment. 

In the present work we have studied analytically the 
miniband spectrum of SL containing layers of a narrow-gap 
or gapless semiconductor, in the framework of the Kane 
model including the conduction band I', and the states of 
light and heavy holes of the valence band I', . We show that if 
the warping of the hole spectrum is neglected the problem 
reduces to the solution of one real transcendental DE [see 
below Eq. ( 18) describing the states of light and heavy carri- 
ers in the SL arbitrarily interacting at interfaces]. We have 
found analytical expressions for the effective masses of the 
carriers near the miniband edges, when the carriers move 
both along the axis and along the layers of the SL. With 
GaAs-Ga, All -,As and HgTe-CdTe SL as an example, we 
demonstrate the important role of the surface states and car- 

rier transformation at interfaces in the formation of the SL 
miniband spectrum. 

The DE analysis has made it possible to describe the 
qualitative rearrangement found earlier in numerical calcu- 
lation~'.~ of the spectrum of the HgTe-CdTe type SL and in 
experiments.1° This rearrangement reveals itself, in particu- 
lar, in a nonmonotonic dependence of the SL band gap on the 
SL period, and also in the semiconductor-semimetal-indi- 
rect semiconductor transition occuring with the growth of 
the SL period. The results of the qualitative analysis agree 
with the numerical solutions of the DE obtained for the SL of 
the HgTe-CdTe type with different structure parameters, as 
well as with the results of numerical calculations of other 
authors, performed earlier in the tight-binding approxima- 
t i ~ n . ~ " '  

2. DERIVATION OFTHE DISPERSION EQUATION 

Consider an infinite periodic SL consisting of layers of a 
material 1 of thickness d ,  and layers of a material 2 of thick- 
ness d, with the period d = d l  + d,. To describe the SL 
spectrum of the carriers, we use the effective Hamiltonian of 
the two-band Kane model in the isotropic approximation, 
taking into account the states of the conduction band with 
symmetry r6 ( e ) ,  of light holes of the r, band ( I h ) ,  and of 
heavy holes of the T, band (hh) .  This model allows to find 
the spectrum of SL including layers of narrow-gap or zero- 
gap semiconductors (with band inversion), in which the dis- 
tance between the bands r, and r, is smaller than the spin- 
orbital splitting A of the valence band. 

Let the quantization axis z be perpendicular to the plane 
x,y of the carrier motion, and the axis x be the superlattice 
axis.I2 With the axes thus chosen, the system of six Kane 
equations is split into two independent subsystems describ- 
ing two noninteracting groups of states with definite projec- 
tions of the total momentum on the quantization axis z, 
(ef,lh - f ,hh 3/2) and (e - +,lh +,hh - 3/2), and dif- 
fering in the sign of the wave vector projection on they axis: 
ky + - ky . In what follows we consider only the first group 
of states. The corresponding effective Hamiltonian is written 
in the form1' 
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where 
d 

k,=-i-kik,, 1- 
V &  

m, is the mass of a free electron, E,, and cUj are the positions 

k, = K of the wave vector on the layer plane have the fol- 
lowing form for light carriers: 

of the edges of the bands T6 and r, in the material 1 (i = 1 ) for heavy carriers: 
and 2 (i = 2), y, and yj are modified Luttinger constants 

3'Id (*kh,SiK) related to the interaction of the valence band T, with distant Yh,' = ( ) exp1.i ( K Y * ~ T )  I ,  ( 5 )  - (*kh,-iK) bands, and Pis the Kane matrix element and is assumed to be 
the same for both materials. The dispersion of the electron 
band r6 is determined mainly by the interaction with the 
valence band I?, , i.e., by the terms linear in k, therefore the 
contribution of the terms quadratic in kP to the electron 
energy in the Hamiltonian ( 1 ) is omitted. The Hamiltonian 
( 1 ) turns out to be degenerate (the determinant of the ma- 
trix of the coefficients of the terms quadratic in k equals 
zero) and has two linearly independent eigenfunctions. This 
glows us to lower the dimensionality of the system 
HVI = EP, excluding the electronic component of the eigen- 
functions ( 1 ). As a result, instead of the 3 X 3 system of 
equations we obtain a nondegenerate 2 X 2 system of equa- 
tions in a two-component wave function W,, 

where j = 1,2 is the material index, v is the set of quantum 
eigenvalues, and a, 0 = x, y are the indices of the Cartesian 
coordinates. The explicit form of the matrices DTPis given in 
the Appendix. The determinants of the matrices D? are 
expressed through the effective masses m ,  of light (v  = I) 
and heavy ( v  = h )  holes in the bulk of the materials, which 
are assumed to be finite: 

where kv1 is the projection of the wave vector of the carriers 
of the type v  = I,h in the materials j = 1,2 on the direction of 
the SL axis: 

where the masses mvl are defined in (3).  In (6) we choose 
the branch of the root for which Re kVj>O (Im kvl>O). 

In a superlattice the projection K of the wave vector on 
the plane of the layers is conserved, therefore the general 
solution (2)  for the wave function W(x) in each layer is a 
linear superposition of the functions (4)  and (5 ): 

where Cb (I  = 1,2,3,4, j = 1,2) are arbitrary constants. 
The boundary conditions at the interface between mate- 

rials 1 and 2, e.g., at x = 0, determine a linear relationship 
between the amplitude coefficients C ,  from Eq. (7), of the 
form (see the Appendix) 

A similar boundary condition holds also at the neighboring 
interface at x = d, . In writing it down one has to allow for 
the phase variation in each term in Eq. (7)  and for the peri- 
odic boundary condition 

4m,P2 
E p  = - 

33' . where fiQ is the projection of the carrier quasimomentum on 
the SL axis. As a result, we have 

4 

The dependence of m,, on the energy E reflects the nonpara- ( U l )  crnl = elQd z~~~ ( u ~ - ~ ) ~ ~ ~  c , ,~ .  (10) 

bolicity of the bands of light carriers. n,=1 m,n=I 

The eigenfunctions of the system (2)  in the bulk of the where the matrix U, gives the variation of the phase of the 
materials j = 1,2 for a given energy E and a projection components of the wave function (7) in the layers: 
p- -- 

exp ( i k h ,  dj) 0 0 0 
exp(--ikhldj) 0 lJj = 

0 
0 exp (ikljdj) 0 
o o exp (- ikljdj). 
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From (8) and ( 10) we obtain a homogeneous system of lin- 
ear equations in the amplitude coefficients C!, of the super- 
position (7 )  : 

where T, is the transfer matrix of the superlattice: 

The dispersion equation to find the SL spectrum is ob- 
tained by equating the determinant of the system (12) to 
zero: 

The equation ( 14) is the same for j  = 1,2, therefore we omit 
this index below, Ti = T. The matrix DE ( 14) is an equation 
of fourth degree in the eigenvalues exp(iQd) of the matrix T 
and is typical of the problem of propagation of two types of 
interacting waves in multilayer structures.13 In Ref. 13 the 
equation of the type ( 14) is reduced to a transcendental one 
in a linear approximation in the off-diagonal elements of the 
matrix T, valid under the condition of weak interaction be- 
tween the waves. It will be shown below that the SL symme- 
try allows us to reduce the matrix equation (14) to a real 
transcendental one, given an arbitrary interaction between 
the waves. For that we rewrite the left-hand side of Eq. ( 14) 
as a power series in elQd: 

The expansion coefficients S, (E,K), n = 1,2,3,4, are the 
sums of all the principal minors of the matrix T of order n.14 
In particular, S, = TrT, S4 = IT I = 1. The last expression 
follows from ( 11) and ( 13). Moreover, since I T 1 = 1, 
S, = Tr( T - ' ); from this taking into account Eqs. ( 1 1 ) and 
(13),we have S, = S, ( - d l ,  - d, ). In the structures con- 
sidered, having a symmetry plane perpendicular to the SL 
axis, S, (d,,d,) = S, ( - d l ,  - d, ), which gives S, = S,. 
Thus, in the general case the DE ( 15) reduces to 

cos 2Qd-S, cos Qd+'/,S,=O. (16) 

In the simplest case of the propagation of waves which do 
not experience mutual transformations at the interfaces (in 
the problem of the SL carrier spectrum this takes place for 
K = O), the matrix T is block-diagonal: 

The coefficients S, and S2 given that ITh ( = IT, ( = 1 are 
easily expressed through the diagonal elements of the matrix 
T,,, and Eq. (16) reduces to two DE for noninteracting 
waves: 

(cos Qd-'1, Sp T,)  jcos Qd-'1, Sp T I )  =0 .  (17) 

In the general case of interacting carriers, straightforward 
calculations of the coefficients S, and S2 and their expres- 
sion through the elements of the matrices R and U, reduces 
DE ( 16) to the form 

(COS Qd-Gh) (cos Qd-GI) = s ~ - s ~  cos Qd, 

where 

xv12+xv;+gZ 
= cos kVld,  cos kvzd2 - sin k,,d, sin kVzd2, 

2xv,xv2 

sin khldl sin klZdZ sin kl ,d l  sin kh2d, 
s l  (E ,  K )  = - gZ + --- 

2 " xhl 2 1 2  2 1 1  Xhz  

sin kh2dz sin kh,d, 
COS kh,di - + --- 

xh2 Xhl  

(20) 
sin k12d,  sin k , ,d ,  

X (cos k , , d ,  + 
X I 2  X l 1  

-( s i t r : , d l  sin khldl 

Xh 1 

sin kl ,d ,  sin kh2d2 + ----- ------ 
X I ?  xh2 

5 sin kl,d,  sin kt&, sin kh,d, sin kh2dz 
-- g Z -  I 

-- 
2 211 2 1 2  514  xh2 

Here 

where A is the valence band discontinuity at the interface. 
The left-hand side of Eq. (18) contains factors describing 
independent quantization of light and heavy carriers, and 
the right-hand side, connected with interaction, is propor- 
tional to the factorg2and contains only the cross terms in the 
indices of the light and heavy carriers, 

In the limiting case, when one of the materials, e.g., the 
material 2, is a low-transparency barrier for all the carriers, 
so that (k,,(d$1, Eq. (18) reduces to the equation of size 
quantization of the carriers in a solitary quantum well7 

xli2+xlz2+g2 
X (COS kl ,d , - i  .. sin klidl ) 

2 ~ 1 , x t z  

3 gZ xh2 
= - -[ 1 -( cos khld,-i - sin kh.d.) 

2 xhzxl2 z h l  

'' sin sin k t l d , ]  . +-- 
2 X h l X l i  

An analysis of this equation is carried out in Ref. 7. If we 
consider besides the well to be infinitely wide, so that 
1 k,,Jd, % 1, Eq. (21 ) reduces to the DE of surface states of a 
single hetero-junction: 

These surface states have been discussed in Refs. 5 and 6. 
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3. EFFECTIVE MASSES OFTHE CARRIERS while the edge Q = ?r/d to the case a = - P. Equation (24) 
The analysis of DE ( 18) becomes simpler near the mini- solved for & gives the position of the miniband edges 

band edges for K = 0 and Q = 0, d d ,  since the DE ( 18) (dl ,d2 1, where n is the miniband number 
breaks up at K = 0 into independent equations for light and (n = 1,2,3,... Equation (23) leads to expressions for the 
heavy carriers effective masses m ~ b , ~  of the carriers moving along the SL 

axis and belonging to different minibands: 
cos Qd=G,(e, 0) , (23) . . 

VII dmvi 
where G, (&,O) is given by ( 19) for K = 0. For Q = 0 and ma',,, = - [mVizv la  - - 

de (e-~"i)Zvi" 
and Q = ?rid Eq. (23) gives two pairs of independent equa- 
tions + - dmvz ( E - e , ) ~ . ? ]  

(24) 
de 

@ a a V ( E ,  di, dz)=O 

X 
(a cos kvldl-p cos kvZd2) 

for each type of carriers, Y = I,h, where (E2 t (26) 

kvzdz '  ax.^ [ ctg y] a + BZvz[  ctg -1 (25) where 
2 .  

In Eqs. (24) and (25) a = + 1 andP = aeiQd. The splitting 
of Eq. (18) into four independent equations is due to an 
extra quantum number, the parity of states, appearing for the left-hand side of Eq. (26) being calculated for the mini- 

Q = 0, ~ / d .  The index a indicates either even (a = + 1 ) or band edges, when & = TO calculate the effective masses 
odd (a = - 1 ) parity ofstates in the material 1, andp labels m$,n near the miniband edges &ED,n, when the carriers move 
even or odd parity of states in the material 2. The center of along the SL layers, one has to use the initial DE ( 18) and 
the Brillouin zone, Q = 0, corresponds to the case a = P, expand it in powers of K. Thus, we obtain 

where 

Y = I,h; a,D = + 1, and ?, Z, pare  the indices complemen- 
tary to Y, a ,  0 and having opposite signs. For example, - if 
v = h , a =  + l , f l =  -1, t henY=I ,E=  - 1 , f l =  +1 ,  
etc. The right-hand side of (28) is calculated for the band 
edge, when E = The important distinction between the 
formula (28) for the effective masses of the carriers moving 
along the SL layers and the formula (26) is the appearance 
in (28) of terms depending on the parameters of the carriers 
of the other type, owing exclusively to the effects of the car- 
rier transformation at the interfaces. As follows from (28), 
the minibands corresponding to carriers of different type 
and opposite parity interact strongly. 

Upon intersection of the miniband edges, the masses of 
motion along the SL layers vanish, and the quadratic disper- 
sion law is replaced by a linear one. For the masses of motion 
along the SL axis a similar situation arises when there is an 
intersection of the edges of minibands corresponding to car- 
riers of one type but opposite parity. A more detailed analy- 
sis of the carrier mass dependence on the parameters of the 
SL layers will be carried out in Sec. 5. 

4. GENERAL PROPERTIES OFTHE ENERGY SPECTRUM FOR 
A SMALL RATIO OF THE MASSES OF LIGHT AND HEAVY 
CARRIERS 

The structure of the carrier energy spectrum in the SL 
corresponding to the DE ( 18) can be qualitatively analyzed 

in the general case for a small but finite ratio of the masses of 
light and heavy carriers: 

Since the masses differ so much, all the solutions of Eq. ( 18) 
can be separated into minibands with a strong dispersion, 
i.e., the minibands of electrons and light holes, and mini- 
bands with a weak dispersion, corresponding to heavy holes. 
Then we can consider their mutual influence which can be 
weak in a certain range of the energy E and momenta K. 

To be specific, let us assume that the band gap in the 
material 1 is smaller than in the material 2, the layer of the 
material 1 being a potential well for both the electrons and 
holes. Consider first the range of small values of the momen- 
tum of the carrier motion in the layer plane, 
fi2K '/m, < I E  - E,, I (range I) ,  in which there are minibands 
of both light and heavy carriers. In this range, generally 
speaking, k,, -K, whereas k, , % K, i.e., heavy holes move 
practically along the normal to the interfaces, hindering the 
transformation of heavy carriers into light ones and vice 
versa. In fact, in the range I the right-hand side of the DE 
( 18) is of order K /k, , -fl 'I2 & 1. Therefore in the range I, 
to the zeroth order in p, Eq. ( 18) breaks up into two equa- 
tions of independent quantization of light and heavy carri- 
ers, of the Kronig-Penney DE type: 

cos Qd=G,(&, K), v=l, h .  (29) 

Each of these equations describes the propagation of only 
one type of carrier in the SL. Equation (29) for the indepen- 
dent quantization of light carriers at y = y = 0 coincides 

80 Sov. Phys. JETP 74 (1), January 1992 Gerchikov et a/. 80 



with the DE found in the model with an infinitely large mass - - 
of heavy holes.4 The Hamiltonian ( 1 ) turns out to be degen- 
erate for y = y = 0  and gives the propagation of only light 
carriers, so that the problem reduces to a "single-wave" one. 
For Y = h the g2 term in the right-hand side of Eq. ( 2 9 )  is 
small, and should be neglected. In this case Eq. ( 2 9 )  for 
heavy holes does not differ from the DE for a simple particle 
of mass m, in a periodic potential, whereas for light particles 
there appear some distinctions related to the presence of spe- 
cial boundary states at some  interface^,^ the most important 
of which, from the point of view of the SL spectrum, is the 
one leaving the top of the valence band of the narrow-gap 
material 1, when K  = 0 ,  and having a mass 4/3m, ,  for 
p< 1.' The light-carrier spectrum peculiarities related to 
boundary states have been discussed at length in Ref. 7 for 
the case of the quantum-well spectrum. The main results 
obtained there apply also to the SL spectrum. 

Allowance for the right-hand side of the DE ( 18) for 
the minibands of light and heavy holes transforms, the inter- 
sections of the hole minibands for finite K  into quasi-inter- 
sections, and the minibands of light and heavy particles of 
opposite parity and close values of E&, repel each other in 
the vicinity of K  = 0.  The width of the quasi-intersection 
region can be estimated using the right-hand side of Eq. 
( 18),  as had been done in Ref. 7 for a solitary quantum well. 
This region is narrow in the parameter ( f i2K2/m,A)"2,  
when the minibands of light and heavy holes of the same 
parity cross each other. In the general case, the levels repel 
each other to a distance of the same order as the distance 
between the minibands of heavy holes, so that the spectrum 
in the region of the miniband interaction differs essentially 
from the one corresponding to the independent quantization 
of light and heavy holes. In particular, if for K  = 0  the ener- 
gies E&,, and E;~, , ,  of a pair of minibands are close to each 
other, the effective masses of the carrier motion along the SL 
layers, due to the miniband repulsion, become small, oppo- 
site in sign and close in value. 

A repulsion of the same kind between the levels mani- 
fests itself, when the boundary state of light carriers, leaving 
the top of the valence band of the narrow-gap material 1 at 
K  = 0, interacts with nearby levels of heavy holes7 As a 
result of this interaction the mass of heavy holes correspond- 
ing to odd minibands turns out to be of order m,  for the 
motion along the SL layers. 

Thus, in the whole range of coexistence of the mini- 
bands of light and heavy holes, 

the SL spectrum is a system of levels of light and heavy holes 
repelling each other. In a wider range 

(mhI E-E,I 1 ) I b  K -  
h 

(range 11) the waves of light holes are exponentially damped 
in both materials. As a result, for K -  l / d ,  and l / d , ,  light 
holes do not essentially affect the states of heavy holes, so 
that with increasing K  the minibands of heavy holes become 
parabolic asymptotes with a mass of motion along the SL 
layers close to the volume mass m, , of heavy holes. 

In the region of electron minibands E > E,,  , E,, , distant 

from the minibands of heavy holes, the corrections to the 
spectrum of the DE ( 2 9 )  for the carrier transformation at 
the interfaces are negligible. In this energy range, for materi- 
als with 

the influence of the band I'7 split off due to the spin-orbit 
coupling becomes more i m p ~ r t a n t , ~  as well as the interac- 
tion with distant bands, which limits the range of use of the 
DE ( 18 1. Nevertheless, the spectrum of electron minibands 
can be analytically described for A  5 E,  as well. Due to a 
weak influence of heavy holes, we can set the mass of heavy 
holes in the Hamiltonian ( 1 )  equal to infinity, having in- 
cluded, however, the terms of the interaction of the bands r6 
and r7 linear in kP, as well as in the electron energy, the 
term quadratic in k allowing for the interaction of the con- 
duction band with all the distant bands, except the valence 
one. Taking this interaction into account still leaves the 
problem in the framework of the single-wave approxima- 
tion, and the system HY = E* reduces to a scalar equation 
for the electronic component of the wave function 

where 

As follows from Eqs. ( 3 0 )  and ( 3  1 ), the off-diagonal com- 
ponents D,"Y = - DJYX, describing the relation between the 
motion along and across to the SL axis, are connected with 
the spin-orbit splitting of the valence band 
[ D y - h / ( ~ ,  + A ) ]  and give a nonzero contribution to 
( 3 0 )  only near the interfaces. Correspondingly, the contri- 
bution of distant bands is allowed for in ( 3 1 )  by the term 
(my) - '  in the diagonal components D Y ,  whereas their 
contribution to the nondiagonal components is omitted. 

Solving Eq. ( 3 0 )  for the SL, we obtain a DE of the form 
( 2 9 ) ,  where G,  ( Y  = 1 )  is given by ( 19) with the parameters 

The normal components of the electronic wave vectors 
should be found from the bulk dispersion law for the materi- 
als j = 1, 2: 

For the hole minibands the effect of the split-off band 
r7 is small, if I E  - E,,  1 A. Therefore, in the case of the SL 
of semiconductors, belonging to the fourth group, or of the 
A ,  B, type with small A  the results are valid only for the first 
minibands of heavy holes, if the hole wells are not very nar- 
row. The masses of these minibands are given, to a sufficient 
accuracy, by the expressions ( 2 6 ) - ( 2 8 ) .  Furthermore, since 
the interaction between light and heavy carriers is absent, 
when they move along the SL axis, (with the band r7 taken 
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FIG. 1 .  The energy spectrum of electron (a)  and hole (b) minibands in 
the GaAs-Ga, , A1, , As SL with (solid lines) and without (dashed lines) 
the effects of carrier transformation at the interfaces. Dash-dot lines show 
the electronic spectrum in the single wave approximation, the effect of the 
band r, taken into account. 
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into account or not), the spectrum of heavy minibands for 
K = 0 does not depend on A, and the spectrum of light holes 
for K = 0 is given in the single-wave approximation by a DE 
of the form (29). 

These general considerations are illustrated by Fig. 1. It 
shows the dispersion laws of the minibands E; (Q,K) for the 
GaAs-Ga,, Al , ,  As SL found as a numerical solution of Eq. 
( 18), as well as the solutions of Eqs. (29) of independent 
quantization of heavy and light carriers with or without 
allowance for the band split off by the spin-orbit coupling. 
The superlattice parameters are d l  = 100 b; and d, = 40 A; 
the parameters of the materials coincide with those given in 
Ref. 15. Here and below the origin coincides with the edge of 
the valence band of the narrow-gap material: E,, = 0. Atten- 
tion is called, first, to the weak effect of the interaction of 
heavy and light holes on electronic minibands and to a more 
pronounced effect of the band T, ; second, to a considerable 
reduction of the mass m y  of the miniband h 1; third, to the 
repulsion of the minibands I 1 and h 2 for small K, reversing 
the sign of the mass mz1 of the upper band; fourth, to heavy 
asymptotes of the minibands in the range 
K > (m, IE - 1 ) and fifth, to sufficiently narrow re- 
gions of the miniband quasi-intersection. The observed pic- 
ture fully corresponds to the qualitative analysis of the DE 
( 18) given above. 

A REARRANGEMENT OFTHE BAND STRUCTURE OF A 
SUPERLATTICE CONTAINING LAYERS OF A NARROW-GAP 
SEMICONDUCTOR, FOLLOWING ACHANGE IN 
SUPERLATTICE PARAMETERS 

The band structure of an SL containing layers of a semi- 
conductor with band inversion, e.g., HgTe-CdTe, has an 
extra distinction connected with the existence of a boundary 
state on an isolated interface of such materials in the energy 
range E,, < E (Ref. 6).  In the SL the position of these 
energy levels strongly depends on the structure parameters 
d l  and d,, leading, as shown below, to a considerable rear- 
rangement of the energy spectrum. Below we analyze the 
spectrum of such an SL in more detail. 

The position of the edges of the minibands E:~ ,~  for 
K = 0 and Q = 0, r / d  and various d l  and d, is determined 
by the solution of the transcendental equations (24). The 
dependence of E : ~ , ~  (dl ,d2 ) on the potential well width d l  
for a fixed value of the potential barrier width d, in the 
HgTe-CdTe SL is shown in Fig. 2. The results of the numeri- 
cal solution of Eqs. (24) are listed for d, = 36 b; and 
A = 350 meV. The values of other parameters correspond- 
ing to T = 4 K are taken from Ref. 16. For heavy holes Eqs. 
(24) give the usual sequence of minibands E ; ~ , ~ ,  

n = 1,2,3 ,..., stemming from the levels E: , n = 1,2,3 ... of size 
quantization in isolated quantum wells. For light particles 

FIG. 2. The position of the edges of the minibands &I,, for the HgT? 
CdTe SL versus the width d,' of the HgTe layers for d,,,, = 36 A, 
A = 0.35 eV, T = 4 K. The shaded regions are the states of the continuum 
spectrum for K = 0  and O(Q(r /d .  
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Eqs. (24) give the energies n = 1,2,3 ..., of the edges of 
electronic minibands in the range E > E,, and the energies of 
the light-hole minibands in the range E < max(~, ,  ,E,, ) (they 
are not shown in Fig. 2).  Also, Eqs. (24) have extra solu- 
tions for Y = I, which for sufficiently large widths d l  
and d, lie in the interval max(&,, ,E,, ) < E and have 
imaginary values of k, , and k,, . For 

these solutions reduce to the solution of Eq. (22) for a 
boundary state of an isolated HgTe-CdTe heterojunction at 
K = 0 :  

mrl (&s)A 
& * = & , I  - - 

m, ,  ( E ~ )  + 1 mi* ( ~ s )  1 ' 

For finite values of the barrier and well widths, 
(k,, d l  ( > (k,,d, 1 %  1 the level E, is split into two sublevels 
which broaden to minibands. The upper one, S 1, corre- 
sponds to even states in individual potential barriers, and the 
lower S 2 to odd states (see Fig. 2). 

For 
lm121 d, = - d,, E = E S  
mi1 

the lower edge of the miniband S 1 crosses the upper edge of 
the miniband S2.  Given further decrease of d l ,  the lower 
edge of the upper miniband S 1 corresponds to an antisym- 
metric state in the region of potential wells and barriers, and 
the upper edge of the minibands 2 to a symmetric state. With 
d l  decreasing, the miniband S 1 crosses the edge of the va- 
lence band E,, and passes to the region of electronic states. 
For the lower edge of the miniband S 1 (Q  = 0)  this occurs, 
when the layer thickness of material 1 is d l  = d t  
(Q=O)  =dY: 

and for the upper edge S 1 (Q = n-/d 1, when d l  = d 
(Q  = T/d) = dl**: 

where 

It is important that the position of the miniband S 1 strongly 
changes with the layer thickness, crossing many times the 
minibands of heavy holes. For a fixed value of Q and K = 0 
the intersection with the miniband hn occurs for a certain 
d l  = dl,, (Q), the analytical expression for which can be ob- 
tainedfrom (23) at /3=m,, /mh1 (1: 

2 dml, 1 dm,, A 
X I+--A--- ( m,, d& m12 de 

1 dml2 xlzdz (ch xlzd2 cos Qd-I) -(I+--*) 
m,, de sh xLzdz (ch xlzdZ-cos ~ d )  ) I ) ,  (35) 

where 

Near the point of the intersection of the miniband edges 
the minibands repel each other, their dispersion in the layer 
plane increasing. In accordance with (28), the odd mini- 
band S 1 interacts intensely with even bands hn. In this re- 
gion Eq. ( 18 ) yields the following expressions for the mini- 
band masses (P( 1 ) : 

(n.1 "i-di,,, (Q) mnhL(Q) =mi, - 
6 d, 

dl-d,'(Q) 4s 
m811L(Q) =mll - -, 

3d, tgx-x ' 
(36) 

a'l dl-d,*(Q) " 
x=-[ 

2 dl,, (Q)-dl'(Q) -1 . 

The values of m;'(Q) and m;, (Q) corresponding to the 
band edges for Q = 0, r / d  can be obtained from the formula 
(28 ) , since 

FIG. 3. The dependence of masses rn:;," along the HgTe-CdTe SL layers 
on the width of the HgTe layers for the SL parameters of Fig. 2. The 
minibands have the following indices: I-v = I, a = 8 = - 1, n = 0, 
2,3,4,5-v=h, a = B =  + 1, n =  1,3,5,7, b v = I ,  a = B =  + 1 ,  
n  = 0. 
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It follows from (36) that the interaction between the mini- 
bands leads to their masses vanishing at the points of the 
intersection dl  =dl , ,  and to reversal of their signs after 
passing through zero. Near a separate intersection point we 
have m;, = - mF. Between the intersection points the 
mass m:, reverses its sign going through infinity. The anom- 
alously small mass of the even minibands of heavy holes, 
mF-m,, n = 1,3,5 ,..., including the regions far from the 
intersection points d,,,, is due to their strong interaction 
with the states of light holes.' The odd bands of heavy holes 
(n = 2,4,6, ...) interact with light holes ( E  - E,, )/A times 
weaker and therefore have masses of order m, , forfl( 1 (cf. 
Ref. 7) .  The d l  -dependence of the masses m;iSn calculated 
from (28) for the first minibands of the SL spectrum of 
HgTe-CdTe (see Fig. 3) confirms the qualitative analysis 
performed above. 

The intersection of the miniband S 1 and the minibands 
of heavy holes leads to the SL spectrum rearrangement with 
change of the structure parameters (e.g., of the potential- 
well widths). The evolution of the energy spectrum with d l  
changingfromd, <dl , ,  (0)  tod,  >dl, ,  (n-/dl, e.g., when the 
band S 1 crosses the bands h 1 and h 2, is shown in Fig. 4. In 
the region d ,  <dl , ,  (0)  (Fig. 4a) the distance between the 
minibands S 1 and h 1 decreases drastically with increasing 
d ,  , and the width of the SL band gap is given by the expres- 
sion 

and, decreasing with increasing d l ,  it vanishes at 
d l  = dl, ,  (0).  The SL transforms from a direct semiconduc- 
tor (Fig. 4a) to a semimetal (Fig. 4b). At the same time, 
according to Eqs. (28) and (36), the masses m y  + , ,  and 
m'l - ,  vanish. Then, for dl, ,  (0)  < d l  <dl , ,  (n-/d) (Fig. 
4b) the miniband h 1 appears to be electronic at the center of 
the Brillouin zone and of hole type at the edge, for Q = n-/d. 
The miniband S 1, on the contrary, is of hole type at the cen- 

FIG. 4. The rearrangement of the energy spectrum of the carriers in the 
HgTe-CdTe SL with the changing thickness of the HgTe layers in the 
vicinity of the transition semiconductor semimetal-semiconductor for 
the SL parameters of Fig. 2. The dashed lines show the spectrum when 
the carrier transformation at the heterojunctions is not allowed for. The 
HgTe layers have the following thicknesses: a-66 A [ d ,  i d , , ,  ( 0 )  1, 
b--70 A [ d l , ,  ( 0 )  < d l  < d l , ,  ( . i r / d ) ] ,  c-80 A 
[d, . , ( . ir /d) < d l  < d , , , ( O ) ] ,  d-90 A [ d , , ,  ( 0 )  < d l  < d , . , ( . i r / d ) ] ,  e- 
100 A [d , . ,  (.ir/d) < d l  l .  
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ter and electronic at the edge. For the value Q = Q * found 
from the equation d l  = dl,, (Q*),  the masses of the mini- 
bands h 1 andS 1 reverse sign when they go through zero. The 
energy gap in the interval dl,, (0)  < d l  < dl, ,  (n-/d) equals 
zero, and the SL has the properties of a semimetal. For 
d l  > dl,, (n-/d) the miniband h 1 becomes electronic for all Q, 
and the band S 1 of hole type (Fig. 4b), the band gap is deter- 
mined by the distance between them for Q = n-/d, i.e., 

and increases drastically with d l  (see Figs. 2 and 5) .  In the 
range dl,, (n-/d) < d l  <dl,, (0) the SL is a direct-band semi- 
conductor with extrema shifted to the edge Q = n-/d of the 
Brillouin zone. 

When d l  increases further, namely when dl  > dl,, (O), 
the lower edge of the band S 1 crosses the second (odd) mini- 
band of heavy holes (Fig. 4d). Due to its strong dispersion, 
the band S 1 experiences already in the range of small 
K-/3"*.rr/dl a quasiintersection with the miniband h 2, so 
that the valence band for K 2 n-/dl coincides with the mini- 
band h 2. Thus, the valence band appears to be strongly non- 
parabolic and has a second maximum for K=: n-/dl related to 
the behavior of the miniband h 2 (Fig. 4d).3' As d,  grows, 
the top of the valence band S 1 reaches the level t h  + ,2,  and, 
after their intersection for d l  = dl,, (n-/d), the valence band 
h 2 hasonly amaximumfor Kzn-/dl, so that the SL becomes 
an indirect-band semiconductor (Fig. 4e). Due to a small 
(positive) dispersion of the band h 2 for small K 5 n-/dl, the 
band gap width for d l  > d l ,  (n/d) approximately equals the 
distance between the bands h 1 and h 2 for K = 0, Q = n/d 
and decreases monotonously with increasing d l  : 

FIG. 5 .  The dependence of the band gap width Ek for the HgTe-CdTe SL 
on the width of the HgTe layers for the parameters of Fig. 2; the dashed 
line is the distance between the nearest c and v minibands at the point 
K = 0, Q = r / d  of the Brillouin zone. 

The dependence of the band gap width in the HgTe-CdTe 
SL from the width of HgTe layers found with the help of the 
dispersion curves E: (Q,K) obtained by solving numerically 
the DE (18) is shown in Fig. 5. The dashed line shows the 
distance between the nearest c and v minibands at the point 
K = 0, Q = n-/d of the Brillouin zone in the region, where 
The SL is an indirect semiconductor. 

6. CONCLUSION 

The DE ( 18) for the energy spectrum of the SL carriers 
obtained above allows to find the spectrum of the minibands 
E: (Q,K) in a wide range of energies and momenta. The re- 
sults of the calculations of the spectrum, band gap width E, 
and miniband masses mil, mi agree well with the results ob- 
tained in the tight-binding approximation.9211 Nonmono- 
tonic behavior of the band gap width, but depending only on 
the valence band discontinuity at the HgTe-CdTe interface, 
has been found befores by numerical calculations. 

The rearrangement of the HgTe-CdTe SL spectrum 
and a related drastic decrease in hole mass for dzzd,,, show 
in the increase in carrier mobility and the equality of the 
electron and hole mobilities for d l  --dl,, , as well as in their 
temperature  dependence^.'^," 

The procedure of deriving the DE ( 18 ) shows that the 
structure of the miniband spectrum is determined not by the 
number of the bands included into the effective Hamilto- 
nian, but by the number of the independent bulk waves im- 
portant in this energy range. Thus, in the electronic region of 
the spectrum the single-wave approximation is valid, which 
can take into account not only the states of the electronic 
band I?,, but also their interaction with the states of the 
bands rs and T7 , whereas in the hole region, when the states 
near the bottom of the degenerate band Ts are considered, 
the spectrum corresponds to the two-wave model. In certain 
ranges of the energies and material parameters (for example, 
when the states of the valence band in the materials with a 
small spin-orbit coupling are considered) the two-wave ap- 
proximation may prove insufficient. 

The procedure of deriving the DE ( 18) allows general- 
ization to the case of propagation of N types of interacting 
waves vi, i = 1,2, ... N. The matrix equation for the spectrum 
of the dimensionality 2N X 2N, similar to Eq. ( 14), reduces 
to a real DE including 2N - 1 independent functions de- 
pending on the SL parameters. For a superlattice having a 
symmetry plane perpendicular to its axis, the DE reduces to 
an equation of the degree N in cos Qd, in which the number 
of the independent functions becomes equal to N. The DE 
can be written in the form close in structure to the DE ( 18) : 

n (COS Qd--G.i)= S ,  COS' Qd. (37) 

where the function G ,  (E,K), i = 1,2 ,... N, determines the 
spectrum of an independent wave of the v,-type to the zeroth 
approximation and depends only on its parameters, and the 
right-hand side (37) gives the interaction of the waves with 
different vi. Though the explicit form of the functions 
G, (E,K) and si (E,K) is determined by a specific problem, 
the structure of the dispersion equation (37) remains con- 
stant. 
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I APPENDIX 

In the framework of the method of envelope func- 
t i o n ~ ~ , ~ , '  in the problem of the superlattice spectrum the pa- 
rameters E,,  E,, y, y of the Hamiltonian ( l  ) should be con- 
sidered smooth functions of the coordinate x,  varying from 

I 
their values in the material 1 to the values in the material 2. 

I 
The choice of the sequence the operators k,  , k,, , y ( x )  , y ( x )  

I in the quadratic terms of the Hamiltonian ( 1 ) becoming es- 
I sential. The form ( 1 ) given above corresponds to a certain 
I choice of the model of an ideal interface discussed at length 

in Ref. 7. The system of equations H\I, = EV reduces to the 
I 
I form ( 2 ) ,  where the matrices D,"B are given by the formulae 

The elements R,,  are obtained from the elements R ,, by the 
substitution k , ,  + - k , ,  , the elements R,, , I,m = 3,4 from 
the elements R ,  - ,,, _ , by the substitution k,, + k,, and 
K +  - K, and, finally, the elements R,,, I = 3,4, m = 1,2, 
from the elements R ,  ,, + , by the substitution k ,  , - k ,  , . 

I '  A detailed discussion of this method, as well as of the boundary condi- 
tions at the heterojunction, is contained in Ref. 3. 

'' In the adopted miniband enumeration there is a relation between the 
values a and n: for the miniband originating from the nth level of the size 
quantization a = ( - 1 ) " + I .  

3 ,  The dispersion of the miniband h 2 and, in particular, the maximum 
appearing for K=:.rr/d, have been discussed in detail in Ref. 7. 
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