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An electromagnetic vortex self-localized in a region surrounded by a plasma with a high electron 
temperature is analyzed. It is assumed that the plasma in the interior of the vortex is compressed 
by the vortex, so its pressure is well above that in the external region. The vortex energy and the 
plasma pressure in the interior are directly proportional to each other in this case. The 
entrainment of plasma electrons by the vortex is taken into account. It leads to the generation of a 
magnetic field. A static magnetic field tends to reduce the energy loss due to the escape of hot 
particles from the plasma into the surrounding gas. The parameters of the vortex and the plasma 
are estimated for the case in which the vortex forms in a gas whose composition and pressure are 
nearly atmospheric. The mechanism for the appearance of a vortex during the propagation of an 
electromagnetic wave through a nonlinear medium is discussed. A hypothesis is offered regarding 
the mechanism for the formation of a vortex during a lightning discharge. 

1. INTRODUCTION 

An electromagnetic field may be localized in space if a 
self-sustaining cavity or closed waveguide is formed by the 
field in a nonlinear medium. In other words, an electromag- 
netic field may undergo a self-localization in a medium with 
a negative dielectric constant if the dielectric constant of the 
medium becomes positive in the region in which the field is 
strong, as a result of the interaction of the field with the 
medium. In a hot plasma a nonlinear interaction may be 
caused by the pressure of the nonuniform alternating electric 
field on the plasma electrons ( a  ponderomotive force). In 
this case a closed low-density region in which the electro- 
magnetic field is concentrated may form in the plasma. Out- 
side this region the plasma density must be high enough that 
the electron plasma frequency is higher than the oscillation 
frequency of the electromagnetic field. 

The case of the localization of an electromagnetic field 
in a hot plasma in which the self-sustaining cavity is spheri- 
cal was studied by L. V. Keldysh. (His study was reported at 
a session of the Division of General and Applied Physics of 
the Academy of Sciences of the USSR in 1964. Unfortunate- 
ly, that study has not been published.) 

Studies of the self-focusing of electromagnetic beamsls2 
have stimulated research on a self-localized electromagnetic 
wave propagating through a self-sustaining closed wave- 
guide. The structure of a self-localized electromagnetic vor- 
tex in a hot plasma was studied in Refs. 3 and 4. In the two- 
dimensional case, an electromagnetic wave traveling along a 
circle forms an annular waveguide channel. In three dimen- 
sions, the self-localized field takes the form of a ring vortex: a 
tubular waveguide of toroidal configuration forms, in which 
the wave travels along a helix. In other words, the wave vec- 
tor has components along the major and minor circumfer- 
ences of the torus. The charged particles in the inner part of 
the torus are trapped in the vortex: Their motion is limited 
by the potential barrier set up by the alternating nonuniform 
electric field. The plasma pressure in the inner part of the 
torus is determined by the electromagnetic field of the vortex 
and by the plasma pressure in the inner region. 

A self-localized high-frequency field in a dense gas was 
studied in Ref. 5. The structure of the hot plasma which 

forms near the self-localized field was analyzed. It was as- 
sumed there that the plasma was at a dynamic equilibrium 
with the surrounding neutral gas: neutral particles diffused 
into the plasma volume, where they were ionized in colli- 
sions with hot electrons. The ions and electrons which 
formed as a result escaped from the plasma by ambipolar 
diffusion. The energy which the electrons expended on 
maintaining this dynamic picture was replenished through 
dissipation of the high-frequency field energy. The energy 
contained in this self-localized high-frequency field and the 
energy loss were interrelated with the electron temperature 
and the plasma pressure near the boundary of the self-local- 
ized field. 

In the present paper we take up the case in which the 
plasma in the inner region is compressed by the electromag- 
netic vortex in such a way that its pressure is well above the 
plasma pressure in the outer part of the vortex. In this case 
the electromagnetic field energy in the vortex and the plasma 
pressure in the inner region are directly proportional to each 
other, and the energy contained in the system is essentially 
independent of the pressure of the surrounding gas. Under 
these conditions the energy of the system may be far higher 
than in the cases discussed in Refs. 3 and 5. 

In addition, we take account of the effect of the entrain- 
ment of the electrons by the electromagnetic wave on the 
structure of the vortex. This effect leads to generation of a 
magnetic field near the vortex. This magnetic field may 
strongly influence the transport of energy and particles of 
the plasma in the outer region. In this region the plasma is 
bordered on one side by the high-frequency field which is 
heating the electrons. On the other side, it is bordered by the 
surrounding neutral gas. Most of the plasma energy loss re- 
sults from the escape of plasma particles into the surround- 
ing gas. The magnetic field substantially reduces the electron 
thermal conductivity. As a result, the electron temperature 
near the self-localized field may be well above the electron 
temperature near the boundary of the plasma with the sur- 
rounding gas. This circumstance will promote a decrease in 
the energy loss from the system. With increasing energy in 
the system, and with decreasing energy loss, the vortex life- 
time increases. 
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A self-purification of the plasma by escape of heavy par- 
ticles6 also tends to reduce the energy loss of the system. 
This self-purification can be outlined as follows: If a vortex 
forms in a dense gas with a small light-gas impurity, the 
heavy and light ions will separate in the plasma. The plasma 
volume will contain primarily the ions of light particles, 
while heavy particles will play the major role in forming the 
double layer at the boundary of the plasma with the sur- 
rounding gas. 

In the conclusion to this paper we discuss a possible 
mechanism for the appearance of a self-localized vortex dur- 
ing the propagation of an electromagnetic wave through a 
nonlinear medium. We offer a hypothesis regarding the 
mechanism for the formation of a vortex during a lightning 
discharge. 

2. STRUCTURE OF THE ELECTROMAGNETIC FIELD 

In the two-dimensional case, the electric field of the 
wave in the cylindrical coordinate system (r,p,z) is 
E = E, a exp (iqp - iwt) ,  decaying as r - +  0 and also as 
r- co . (All properties are uniform along the z axis.) We are 
interested in the situation in which the high-frequency elec- 
tric field is so strong that the oscillation energy of an electron 
which has entered the waveguide region is well above the 
average thermal energy of an electron. Under these condi- 
tions the potential barrier created by the spatially nonuni- 
form high-frequency field divides the plasma into two re- 
gions which are essentially isolated from each other: an inner 
region and an outer one. These regions generally differ in 
electron temperature and in unperturbed plasma density. 

We denote by p the point at which the field amplitude 
E ( r )  reaches its maximum, and we denote by Ar a character- 
istic width of the waveguide region. We denote the electron 
temperature in the inner plasma region ( r  < p )  by T, . We 
denote the plasma density, unperturbed by the high-frequen- 
cy field, in this inner region by n,. The corresponding prop- 
erties in the outer region ( r  > p )  are T,, and n,, . 

In both plasma regions, the electron energy distribution 
is approximately Maxwellian, with a truncated tail. The 
electron distribution in the inner region is essentially Max- 
wellian, except at electron energies close to the height of the 
potential barrier created by the high-frequency field. In this 
case the distribution function falls off more rapidly than a 
Maxwellian function, since the time scale for the escape of 
the high-energy electrons through the barrier is far shorter 
than the time scale of the relaxation of the distribution func- 
tion to a Maxwellian function. In the outer plasma region, 
the distribution function becomes depleted of electrons at 
lower energies. The reason is that the potential barrier due to 
the double layer at the boundary of the plasma with the neu- 
tral gas (Ref. 7, for example) is far lower than the barrier 
formed by the high-frequency field in the case under consi- 
deration here. 

Let us consider the case in which the oscillation fre- 
quency of the electromagnetic field is considerably higher 
than the effective rate of electron collisions with plasma par- 
ticles ( w  ) Y,  ). In the case of a Maxwellian electron distribu- 
tion we have the following expression for the plasma den- 
~i ty: ' ,~  

where 

ne0 for r<PI 
nea = n for r>p. 

&a2=4mTeoo2/ez,  

Te0 for r<P, 
Tea = {,, f',, r>, 

Since Eq. ( 1 ) ignores the deviation of the electron dis- 
tribution from Maxwellian, this equation cannot be used 
near the edge of the potential well, where the plasma density 
is exponentially small (i.e., near the point r = p ) .  When we 
recall the truncated tail of the electron energy distribution, 
we find a function for the plasma density which is contin- 
uous at the point r = p. We will not derive these corrections 
to the plasma density, since they have no significant effect on 
the parameters of the entity under consideration here. (The 
spatial distribution of the plasma density in the case of a 
truncated electron energy distribution is discussed in Ref. 
10.) 

In the two-dimensional case, the electric field of the 
self-localized wave is described by3 

(2)  

where w,, = 4 m e a  e2/m. 
The spatial distribution of the electric field has essen- 

tially no effect on the plasma density distribution in the 
waveguide region, in which the condition E '%-EL holds. 

Multiplying the right and left sides of Eq. (2)  by dE  /dr, 
and integrating over r from 0 to co , we find 

m 

The pressure drop between the inner and outer regions 
is balanced by the pressure and strength of the electromag- 
netic field. We are interested in the case in which the plasma 
in the inner region is compressed by the vortex, so the pres- 
sure in this region is well above the plasma pressure in the 
outer region: n, T, )riel T,, . We assume that the following 
condition holds here: 

m m 

This condition means that the component of the wave mag- 
netic field along the wave propagation direction is consider- 
ably larger than the transverse component. In this case we 
find from ( 3  ) 

m 

Under the assumption that the characteristic width of 
the waveguide region is considerably smaller than the radius 
of curvature of the waveguide, Ar<p, we can use (5)  to find 
the following expression for the energy of the electromagnet- 
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ic field per unit length (along the z axis) of the self-localized 
vortex: 

( W is expressed in joules). In estimating values here and 
below, we express distances in centimeters, plasma densities 
in particles per cubic centimeter, and temperatures in elec- 
tron volts. 

We wish to call attention to the following point. In ana- 
lyzing the structure of the electromagnetic field we assumed 
that the electric field amplitude of the wave has a unique 
maximum at the point r = p .  However, there can also be 
localized solutions such that there are several m a ~ i m a , ~  i.e., 
such that the spatial distribution of the electric field ampli- 
tude in a z = const cross section has the form of concentric 
rings. We denote the number of such rings by s. We then have 
the following expression for the width of the waveguide re- 
gion: 

The energy of the electromagnetic vortex given by ( 6 )  
does not depend on the width of the waveguide region (or on 
the wave mode) for a given plasma pressure in the inner part 
of the vortex and for a given radius of curvature of the wave- 
guide if the condition Ar<p holds. 

The field falls off with distance from the waveguide re- 
gion in proportion to exp [ ( - w,, /c) I r - p 1 ]. The width of 
the plasma layer in the outer part of the vortex must be con- 
siderably greater than the effective depth to which the field 
penetrates into the plasma, so that we can ignore the energy 
leakage due to decay of the self-localized field. The integra- 
tion in Eqs. (3)-(5) is intended to be carried out up to those 
values of r in the outer plasma region at which the effect of 
the electromagnetic field on the plasma becomes inconse- 
quential ( E  < $: ) while the interaction of the plasma with 
the surrounding neutral gas still has only a slight effect on 
the spatial distribution of the plasma properties. 

In the three-dimensional case, in which an annular vor- 
tex forms, the total energy of the vortex is 27rR Wif the major 
radius of the toroidal waveguide is significantly greater than 
the minor radius, R )p. Under these conditions the strength 
and pressure of the electromagnetic field can be balanced if 
the wave propagates along not only the minor circumference 
but also the major circumference of the torus.4 

The case k<w/c ,  where k is the component of the wave 
vector along the major radius of the torus, was discussed in 
Ref. 5. In this case the plasma formation is oval or spherical. 
The electromagnetic wave propagates around the oval and 
then travels along the axis of the formation, creating a cylin- 
drical waveguide. 

3. PLASMA IN THE INNER REGION OFTHE VORTEX 

We assume that the heating of the plasma by the high- 
frequency field occurs primarily through collisions of elec- 
trons with plasma particles. We have the following expres- 
sion for the energy dissipated per unit time by the 
electromagnetic wave: 

We assume that the plasma in the inner region contains 
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mostly hydrogen ions. The effective collision rate of the elec- 
trons is then given by 

Using ( 1 ) and (9) ,  we find from (8)  the power which 
the plasma in the inner region acquires over a unit length of 
the plasma cylinder: 

The electron energy loss in this region stems from an 
escape of electrons through the high-frequency barrier and 
from bremsstrahlung. The energy loss due to collisions of 
electrons with ions is unimportant under these conditions 
and can be ignored in the energy balance equation. 

Let us find the electron flux coming out of the inner 
region. Since the electrons have a fairly high temperature, 
and the mean free path of the electrons with respect to elec- 
tron-electron collisions is much longer than the spatial di- 
mensions of the plasma, essentially all the electrons which 
acquire an energy equal to the height of the potential barrier 
escape from the inner region of the plasma. Under the as- 
sumption that the electron diffusion in velocity space stems 
primarily from electron-electron collisions, we have 

a f c o  
je0 = npT 4nv" D. (u*  ) I , 

d u  ,=,.. 
where 

where 1nA is the Coulomb logarithm. 
Using ( 11 ), we find the following expression for the 

energy flux of electrons out of the inner region: 

Qeo=j,o~*,-3.10-24 
1oso 

( W ) .  (12) 

The electron energy loss to bremsstrahlung is given by 
(Ref. 12, for example) 

Q,,d 5.10-32 p2ne~TeOiii ( W ) .  (13) 

Using ( l o ) ,  (12), and (13), we can write an energy 
balance equation for the plasma electrons in the inner region 
of the vortex, Q,, = Q, + Q,. We find 

5 . 1 0 - 8 P  zne'"* exp ( -- '"" ) + la-" pneo"2T.,,=l. (14) 
s o  lOso 

The particle-number balance equation for the plasma in 
the inner region of the vortex can be written 

where j, is the flux of neutral particles going into the inner 
region. 

We denote by r ,  the boundary between the waveguide 
region and the outer plasma, and we denote by r2 the bound- 
ary between the plasma and the neutral gas. We recall that 
the width of the transition layer between the waveguide re- 
gion and the plasma and also the thickness of the double 
layer at the boundary of the plasma with the surrounding gas 
are significantly smaller than the width of the plasma in the 
outer region, Sr = r2 - r ,  . We consider the case Sr&p. For 
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the density of neutrals at the point r = r, we have7 

1 
n,=n, erp ( - - ueoi (T.) n. d r )  , 

v r  7 ,  

where v, is the velocity component of a neutral particle to- 
ward the axis of the plasma cylinder, and ui ( T, ) is the cross 
section for electron-impact ionization. Expression ( 16) was 
derived for the case in which the ionization cross section is 
large in comparison with the cross section for the collision of 
a neutral particle with an ion. In the opposite case, the neu- 
tral particles penetrate into the central plasma region by dif- 
f ~ s i o n . ~  

Since nearly all the particles which enter the inner re- 
gion are ionized in collisions with electrons, the flux of neu- 
tral particles going into the inner region is 

We turn now to the generation of a static magnetic field 
by the electromagnetic vortex. As a result of the interaction 
of the electromagnetic wave with the plasma, the plasma 
electrons obviously acquire momentum as well as energy. 
The entrainment of the electrons by the electromagnetic 
wave is the reason for the generation of a static magnetic 
field.13,14 Under the assumption that the electromagnetic 
wave is traveling along a helix in a self-sustaining tubular 
waveguide, we find the electric current directed along the 
axis of the plasma cylinder in the inner plasma region. For 
the momentum acquired by electrons from the wave in the 
inner region we find 

2 2 1/2 where y = k p / ( q 2  + k p ) , and k is the component of the 
wave vector along the z axis. 

The electrons lose momentum primarily as a result of 
friction with ions. We write the friction force as 

where I = .rrp2n, u is the current in the inner region of the 
vortex, and u is the electron flux velocity along the z axis. 

Working from the momentum balance equation 
FEZ = F,,, along with (9)  and ( l o ) ,  we find the following 
expression for the magnitude of the electric current: 

The static magnetic field H = H, near the point r = p is 
given by 

H=1/2np=5.10-' yn,o'"T,o (Oe). 

We are interested in the case in which the static magnet- 
ic field acts primarily on the plasma structure in the outer 
region. We assume that the effect of the magnetic field on the 
magnitude of the ponderomotive forces is negligible, since 
the oscillation frequency of the wave field is much higher 
than the electron Larmor frequency: w % w,, . We ignore the 
effect of the magnetic field on the motion of electrons in the 
inner region, under the assumption that the electron tem- 
perature in this region is so high that the electron Larmor 
radius is larger than the characteristic dimension of the plas- 
ma. 

4. PLASMA STRUCTURE IN THE OUTER REGION OF THE 
VORTEX 

A plasma formation in the steady state, at dynamic 
equilibrium with the surrounding gas, was studied in Refs. 
15 and 7 for the case without a static magnetic field. The 
problem was studied there for the case in which the ions 
escape from the plasma under conditions of ambipolar diffu- 
sionI5 and under "transit" conditions, such that the ion 
mean free path with respect to collisions with neutral parti- 
cles is large in comparison with the length scale of the plas- 
ma.7 In each case, the plasma density distribution in the 
interior of the formation is almost spatially uniform. The 
plasma density decays in a narrow boundary layer. The den- 
sity of neutral particles increases with distance from the cen- 
tral part of the plasma in such a way that the sum of the 
partial pressures of the plasma components remains con- 
stant, equal to the gas pressure at infinity. Under transit con- 
ditions, the characteristic thickness of the boundary region 
in which the plasma density is very nonuniform is given by7 

where v,, ai, and n,  are respectively the electron velocity, 
the cross section for the ionization of a neutral particle, and 
the plasma density near the boundary layer. The quantity v is 
the velocity of a neutral particle. We will refer to this bound- 
ary region of the plasma as the "1 layer." In the I layer, the 
plasma density falls off progressively more steeply with in- 
creasing distance from the center of the plasma formation. 
In the boundary region of the I layer, where the length scale 
of the plasma variations becomes comparable to the Debye 
length, the quasineutrality of the plasma is disrupted. This 
region is the "double layer" in Langmuir's terminology.I6 
The electric potential drop occurs primarily across this dou- 
ble layer. The height of the potential barrier for electrons is 
several times the electron temperature. 

Let us consider the case in which the electron Larmor 
radius is much larger than the depth to which the high-fre- 
quency field penetrates into the plasma and also much larger 
than the thickness of the I layer at the boundary of the plas- 
ma with the neutral gas. The length scale of the plasma in the 
outer region is then larger than the electron Larmor radius; 
i.e., we have 

Under these conditions the static magnetic field affects only 
transport processes in the interior of the plasma. 

The I layer thus has the same structure in this case as in 
the case without a magnetic field. Under the assumption of 
transit conditions, we can draw the following picture of the 
physical phenomena at the boundary of the plasma with the 
neutral gas. The electric field which results from charge sep- 
aration accelerates the ions, tending to push them out of the 
plasma into the surrounding gas. The electrons, in contrast, 
are retarded by this field: Only the high-energy electrons 
which have surmounted the potential barrier break out of 
the plasma. The electron partial pressure transforms into a 
convective ion pressure, so outside the double layer we have 
an ion flux pressure which is roughly equal to the gas pres- 
sure at infinity. 

The plasma self-purification by escape of heavy parti- 
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cles from the gas under conditions such that a vortex has 
formed in a mixture of a heavy gas and a light gas occurs 
primarily in the I layer, where the electric field due to charge 
separation is strong. The heavy particles, whose ionization 
potential and thermal velocity are both lower than those of 
the light neutral particles, are ionized more rapidly. In other 
words, the mean free path of the heavy neutral particles in 
the plasma is shorter than that of the light particles. Conse- 
quently, the heavy particles, being ionized in the region with 
a strong electric field, are ejected from the p l a ~ m a . ~  Outside 
the double layer the plasma flux is slowed down by friction 
between ions and neutral particles. The ion pressure falls off, 
and the neutral gas pressure rises. Those electrons which 
have moved outside the double layer lose most of their kinet- 
ic energy in the process of surmounting the potential barrier. 
They enter a dense neutral gas, where a cold recombining 
plasma forms. We will not go into the structure of this cold 
plasma here. In our analysis, the point r = r, is the boundary 
of the plasma containing the hot electrons. 

The pressure of the hot electrons near the I layer is equal 
to the gas pressure at infinity. We can write 

wherep is the gas pressure at infinity, in atmospheres. 
The energy loss due to the escape of plasma particles 

into the surrounding gas is given by7 

where M is the mass of a neutral particle, in atomic units. 
Under conditions such that the vortex has formed in a heavy 
gas with a small admixture of a light gas, we should use the 
mass of the heavy particle in (25) if the flux of light ions at 
the plasma-gas interface is small in comparison with the flux 
of heavy ions. Under the steady-state conditions which we 
are assuming here, the oppositely directly fluxes of ions and 
neutral particles are identical in composition and equal in 
magnitude at each point in the system. Consequently, the 
composition of the neutral gas in this case must be such that 
the flux of heavy neutral particles out of the gas into the hot 
plasma is greater than the flux of light particles. 

As we mentioned earlier, the neutral gas pressure at the 
boundary with the hot plasma is lower than the gas pressure 
at infinity, because the ion flux pushes the neutral gas away 
from the plasma boundary. We have the following expres- 
sion for the neutral gas density at the point r = r, (Ref. 7):  

where T is the temperature of the neutral gas. Expression 
(26) was derived for the case of a homogeneous gas, but it 
can also be used under conditions such that the gas composi- 
tion is not homogeneous, provided that the impurity content 
is low enough that the convective pressure of impurity ions 
can be ignored. In this case we can assume that the density of 
the neutral impurity particles at the boundary of the hot 
plasma is equal to the density of these particles at infinity, 
provided that the cross section for the collisions of neutral 
particles with ions of the impurity gas is much lower than 
that for collisions with ions of the same gas ( a  resonant 
charge exchange). 

We now consider the plasma in the region between the 
waveguide and the I layer, i.e., in the region r ,  < r < r, . In the 

absence of a magnetic field, the electron temperature and the 
plasma density in this region are essentially uniform over 
space.7 The reason for this situation lies in the high thermal 
conductivity of the electrons and the circumstance that only 
a negligible number of neutral particles enter this region. 
There is essentially no plasma flux, since ionization is negli- 
gible. We can write 

When there is a transverse magnetic field, the plasma diffu- 
sion coefficient is given by (Ref. 17, for example) 

where w,, is the electron Larmor frequency. Assuming 
Y, -ne T, 3'2, and working from Eq. (27) for the region 
r, < r < r, under consideration, we find 

The electron energy loss in the interior of the plasma 
plays an unimportant role in the energy balance equation. 
Most of the energy loss is due to the escape of electrons from 
the plasma into the surrounding gas and is described by 
(25 ) . Using ( 8 ) ,  we find the power acquired by the plasma 
from the high-frequency field in the outer region of the vor- 
tex: 

Q E l ~ 5 , 4 . 1 0 - 1 7  pTeI-"- n,, " ( W ) .  (29) 

The energy balance equation for the electrons in this region 
(QE = Q, ) can be written 

Energy transport between the plasma boundaries, from 
r ,  tor, , results from the thermal conductivity of the plasma. 
Ignoring the energy loss in the interior of the plasma, we 
write 

where xe = 4.66ne T,~,/rnwh, is the electron thermal con- 
ductivity in a transverse magnetic field.I7 

Using (29) and ( 3  1 ), we find the following approxi- 
mate relation: 

5. ESTIMATE OFTHE PROPERTIES OFTHE VORTEX AND 
THE PLASMA 

We can work from the relations derived above to deter- 
mine the properties of the self-localized high-frequency field 
in the plasma as a function of the length scale of the vortex, 
the wave frequency, the wave mode, and the plasma pressure 
in the inner region, provided that the pressure, temperature, 
and composition of the gas far from the vortex are all given. 
We assume that the neutral gas consists of nitrogen mole- 
cules with a small hydrogen admixture. We assume that the 
gas pressure at infinity is close to atmospheric. Working 
fromEqs. (14), (15), (21), (24), (28), (30), and (32), we 
find the following results. For the outer plasma region we 
find 
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' 1 8  
n,, = loi3 n,, , (35) 

T,, = 7.10' niit" . (36) 

For the plasma density in the inner region we have the 
relation 

n,, ln-' (5~10-13p2n,,"lsn,,") = 5.105 sn,,'"/p. (37 

The strength of the static magnetic field near the wave- 
guide region ( r z p )  is 

The length scale of the outer region of the plasma can be 
estimated from 

Results (33)-(39) were derived under the assumption that 
the wave frequency is close to the plasma frequency of the 
plasma at the point r = r, : 

If we set the plasma pressure in the inner region equal to 
3. lo3 atm, take the spatial size of the vortex to b e p z  10 cm, 
take the width of the waveguide region to be Ar-2 cm (in 
which case we have qzArw/c), and set Tz0 .1  eV and 
y z  10 - 2 ,  we find the following results from (33)-(40) : 

The vortex energy found from (6)  under these condi- 
tions is W z  lo6 J. The vortex lifetime can be found by divid- 
ing the vortex energy by the energy lost by the system per 
unit time. We find r z 0 . 2  s. 

As we mentioned earlier [see (6)  1, the energy in the 
vortex is proportional to the plasma pressure in the inner 
region. In the case of higher plasma pressures in this inner 
region, the vortex lifetime will obviously be relatively long. 

6. MECHANISM FOR THE OCCURRENCE OF A VORTEX 

Talanov2 studied the self-focusing of a plane beam with 
an electric field 

E=E, (x)exp (iky-iot) (41 

He found a solution for the function E, (x)  which falls off in 
each direction away from the waveguide axis, x = 0. 

If the transverse dimensions of the beam are smaller 
than the wavelength, a rectilinear beam trajectory is unsta- 
ble: The field of the wave may deform the self-sustaining 
waveguide and curve the beam trajectory. 

An instability occurs if forces which tend to increase 
this bending arise at a certain curvature of the waveguide 
channel. Let us assume that the beam trajectory is curved at 
some point. Under the assumption that the radius of curva- 
ture p is much larger than the effective width of the wave- 
guide, we find the following expression for the time-aver- 
aged force acting alongp due to the wave field: 

We see that the beam is unstable with respect to curva- 
ture if the wavelength is larger than the effective width of the 
waveguide. If the beam intersects itself, and the waveguide 
channel forms a loop, an electromagnetic vortex will arise in 
the plasma. The loop will then contract, raising the plasma 
pressure in the inner region of the vortex. This process will 
proceed until the plasma pressure and the field balance each 
other [see (3 ) ] .  

Volkovx examined t h ~  2ase in which a one-dimensional 
cavity forms as the result of the effect of the high-frequency 
electromagnetic field on the plasma. The electric field in this 
case is given by (41) with k = 0. In other words, it is as- 
sumed that the wavelength is infinite. It follows that a one- 
dimensional, self-sustaining resonator of this sort will be un- 
stable with respect to bending. 

Abakarov et a1." took up the self-focusing of a three- 
dimensional cylindrical beam in which the electric field lines 
form concentric circles around the axis of a self-sustaining 
tubular waveguide. In a cylindrical coordinate system, the 
field of this beam is 

E=E, (r) exp(ikz-iot) , 

where E, ( r )  -0 as r-, co. 

As in the two-dimensional beam, the force due to the 
field may deform the waveguide and give rise to a vortex if 
the wavelength is large in comparison with the transverse 
dimensions of the beam. An annular vortex forms in this 
case. 

We see that conditions which favor the appearance of a 
vortex may arise during the self-contraction of a beam or 
when a beam breaks up into filaments in a nonlinear medi- 
um. 

We conclude with a few words about the possible for- 
mation of an electromagnetic vortex during a lightning dis- 
charge. We know that the plasma channel which arises in a 
lightning discharge (we are thinking of ordinary streak 
lightning) may be subject to compression because of the 
pinch effect. The necks formed in the course of this pinch 
effect may give rise to a spatial structure in the plasma. In 
particular, when bead lightning, with a periodic structure, 
arises, the necks accompanying the pinch effect play a lead- 
ing role. If the flux of high-energy electrons present in the 
discharge generates an electromagnetic wave, the self-con- 
traction of this wave or the compression of the waveguide 
channel as the result of the pinch effect may give rise to an 
electromagnetic vortex in the atmosphere. 
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