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We use the pair-interaction approximation, also called the Bourret approximation,' to give a 
solution of the Helmholtz equation for the average field (averaged over an ensemble of 
realizations) in an unbounded randomly inhomogeneous medium described by a normalized 
binary correlation function p ( r ,  ,r, ) = exp( - r/a), where a is the spatial scale of the 
correlations and r - r ,  - r, . Taking the macroscopic spatial dispersion (caused by the 
inhomogeneity ofthe medium) into account enabled us to extend the region of the applicability of 
the Bourret approximation, including in it the UHF band. We evaluate the scattering indexes, 
y + , and the phase and group velocities, u + and c + , for the propagation of plane monochromatic 
waves corresponding to the two roots x + of the dispersion equation (wherex is the dimensionless 
wave number). We study in their dependence on the wavelength the conditions for the 
applicability of the pair-interaction approximation for each root. We write the field of a point 
charge as a superposition of spherically symmetric diverging waves with parameters which are 
determined by the roots x + and x _ . The absolute magnitudes of the amplitudes of these waves 
reach maximum values on the boundary of the short and very short wave bands. One observes 
anomalous properties of y + - , v + , and c + - in the same region. 

1. INTRODUCTION 

The problems connected with the wave propagation in 
randomly inhomogeneous media has greatly attracted the 
researchers. This is due on the one hand, to the considerable 
difference between such media and homogeneous and regu- 
larly inhomogeneous media and, on the other hand, to the 
possibility of obtaining results which are important for ap- 
plications. It is often possible to reduce the solution of the 
wave equation for the initial (in the general case, tensor) 
field to the solution of an equation for the scalar field which 
corresponds to it in some appr~ximation.'.~ 

We take into account below the macroscopic spatial dis- 
persion to solve the problem of the propagation of scalar 
waves in an unbounded nonabsorbing randomly inhomo- 
geneous medium. We shall mainly pay attention to the eval- 
uation of the parameters of the average field in the following 
cases: 1 ) a plane monochromatic wave; 2) a point source. It 
turns out to be possible to write the whole of the wavelength 
spectrum as a superposition of several bands described by 
characteristic asymptotic expressions for the parameters of 
the average field. For each of the bands we study the criteria 
for the applicability of the pair-interaction approximation. 

2. HELMHOLTZ EQUATION FOR THE AVERAGE FIELD 

We consider a scalar monochromatic field E(r,t)  
= E( r ) e  - "', described by the Helmholtz equation 

For definiteness we shall call the random scalar field E 

the permittivity of the inhomogeneous medium. E then has 
the meaning of the electric field strength connected with the 
induction D through the relation D = EE; kc is the wave 
number in the uniform medium (comparison medium) with 

a permittivity equal to E,  while c, is the light velocity in 
uacuo. 

Carrying out the statistical averaging (over an ensem- 
ble of realizations) of (2.1), denoted by angular brackets, 
and introducing the integral effective permittivity operator 
2, through the relation 

we obtain a Helmholtz equation 

for the average field (E ). Here j is the unit oErator. The 
solution of Eq. (2.4) thus needs first finding F* which is 
reduced by virtue of (2.3) to establishing the connection 
between E and ( E  ) leading to the equations 

the first of which implicitly presupposes the solution of Eq. 
(2.1 ) . Various methods based, as a rule, on introducing a 
small parameter (or several) have been applied to reach this 
goal. I s 2  

Below we consider an approach using the idea of an 
auxiliary medium (comparison medium) .3-6 Using this we 
write together with (2.1) and (2.4)4-6 

h 

Here H, is the Green operator %f the Helmholtz equa- 
tion for the comparison medium and R is the operator which 
splits off the random component from the whole expression 
standing behind it; the doubk prime indicates the centering 
operator which differs from R because of the equations 
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while the prime indicates the difference of the fields in the 
inhomogeneous and the auxil&-y media. 

Assuming the operator RQ,.? to possess the necessary 
proper tie^'.^ we caz write the solution of Eq. (2.6) in the 
form (2.5), where A is given by 

m 

i = (I-fiQcEf) - l  = (fiQczf) %. (2.9) 
n-O 

If the fluctuations are so small that we can retain in the ex- 
pansion only the first and second terms, we are led to the 
approximation 

A 

Substituting (2.10) into (2.5) we get for E, the expression 

z.=<a)I'+<$"'~"), (2.11) 

the use of which together with (2.4) enables us to evaluate 
the required parameters of the average field. 

It is clear from (2.11 ) that to find 2, we need only 
information about pair (two-particle) interactions between 
the inhomogeneities described by the random field E ( r ) .  The 
i apprgximatgn (2.101, written in the language of the opera- 
tors L, or H,  - - L * is often called the Bourret ap- 
proximation."5 It is, however, well known that it was used 
long before Bourret by I. M. Lifshitz and coworkers for cal- 
culating the macroscopic elasticity coefficients in static9, and 
dynamic'' cases and that their results were applied by E. A. 
Kanerl' for solving the problem of propagation of electro- 
magnetic and scalar elastic waves in an inhomogenous medi- 
um. The stimulus for developing and applying the approxi- 
mation (2.10) was the work by Keller, Tatarskii, and others 
(see the surveys in Refs. 12 and 13). 

3. DISPERSION EQUATION 

The transition from the integral equation (2.4) to the 
corresponding dispersion equation 

is accomplished by a direct substitution into (2.4) of the 
average field ( E  ) in the form of a uniform plane wave 

( E  (r) >=Eo esp(ik,.r), 

k.=k.n, k.=k,+ik, .  

It is assumed here and henceforth that the function E ,  (x,q) 
is the Fourier transform in dimensionless variables of the 
kernel E ,  (r,w) and of the operator 2,, and the parameter a 
is the spatial scale of the correlations, which is determined by 
the spatial dependence of the binary correlation function 

of the random field Z(r), are statistically isotropic.' 
The following considerations are based on a study of the 

roots of the dispersion equation (3.1 ) which determine the 
parameters (3.3) of the normal plane wave (3.2). We have 
for the function E,  (x,q) in the approximation (2.11 ) 

- 
E.(x, q)=<E>+D,F(x, q) ,  (3.5) 

8n"(x7 x,)= .I ~ ~ ( x - Y ) Q , ( Y .  x,)dy. (3.6) 

Here y is the dimensionless wave vector and theTourier 
transform Q,(y,q) of the kernel of the operator Q, from 
(2.7) has the form 

For the immediate calculations we use the normalized bina- 
ry correlation function7 introduced in (3.4) 

The Fourier transform of the function (3.8), denoted by the 
same symbol, is equal to 

T ( Y )  = 8 n ( l + ~ ~ ) - ~ .  (3.9) 

Substituting (3.9) and (3.7) into (3.6) we find 

The choice of the arbitrary parameter E, is determined by the 
nature of the problem to be ~olved. '*~~' , '~  In our case it is 
found from the condition 

leading to a simplification of the expressions (3.5) for 2, 
and of the roots of Eq. (3.1 ) . It is expedient to use the change 
(3.1 1 ) when considering weak fluctuations14 when D plays 
the role of small parameter (D < 1 ). If D > 1 (strong fluctu- 
ations) E, is chosen such that convergence of the series (2.9) 
is guaranteed.'.l4 Below we study the first case in detail and 
we discuss the second case. 

Substituting (3.5), (3.10), and (3.11) into (3.1) and 
introducing the notation 

m=qM, M=M(x, q)=DF(x, q ) ,  q2=q2D, (3.12) 

we bring the dispersion equation (3.1 ) to the form 

The roots of Eq. (3.13) are equal to 

m,=R*Y, Y2=R2+q2, (3.14) 

where the function Y is written in the form 

The " + " and " - " signs define here, respectively, the 
functions Y, and Y,. 

Returning to the original variables of Eq. (3.1 ) and us- 
ing ( 3.5) and (3.12) we have for the dimensionless wave 
number x 

We use in the present paper as a criterion for the applicabili- 
ty of the approximation (2.1 1 ) the inequality1' 
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by virtue of which it follows from ( 3 . 1 6 )  that 

We shall show in Sec. 4.1 that condition ( 3 . 1 7 )  is not satis- 
fied in the long-wavelength band for the root x  - . 

The dependence of the function M on the wave number 
x  is a manifestation of the spatial dispersion caused by the 
inhomogeneity of the medium14 which can, if the inequality 

is satisfied,15 be neglected by carrying out the substitu- 
tions.' 1.12 

We prefer to use in the inequality ( 3 . 1 9 )  instead of N ( q , q )  
the functions 

corresponding to the roots m , of ( 3 . 1 4 ) .  The violation of 
the inequalities 

which are similar to ( 3 . 1 9 ) ,  can be interpreted as the necessi- 
ty to take the spatial dispersion into account when solving 
Eq. ( 3 . 1 ) .  

4. CLASSIFICATION OF THE WAVELENGTH BANDS 

In the general case the spatial dependence of the binary 
correlation function ( 3 . 4 )  is rather complicated for finding 
an analytical solution of the dispersion equation (3 .1  ). It is 
therefore expedient to study approximations of those solu- 
tions for a few characteristic wavelength bands. Using as an 
example the function ( 3 . 8 )  we shall consider the following 
bands: 

1 )  I-band (long wavelengths): q K 1 ,  ( 4 . 1 )  
2 )  Is-transition region: q ~ q , , ~  1, ( 4 . 2 )  

3 )  s-band (short wavelengths) : I < q<D-'< , ( 4 . 3 )  
4 )  su-transition region: l < g x  q,,--L)- ' , ( 4 . 4 )  

5 )  u-band (ultrashort wavelengths) : 1  < D - ' " < ~ .  (4 .5  ) 

To obtain the asymptotic expressions we interpret in- 
equalities f, 4f3 and f l  < f2 <f, to mean f l  < l o - %  and 
fl < 10 - "'f, < 10 - % , respectively. Thus, it follows from 
( 4 . 3 )  that D <  10 - * whereas from ( 4 . 5 )  we get D <  10-  I. 

These inequalities themselves have the meaning that there 
exist bands which have the appropriate asymptotic proper- 
ties. In particular, if 10 - ' < D <  10 ', violation of inequal- 
ities ( 4 . 3 )  means only, because q ,  <qs ,  , that there is no s- 
band together with the analytical properties of the dynamic 
characteristics of the medium which are characteristic for it. 

4.1. Long-wave band 

When the inequalities D< 1 and (4 .1  ) are satisfied the 
following holds for the function g of ( 3 . 1 5 )  

and using this the real Yl and imaginary Y2 parts of the 
function Y of ( 3 . 1 5 )  take the form 

Substituting ( 4 . 7 )  into ( 3 . 1 4 )  and using ( 3 . 1 2 )  we get 

m,=q3D(1+2iq) ,  m-=i (2-2y"D)  - ( 9 - ' + q J D ) .  ( 4 . 8 )  

Hence we find for M 

M+=qZI) (1+2iq) ,  M_=i (2q- ' -2q3D)  - ( q - ' + q Z D ) .  ( 4 . 9 )  

One sees easily that M + and M - satisfy the inequalities 

By virtue of ( 3 . 1 7 )  it follows from (4 .1  1 ) that the approxi- 
mation considered is inapplicable for the root rn - , given by 
( 3 . 1 4 ) ,  of Eq. ( 3 . 1 3 ) .  The function N ( x , q )  defined by Eq. 
( 3 . 1 9 )  has, ifwe use ( 3 . 1 0 ) ,  ( 3 . 1 2 ) ,  ( 3 . 1 3 ) ,  and ( 3 . 1 6 ) ,  the 
form 

Substituting here the values of the roots x  + or, what is the 
same, of m , from ( 3 . 1 4 )  we find for the functions N +  - ( q )  
from ( 3 . 2 1 )  

Using ( 4 . 1 0 )  we get from this for the root x + the inequality 

and if this is satisfied it means according to ( 3 . 2 2 )  that it was 
possible to neglect spatial dispersion and use the substitution 
( 3 . 2 0 ) .  

4.2. Is transition region 

In the wavelength band defined by ( 4 . 2 ) ,  we have 
?j - ?j:, and for the function f of ( 3 . 1 5 )  the following approxi- 
mation holds 

the use of which leads for Y,,, instead of ( 4 . 7 )  to 
40' 

Y t = , ( l + p ) .  Y ,=p-I :  i j< j=q .  ( 4 . 1 6 )  
9 

Similar to ( 4 . 8 )  we have for rn, 

Hence we find for IM, I 

One sees easily that the criterion ( 3 . 1 7 )  is not satisfied for 
the root x - . Substituting ( 4 . 1 7 )  into ( 4 . 1 3 )  we get for the 
root x  + the inequality 

signifying that the substitution 
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i.e., both roots of Eq. (3.1 ) satisfy the criterion (3.17). Us- 
ing (4.30) we get from (4.13) 

is allowed. 

4.3. Short-wave band 

By virtue of (4.3) we can write for the function g of 
(3.15) By virtue of (3.22) Eq. (4.3 1 ) means that in this wavelength 

band both roots of the dispersion equation (3.1) must be 
evaluated taking spatial dispersion into account. 

4.5. Ultrashort wavelength band 

By virtue of (4.5) we write for the function g of (3.15) 
Using (4.21 ) we find from (3.15) 

Y1=  (2q)-'+'/rqD, Y2='/2q2D-I. (4.22) 

Substituting (4.22) into (3.14) and using (3.12) we get 

Substitution of (4.32) into (3.15) gives 

(4.23) 
Hence we have for I M, I 

D la, 1 -  - ( I + ~ V ~ ) .  = I g n t  < 1 ,  (4.24) 
4 2 Hence we have, similar to (4.29), 

Starting with the s-band the solution corresponding to the 
second root of the dispersion equation thus satisfies the con- 
dition for the applicability of the pair interaction approxima- 
tion (2.1 1). As to the criterion (3.22), substitution of (4.24) 
into (4.13) gives 

Instead of (4.30) we now get for J M ,  1 

IM,(zDm1a 11~:1 = D b l , < ( ,  
Q2 

(4.35) 

Using (4.35) we find from (4.13) 

Concluding the analysis of the various wavelength bands we 
must note that by virtue of (4.26), (4.31 ), and (4.36) the 
violation of the N criterion (3.22) leads in those cases to the 
need to take spatial dispersion into account. The violation in 
(4.1 1 ) and (4.18 ) of the M criterion (3.17) means the inad- 
missibility of the use of the approximation (2.10) and (2.1 1 ) 
for the x - root [see (3.14) and (3.16) 1. The Mcriterion is 
satisfied for the x + root in the whole range of wavelengths 
provided D<e 1 which is valid in the case of weak fluctuations 
of the random field ~ ( r )  . In this connection we call the roots 
x + and x - in what follows real and virtual, respectively. 

Hence, the solution using the root x - needs taking the spa- 
tial dispersion into account. For a comparison we give the 
value of the function N(q,q)  introduced by Finkel'berg.I5 
Using (4.12) and (3.19) we write 

The principal differences between (4.26) and (4.27) reflect 
the differences between the criteria (3.19) and (3.22), the 
first of which does not take into account the value of the root 
considered. 

5. SCATTERING INDEX AND PHASE AND GROUP 
VELOCITIES OF A PLANE WAVE 4.4. su transition region 

For wave numbers defined by the band (4.4) the in- 
equality 1ij4 - ?j2) ($, holds, by virtue of which we can write 
the functions Y,,, of (3.15) in the form 

Below we study some characteristics of the field (3.2) 
calculated on the basis of the dimensionless wave number x 
of (3.16) satisfying the dispersion equation (3.1 ) for the 
effective medium. 

As a quantitative measure for the scattering of the 
waves we introduce the dimensionless scattering index 

Here, as in (3.15), the " + " and " - " signs correspond to 
the functions Y, and Y2 . Substituting (4.28) into (3.14) we 
find 

where y is the intensity attenuation coefficient of the average 
field.'*11~12 The dimensionless phase (E) and group (Z) ve- 
locities are defined by the equations 

Using (4.29) we have for J M ,  1 
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where v, and c, are, respectively, the phase and group ve- 
locities for propagation of plane waves in the effective medi- 
um. Using the roots x + and x in ( 5.1 ) and ( 5 . 2 )  leads to 
the parameters y + , E + , and Z + of the real and the virtual 
waves. Using ( 3 . 1 2 )  and ( 3 . 1 8 )  we can rewrite ( 5 . 1 )  and 
( 5 . 2 )  in the form 

- y=ijm2, 5- l-l12M,, t=ij ( I - ~ 1 ) ~ ' ;  
( 5 . 3 )  

M=Ml+iM2, v ,=d( lg  v ) l d  (lg q ) .  

Below we need also the functions 

i f )  d  (lg m2) v ~ - - - - - ~ v I + v 2 ,  vz=----. 
d  (1% 9 )  q )  

Substituting ( 3 . 1 4 ) - ( 3 . 1 6 )  into ( 5 . 3 )  and ( 5 . 4 )  leads 
to very cumbersome formulas, so that we shall only write 
down asymptotic expressions for the quantities y, 5, Z, Y,, 
and Y.  Labeling the wave number q which is the argument of 
the functions 7, E, Z, Y, , and Y by the letters indicating the 
corresponding wavelength bands and using the results of 9 4  
we get, respectively, 

in the long wavelength band (4 .1  ); 

'/2q2D - 
ii+ (1s) = I - - 

2 q 4 ~  . Y + ( l s )  = - 1+4q2 ' 
q2D (3+4q2)  

F+ ( I S )  = 1 - --- 
2 ( I  +4q2)  , Q<Q-1,  ( 5 . 6 )  

v , + ( l s ) =  - q2D 1+2qL v+ (Is)  = 4 --- 
( l+4q2) '  ' I +4q2 

in the Is transition region ( 4 . 2 ) ;  
ii+ ( s )  = C + ( S )  = 1-'/8D, i f +  (s)='12U+ ( s )  Ti, Q<l<q, 
E - ( s ) =  t+'/2q-',  F - ( s ) = l +  3/2q-2,  7  - ( s ) = 2 - 7  + ( s ) ,  ( 5 . 7 )  

v , + ( s )  =O.  v + ( s ) = 2 ,  v , -  ( s )  =q-2, v - ( s )  =q-2-l/2Q1 

in the short wavelength band ( 4 . 3 ) ;  

aqoa a+ 2q2-I 1 v2* ( S U )  = * - q Z F  = + ( I - -  + T O ~ ) V '  - - * -- 
l r q o h  2hqo 

in the su transition region ( 4 . 4 ) ;  

U , ( U ) = C + ( U )  =?*(u)= 1 ~ ~ 1 2 U  , 
( 5 . 9 )  

in the ultrashort wavelength band ( 4 . 5 ) .  In Fig. 1 we show 
the curves of the functions E + and Z. . The numbers at the 
curves indicate the values ofthe parameter p - - log D. In 
the su transition region we see the group velocity retardation 

FIG. 1 .  The dimensionless phase 5, (upper curve of each pair) and 
group Z +  (lower curve) velocities as functions of the logarithm of the 
dimensionless wave number q (the numbers at the curves indicate the 
values of the parameterp = - log D corresponding to each pair of curves. 

effect caused by multiple inverse coherent scattering. The 
depth of the minimum in the Z+ curve is determined by the 
parameter v: . According to ( 5 . 8 )  we have 

which gives, respectively, 0.199 and 0.1 12 for p = 1 and 
p = 2. 

In Fig. 2  we show, using the notation of Fig. 1, the 
curves of the function Y + which has a maximum in the su 
transition region. According to ( 5 . 4 )  and ( 5 . 8 )  we find for 
max Y + 

max v,  =I)?' ( s u )  - (2i jO)- ' -2  f i -  *, ( 5 . 1 1 )  

which gives 1.26 and 2.24, respectively, forp = 1 andp = 2. 
One sees easily that the approximate equation 

FIG. 2. The parameter v +  of (5.4) as function of the logarithm of the 
dimensionless wave number q (the numbers at the curves indicate the 
values of the parameter p ) .  
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is satisfied. Equations (5.10) to (5.12) correctly reflect the 
changes in min Z + and max v + when the parameter p in- 
creases. It is clear from Fig. 2 that there is no s band forp < 2 
while the is and su transition regions merge into a single lu 
transition region. 

6. AVERAGE FIELD OF A POINT CHARGE 

Below we evaluate for an effective medium with materi- 
al properties described by the operator (2.1 1 ) the field pro- 
duced by a point source (Green function). Similar to (2.4) 
the Helmholtz equation in operator form looks like 

?he Fourier transform of the kernel H, (r,q) of the operator 
H, can be found from the equation 

where we used the notation of (3.1) and (3.6). In the pair 
interaction approximation (3.5 ) for the normalized binary 
correlation function ( 3.8), leading to ( 3 .  lo) ,  the Fourier 
transform H, (y,q) of the Green function H,  (r,q) can be 
written in the form 

where the x * are the roots of the disperion equation (3.1); 
their explicit form is found by substituting (3.14) and 
(3.15) into (3.16) or (3.18). TheamplitudesH, (q) of the 
real and the virtual components of the Green function are 
equal to 

and satisfy the equation 

Using (3.14), (3.15), and (4.13) we get from (6.4) 

where the last inequality follows from the results of Sec. 4. In 
the ij- co limit we have from (6.6) and (4.36): N(q) = 1. 

In view of the complexity of the H, (q) functions we 
give below as in Sec. 5 the asymptotic expressions for 
IH, (q) I and N(q). Using the results and notation of Secs. 4 
and 5 we get, respectively, 

in the long wavelength band (4.1 ) ; 

in the Is transition region (4.2); 

in the short wavelength band (4.3); 

in the su transition region (4.4); 

in the very short wavelength band (4.5). 
Our study shows that the functions IH+ - (q) 1 have 

anomalous properties in the su transition region, reaching 
maxima equal to 

1 * q o  
m a x J  H ,  (SU) 1 = = 2 - I h  max v,. 

9. 

In the ij+  or^ limit we find from (4.34) and (6.11) for the 
amplitudes H ,  that 2H + = 1. 

The transition from the Fourier transform (6.3) to the 
original gives 

i.e., in the general case the Green function can be written as a 
superposition of two spherical waves with parameters deter- 
mined by the complex wave numbers x + and x - . In the 
long wavelength band (q-0) we find from (3.18), (4.8), 
(6.7), and (6.13) 

4nrH. ( r ,  q )  =H+ ( I )  exp[ix+(L) r l a ] ,  z+(l) %q+ iq". (6.14) 

In the other limiting case, of ultrashort wavelengths 
(q-. CO),  wehave from (3.18), (4.34), (6.11), and (6.13) 

nr 2na (2iii1 r)cos- ,  A=- 4nrH. (r, q )  = exp --- D - '1,. 
A q 

In the q+O and q-. a, limits the field of a point source in the 
effective medium thus has the form of an outgoing spherical 
wave. However, in contrast to (6.14), there appears in 
(6.15) a modulating factor with a spatial period 2AsAC, 
whereil, =2n-a/q is the wavelength in the comparison medi- 
um. In the case considered by us the material properties of 
this medium are by virtue of (3.11 ) described by the param- 
eter E, = (E), obtained by a statistical average of the random 
field ~ ( r ) .  

7. DISCUSSION 

The idea of a nonlocal relation between induction and 
field, first introduced in the theory of excitons,I6 was rather 
soon afterwards used in the theory of inhomogeneous me- 
dia.14,15,17 

The study carried out by us has demonstrated the im- 
portance of the spatial dispersion through the example of a 
well known problem. We obtained in the pair-interaction 
approximation (Bourret approximation) a solution of the 
dispersion equation (3.1) valid for all wavelengths. It was 
possible by the use of the parameters a (the spatial scale of 
the correlations of (3.1 ) and (3.2) ) and D [the dimension- 
less dispersion of the field E given by (3.4) and (3.1 1 ) ] to 
write the whole wave spectrum as a superposition of five 
bands (see Sec. 4) .  For each of the bands thus introduced we 
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studied the two criteria: 1 ) applicability of the Bourret ap- 
proximation ( M  criterion), and 2) possibility of neglecting 
the spatial dispersion ( N  criterion). We showed that pro- 
vided D '" < 1 the M criterion is satisfied for the real root 
x + in the whole of the wave spectrum but for the virtual 
root x - only in its short wavelength part, including the s 
band. Here, however, the N criterion for the root x + is vio- 
lated indicating the need to take spatial dispersion into ac- 
count." The anomalous behavior of the dynamic param- 
etersz, Z, and (see Figs. 1 and 2) and of the amplitudes H + 

of the Green function (see Sec. 6 )  show the effect of taking 
multiple inverse coherent scattering into account. It seems 
that this can be explained by the observation of an amplitude 
modulation of the Green function (6.15) in the very short 
wavelength band. 

' I  The N criterion for the root x is, in contrast to the root x + , not 
satisfied for any wavelength. In terms of E ,  this is a consequence of the 
strong spatial dispersion of its imaginary However, the fact 
that the amplitude H is small for the long and the short wavelengths 
(see Sec. 6)  means that one can in those bands neglect the root x _ . 
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