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We report a theoretical study of two-quantum interaction processes of a system of atoms and a 
squeezed electromagnetic field. We consider the way absorption processes depend on the 
quantum fluctuations of the squeezed light and on the method of (amplitude or phase) squeezing. 
We show that the rate of absorption of the applied electromagnetic field is higher in the case of 
phase squeezing than for amplitude squeezing and that the two-quantum Rabi frequency takes on 
its largest value in the case of phase squeezing and in the case of amplitude squeezing its lowest. 
We show that if the fluctuations of the electromagnetic field strength are of the order of the 
average electromagnetic field strength the quantum fluctuations are in the case of amplitude 
squeezing able to stop the two-quantum nutation of the system. 

1. INTRODUCTION 

A number of experimental studies devoted to the gener- 
ation of incoherent kinds of electromagnetic fields (EMF) 
have been carried out in the last decade; among them some 
paid special attention to fields with reduced fluctuations of 
one of the phase quadratures of the electromagnetic field 
strength: 

where a,+ ( a ,  ) are the EMF creation (annihilation) opera- 
tors satisfying the commutation rules 

Such states have been called squeezed states of the elec- 
tromagnetic field. One possible definition of a squeezed 
EMF is the f~l lowing:~ 

where lo), is the vacuum state of the k mode of the EMF, 

T k  (a) =exp (auk+--a'ak), 

Dk ( f )  =exp ( ' lzf  *ak2-'12Eak+2) 

are the shift and squeeze operators in the X, X,  phase plane, 
and 

a=lal exp (icp,), E=r exp (icp,) 

are complex parameters, O<r, la1 < co, O<p,,p, <2a. The 
EMF operators transform as follows under the action of the 
shift and squeeze  operator^:^ 

Tk,-'(a)ak+Tkr (a)  =ak++a*6kk~, ( l a )  

=ak+[ 1+6kr.(ch r-1)  ] -6kkrak sh r exp (-icp,). ( lb)  

A squeezed EMF can be considered as a field consisting 
of a classical component and a fluctuating component also 
called the squeezed vacuum. 

After squeezed EMF states had been detected experi- 
mentally, people became interested in studying interaction 
processes between squeezed light and matter (atoms, mole- 
cules). For instance, in Refs. 5 to 7 the behavior of a system 
of atoms reaching single-photon resonance with a squeezed 

EMF was studied qualitatively. Since two-photon processes 
depend strongly on the quantum fluctuations of the applied 
EMF8 the study of two-quantum absorption of squeezed 
light attracted special interest because it is well known that 
the statistical properties of squeezed EMF can vary to a large 
extent with changes in the parameters a and 6.4 For in- 
stance, it was shown in Ref. 9 that the probability for two- 
quantum absorption of squeezed light depends on the degree 
of the squeezing and how it is done (amplitude or phase 
squeezing). In the case of amplitude squeezing the rate of 
two-photon absorption decreases with increasing intensity 
of the coherent component of the squeezed EMF. Using the 
model interaction Hamiltonian 

[here g is the two-photon tensor operator of the atomic sub- 
system and E(t) the electric field strength] the governing 
equation for the statistical operator of a single atom in the 
field of a wide-band squeezed light beam was found in Ref. 
10. It was assumed there that the classical component of the 
squeezed EMF strength was much larger than the fluctuat- 
ing component. We note also that the approach using the 
model Hamiltonian (2)  assumes a weak applied EMF 
strength since in a strong EMF the atoms are able to relax to 
the ground state not only through spontaneous decay and re- 
emission of two photons of the external EMF, but also 
through scattering of the applied EMF and emission of anti- 
Stokes photons." 

In the present paper we consider the collective two-pho- 
ton interaction process of a concentrated system of atoms 
and a squeezed EMF. In contrast to Ref. 10 we use the Ham- 
iltonian of a three-level system with dipole-forbidden transi- 
tions between the first two energy levels." The advantage of 
such an approach was discussed in Ref. 12. Indeed, the 
method used makes it possible to take the two-quantum pro- 
cesses in the system fully into account, including scattering 
processes and not to be restricted to a weak EMF strength 
while also, in contrast to Ref. 10, it is possible to consider any 
magnitude of fluctuations in the EMF strength. In particu- 
lar, we consider the case when the amplitude of the quantum 
fluctuations of the EMF strength is of the same order of 
magnitude as the average value of the EMF strength. In that 
situation the frequency of the two-photon nutation depends 
strongly on the way the EMF is squeezed; we show that in 
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the case of amplitude squeezing the quantum fluctuations of 
the EMF are able to halt the two-photon nutation of the 
system. We obtain in the present paper the explicit form of 
the "loss" coefficient describing the change in the number of 
photons in a beam of squeezed light as the result of the inter- 
action with an atomic system. 

We consider several special cases including the two- 
photon interaction between a system of atoms and a coher- 
ent EMF and we show that in that case the possibility for a 
phase transition of the atomic system depends on the num- 
ber of atoms. 

The content of the paper is arranged as follows. In the 
second section we transform the Hamiltonian of a three-lev- 
el systemN into an effective Hamiltonian which enables us 
to use a lemma on the elimination of the boson operators of 
the EMF;" using this we obtain in the third section the gov- 
erning equation for the statistical operator of the atomic sub- 
system. In the fourth section we consider the change in the 
number of photons in a beam of squeezed light as the result 
of the absorption of light by the atomic system for which we 
introduce a loss coefficient expressed in terms of the correla- 
tor of the atomic subsystem whose stationary values we find 
by solving the governing equation for the statistical operator 
of the system of atoms. 

2. DERIVATION OFTHE EFFECTIVE HAMlLTONlAN OF THE 
SYSTEM 

We consider a system of N atoms in two-photon reso- 
nance with a squeezed EMF. For simplicity we assume that 
the linear dimensions of the system are much smaller than 
the wavelength of the radiation. The Hamiltonian has the 
form" 

3 

Here wk is the frequency of the EMF, E~ is the energy of the 
ID ) level, and dYg and U $  are, respectively, the dipole mo- 
ment matrix element and the collective operator for a transi- 
tion between the 1 y )  and the 10 ) levels. The Uj; operators 
satisfy the commutation relation 

V is the quantization volume, and w, and e, (A = 1,2) are 
the frequency and polarization of a photon with wavevector 
k. 

Let us consider a Schrodinger operator QSch. Its aver- 
age can be written in the form 

where p ( t )  is the statistical operator of the "atom + field" 
system, p, (0) is the statistical operator of the atomic sub- 
system at time t = 0, 

the statistical operator of the photon subsystem, and 

the evolution operator. 
Using the commutativity of the operatorp, (0)  with the 

Tko (a) and Dko (6) operators we can, after cyclic permuta- 
tions under the trace sign, write 

Equation (6) is a new representation of the Q operator 
in which the action of the shift and squeezing operators is 
transferred to the evolution operator S ( t ) :  the latter can be 
written in the form 

where w, is the frequency of the external EMF and T the 
chronological ordering. 

Differentiating Eq. (6)  using the relations 

i 
-- - - - So+ (t) H ( t )  So (f)S ( I ) .  

d t A 

i = Tk<, (a)Dk<, (6)Dk<, (6) Tk<, ( a )  

(here i is the unit operator), we get the following equation: 

dQ ( t )  - -- 
d t 

d Q ( t )  ++ [H"",Q(I)]. 
d t  

(7)  

H c l J = ~ , , +  ~ i i ( w k - a o ) a k +  ( t )ak( t )  
h 

2 

+iC Y, g . d , , [ ~ t ( t ) + ~ , ~ ( t ) ~  
k l i=l  

x ( k ,  t )  =l+Gkk,{ch r-l+shrexp [ - i (2o , , t - cp , )  1 ) .  
a ( t )= la l  exp [-i(oot-cp,)]. 

The representation (6)  is convenient in that the statisti- 
cal operator of the photon subsystem has in that representa- 
tion the form (5)  which makes it possible to use the method 
of elimination of the boson operators of the EMF" when 
deriving the governing equation for the statistical operator 
of the atomic subsystem. 

3. GOVERNING EQUATION FOR THE STATISTICAL 
OPERATOR OFTHE ATOMIC SUBSYSTEM 

We average Eq. (7)  over the whole of the (atom 
+ field) system and we shall assume Q(t)  to be a Hermitean 

operator of the atomic subsystem; using (8)  we get as a re- 
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sult 

+- ([Q(t) ,  H A ]  )=.B,(t)+B,(t)+h.c., (9)  
h 

where 
2 

In deriving this equation we use the expansion of the 
right-hand side of Eq. (9)  in a perturbation theory series 
with small parameterI3 

where w , , ~  is the frequency of the transition between the ( y) 
and ID ) levels. We assume that the conditions 

are always satisfied. First of all we find the first-order terms 
of the perturbation theory. We consider the term 9, (t) .  
Since the 13) level is unoccupied at the moment the interac- 
tion between the atomic and the photon subsystems is 
switched on we have U: (0) = 0 and the applied EMF is not 
in resonance with respect to the transitions between the / 3) 
and Jp ) (0 = 1,2) levels and the 13) state is a virtual one. It 
is thus necessary to eliminate the transitions connected with 
the 13) level. To do this we formulate the equation of motion 
for the U!(t) operator and write down its formal solution: 

2 t 

+UTR(t-t)exp (-iosPt) ] {%(kt t-t)ak+(t-t) 

-x' (k, t-t)ak(t-t) 
+6kb[a ' ( t -~) -a ( t -~)  1 }. (11) 

We substitute ( 11 ) into the expression for 9, (t) ;  one notes 
easily that in first order of perturbation theory one needs 
only take into account the integral term in ( 11 ) which con- 
tains a *  ( t  - T) and a ( t  - 7). Evaluating the integral in the 
Born approximation and dropping fast oscillating terms, we 
find the first-order correction: 

a,"' ( t )  =iQ(a) < [Uzl(t) ,  Q (t) ] )exp (2ioot). (12) 

where 

Expression ( 12) describes the two-quantum nutation of the 
system with a frequency f l (a) , I1 caused by the coherent 
component of the squeezed EMF. 

The expression for 9, ( t )  contains the EMF operator 
a: ( t )  which must be expressed in terms of the atomic sub- 
system operators. To do this we write down the equation of 
motion for the a: ( t )  operator: 

a,+ (t)  =are+ (t) +akS+(t), 
ake+(t) =ak'+ (0) exp (iokt), 

2 t 

We substitute ( 14) into the expression for L3, ( t ) ;  using 
the form (5)  of the statistical operator of the photon subsys- 
tem and also the property (Ola;;+ = 0 we find 

D2 ( t )  = Yt y, z: (gkd3"~~gkd3'z) x (k, t )  j dtx (k, t-r) 

If we use the Born approximation to evaluate the inte- 
gral on the right-hand side of ( 15) we get the first-order term 
of the expansion of 9, ( t )  in a perturbation theory series 
with small parameter ( 10) : 

(gk*ld3i) (gkad3z) 
8,- I ( c , ) k , , ) p y , , ( - ~ c p ~ ) ,  (2 (r)  =st] r c11 r 

2h2 

If we then use ( 12) and ( 16), Eq. (9)  takes in first order of 
perturbation theory the form 

d Q ' l '  ( t )  
( T ) + + ( [ ~ ( t ) , ~ A ~ )  

=iQ (r. a )  < [UL1 ( I ) ,  Q ( t ) ]  ) (>~ l ) (%i ( , ) , , l )  + h.~ . ,  (18) 

C? ( r ,  a )  =<>(a) -0 ( r ) .  (19) 

It follows from Eqs. ( 18) and ( 19) that in the case of a 
two-photon interaction with the squeezed EMF the Rabi 
frequency f l ( r ,a)  depends on the squeezing parameter r. 
The nutation frequency i l ( r , a )  then depends strongly on 
the quantum fluctuations of the applied EMF. For instance, 
in the case of the strongest photon bunching, which is 
reached for a squeezing phase 2p, = p, + T, the Rabi fre- 
quency f l ( r ,a)  takes on its largest possible value for given r 
and a .  When the photon bunching in the squeezed EMF 
weakens the nutation frequency f l ( r , a )  decreases and 
reaches its smallest value in the case of amplitude squeezing, 
2p, = p,, when the photons are least bunched, as is well 
known4 (antibunching is also possible, if 
laI2 > (sinh3r + ~inhrcoshr)~/2(coshr - sinhr) ). In that 
case the interaction of a system of atoms with a squeezed 
EMF in which the amplitude of the quantum fluctuations of 
the EMF strength is of the order of the average value of the 
EMF strength or, more precisely, when sinhrcoshr = la1 ,, is 
of special interest; in that case the quantum fluctuations of 
the applied EMF stop the nutation in the system 
( f l ( r , a )  = 0). 

Since we have not restricted the external EMF to large 
intensities we must take into account not only the nutation 
processes, but also the damping processes in the system, in 
particular, the spontaneous decay of the 12) level. To do this 
we must consider second-order terms of the perturbation 
theory. For instance, in order to obtain the second-order 
correction to 9, ( t )  we must take into account the integral 
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terms containing a,,? ( t  - T) and a,  ( t  - T) in expression 
( 11) which was earlier substituted into B , ( t ) .  Using Eqs. 
( 14) and also the expression 

obtained as the result of solving the equation of motion for 
the U f  ( t  - r )  operator, and also using the lemma about the 
elimination of boson operators from Ref. 11, we find the 
second-order corrections to 9, (t)  and 9, ( t )  . After some 
transformations in the final form we get the equation 

-b(r. a ) ( [ ? .  R-]R+>-d(r,a)(R+[Q,R+]) 

-d' ( r ,  a) ( R -  [Q. H - 1  >+h.c., (21 

where the quantity S = w,, - 20, determines the frequency 
mismatch of the resonance while R * and R, are quasispin 
operators connected with the earlier atomic subsystem oper- 
ators through the relations 

The coefficients of Eq. (21 ) have the form 

The function 

has a Lorentzian form where r is the spectral width of the 
12) level. 

Consistently taking the first- and second-order terms of 
the expansion series of the right-hand side of Eq. (9)  into 
account we thus obtained a kinetic equation for the atomic 

subsystem operators. Since Eq. (21) does not contain the 
EMF operators the averaging is only over the atomic subsys- 
tem states. Transferring the temporal evolution to the statis- 
tical operator of the atomic subsystem we easily find the 
following governing equation: 

Let us consider in detr;l the second-order processes de- 
scribed by the a ( r ,a )  and b(r ,a)  coefficients. It follows from 
Eqs. (22) that in each relaxation and excitation act of the 
system the following processes are possible: the emission of 
two spontaneous photons (Fig. I,]), the scattering of the 
applied EMF at the frequencies GI, = w,, f w, (Figs. 1,2- 
1,5), and also induced transitions involving two quanta of 
the squeezed vacuum (Figs. 1,6; 1,8), or involving one co- 
herent photon and one photon from the squeezed vacuum 
(Figs. 1,7; 1,9). 

We note that although the form of Eq. (23) does not 
differ from the one obtained in Ref. 10 there are a number of 
important differences. The equation from Ref. ( 10) does not 
take into account the processes involving the scattering of 
the external EMF at the frequencies w, = w,, f o, (Figs. 
1,2; 1,5), or the processes involving one coherent photon and 
one photon from the squeezed vacuum (Figs. 1,7; 1,9). It is 
therefore impossible in the framework of Ref. 10 to obtain in 
the limit as r-0 the equation" 

describing the two-quantum interaction of a system of atoms 
with the coherent EMF mode. Moreover, the equation in 
Ref. 10 is obtained under the condition la1 2$sinhrcoshr and 
hence one cannot consider the case of amplitude squeezing 
of the applied EMF when Ja12 = sinhrcoshr and the nuta- 
tion frequency becomes zero. Equation (23) takes in that 
case the form 

X [R+, pAR+] -d' ( r ,  a )  [R- , pA&] + h . ~ .  ( 2 5 )  

The two-quantum absorption processes of squeezed 
light depend strongly on the ratio of the magnitude of the 

FIG. 1.  The thick straight lines indicate the photons of the classical com- 
ponent, the straight lines the photons of the fluctuating component of the 
squeezed EMF, and the wavy lines the spontaneously created photons. 
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spectral width r of the 12) level and the spectral width K of 
the applied EMF beam.9 The necessity to take into account 
the spectral widths r and K also follows from the form of the 
coefficients (22), part of which contains under the summa- 
tion sign over k,  and k, two Kronecker delta symbols and 
the e, function which for small r behaves like a Dirac delta 
function. It is thus advisable to consider two limiting cases: 
large spectral width of the excited level of the atomic system, 
r9 K, and small spectral width, r <<K. Changing in (22) 
from a summation to an integration we get after some simple 
transformations 

2 (gr,d,i) (gkod3,)d3,d3, a, (r. a )  = 
3c3h3 

xfl1-" (urn) ( O ~ ~ - W ~ ) ' [  1 a 1 '+sh2 r ] ,  (26b) 

(gkd31) "gkr,dy:)' 
a,, ( I . .  a )  = 

2h" 

b(r, a )  =a4(r, a ) ,  (27) 

d (r, a)_= '8k""'2(gk0d32)2,~(-)2(ok0)sh r[2 2 
2fi4 

X exp (2i(p,) -sh r clr r exp (icp,)] L (6), (28) 

It follows from Eqs. (26) to (28) that in a strong EMF 
the contribution from the spontaneous decay processes 
(Figs. 1 , l )  and the scattering processes (Figs. 1,2; 1,5) is 
relatively small as compared to the contribution from the 
induced processes (Figs. 1,6-1,9). Since the coefficients 
a, (r ,a) and b(r,a),  determining the intensity of the induced 
processes, contain expression (29), the magnitudes of the 
spectral widths and K have a large effect on the kinetics of 
the system in the case of an interaction with a strong EMF. 

4. LOSS COEFFICIENT OF THE PHOTONS OF A SQUEEZED 
ELECTROMAGNETIC FIELD 

We consider the change in the average number of pho- 
tons per unit time in a beam of squeezed light (k, mode) due 
to the absorption of photons by the atomic system and their 
reemission into other EMF modes. We call the expression 

the loss coefficient; here n (k)  is the average number of pho- 
tons in the mode k. In accordance with Eqs. ( 1 ) and ( 14) we 
write down the general expression 

Using Eqs. (14) to eliminate the EMF operators and 
taking (22), (26), and (27) into consideration we get for 
k = k,, after some transformations, 

d 
- n(ko) =-2iQ (r, a )  ( R - )  
at 

and in the case k # k, 

We write Eq. (32) in a simpler form. To do this we 
consider the change in the total number (in all modes) of 
photons in the system. Summing Eq. (31) over all k and 
using Eq. (32) and (33 ) we find 

+ h  (r, a) (R-RC>+ h.c. , (35) 

where Eq. (35) was obtained from the kinetic equation (2 1 ). 
It is clear that because there are scattering processes at 

the frequency w, = w,, + w, the expression within brackets 
on the left-hand side of (34) is not an integral of the motion. 

The nonconservation of the "number of particles" is a 
consequence of the fact that each atom in the system is, with 
a probability determined by the coefficients b(r,a) and 
a,(r,a), free to go from the 11) state to the 12) state while 
absorbing two quanta from the external EMF and after- - 
wards, in an anti-Stokes scattering process (Figs. 1,2; 1,3), 
again returning to the I 1) state while absorbing one photon 
from the squeezed EMF and emitting spontaneously a new 
photon. As a result of such a sequence the state of the atomic 
subsystem is unchanged but the number of photons in the 
system is reduced by two quanta. It is necessary to empha- 
size that notwithstanding the nonconservation of the "num- 
ber of particles" the total energy of the system is an integral 
of the motion: 
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Splitting off from Eq. (34) the term dn(k, )/dt, using (33), 
and changing from a summation to an integration we finally 
get 

d 
p=-2- (R,>-2[2al+a2(r, a)+3a3(r, a ) ]  (R+R->. (36) 

dt  

It follows from Eqs. (36) and (26) that in the case of a 
two-photon interaction the absorption of squeezed light is 
compounded from two-photon absorption as such when two 
light quanta are absorbed and from single-photon absorp- 
tion (scattering); both processes are here of second order 
and thus must be taken into account. We note also that 
thanks to the scattering processes the absorption of light oc- 
curs not only when the system is excited, but also when it 
relaxes. 

It follows from Eqs. (36) and (35) that the fluctuations 
of the EMF strongly affect the absorption process. Indeed, 
since the term d ( R ,  )/dt, contained in Eq. (36), depends on 
the two-quantum Rabi frequency Q (r ,a)  , until the atomic 
subsystem goes over into an equilibrium state it is just 
Q (r,a) which will mainly determine the absorption process 
of the squeezed light. In accordance with the properties of 
Q(r ,a)  considered in the preceding section we can thus con- 
clude that the stronger the photons are bunched in the ap- 
plied EMF, the stronger they are absorbed and the absorp- 
tion will be a maximum in the case of phase squeezing, 
2p, = a, + P. As the bunching of the photons in the 
squeezed EMF weakens, the absorption decreases and it 
reaches a minimum in the case of amplitude squeezing, 
2p, = p,, and in the case when sinhrcoshr = la1 the fluctu- 
ations of the EMF strength become commensurable with the 
average value of the EMF strength and then the coefficient p 
vanishes in first order. In the case of amplitude squeezing the 
quantum fluctuations of the squeezed EMF thus prevent its 
absorption whereas, in contrast, in the case of phase squeez- 
ing the quantum fluctuations accelerate the absorption of 
the EMF. 

Let us assume that the atomic system is in a stationary 
state: d ( R ,  )/dt = 0. To obtain quantitative results we must 
find the stationary value of the ( R  + R  - ) correlator. Fol- 
lowing Ref. 14 we use a canonical transformation to change 
to new operators: 

R-=A'S--A,S+ +2 (AiA2)'"S,, 

S+=(S-)+. 2S,=[S+, S-I, (37) 

A,=sin", Az=cosL q. ctg 2q=26/G. G2=6'+Q2(r, a) .  

We assume that the external EMF is sufficiently strong: 

G>Na (r, a ) ,  (38) 

i.e., we shall consider values of N and a( r ,a )  for which the 
two-quantum dynamical Stark effect occurs. Equation (23) 
then takes the form 

~ W A  -- iG[W,. S,] = X I  [S',W,. S,] +8,[S-, WAS+] 
d t  

- X 3  [S-. S+W,] + h.c., (39) 

where 

and WA is the statistical operator of the atomic subsystem 
after the transformation (37). We write the normalized sta- 
tionary solution ( d  WA /dt = 0) of Eq. (39) in the formI4 

Taking into account what we have just said, Eq. (36) takes 
the form 

Although pSS does not contain the phase-sensitive coef- 
ficients Q(r ,a) ,  d(r ,a) ,  and d * (r ,a) ,  it depends implicitly 
(through the averages ( S  + S  - ), (S ,  ), and ( S  S )  ) on the 
method of squeezing. One can show by using Eqs. (40), 
(41 ), and (42) that the rate of absorption of photons is larg- 
er for phase than amplitude sq~eezing.~ 

We obtained Eq. (41) for a high-intensity EMF; if, 
however, we consider an EMF of arbitrary intensity there is 
the possibility, without having recourse to condition (38) ,  to 
study the r = 0 case, i.e., two-quantum absorption processes 
of a coherent EMF. Following Refs. 15 and 16 we find the 
stationary solution of Eq. (24) : 

I'(m-A+I)r(n+A+l) 
( In , , , ,  = 

m ! r i ! r ( ~ + ~ ) r ( ~ - A )  ' 
in (a) i6 

g=- A=- 
a (0. a) ' a(0, a) ' 

where T ( x )  is the Euler gamma function and B a normaliz- 
ing factor. The loss coefficient can then be written in the 
form 
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Following Refs. 15 and 16 one can show that when there is 
no mismatch from resonance (6  = 0)  the (R,) and 
(R + R - ) correlators, considered as functions of the pa- 
rameter 8 = /3(a)/N with P ( a )  = 2lf l(a)  l/a(O,a), have 
singularities in the point 6' = 1; thus, the derivative of (R, ) 
in the point 6' = 1 tends to infinity while (R + R - ) has in 
the point 8 = 1 no uniquely defined derivative at all. This is 
the basis of speaking about a phase transition consisting in 
the transition of the atomic system from the usual state 8 < 1 
to a state 8 > 1 where the two-quantum Stark effect occurs. 
However, since a(O,a), in contrast to the single-photon 

depends on the intensity of the applied EMF the 
behavior of the system has its own peculiarities. It follows 
from Eqs. (26) that the coefficient a(0,a)  is the sum of three 
terms: a , ,  a, (O,a), and a, (0,a) describing the transition 
from the 12) state to the 11) state as the result of a two- 
quantum spontaneous decay and scattering of the applied 
EMF while in a strong EMF the contribution from the scat- 
tering processes is the decisive one. Neglecting the contribu- 
tion from the spontaneous decay processes and noting [see 
( 13) and (26) 1 that a, (O,a), a, (O,a), and the two-quan- 
tum Rabi frequency Q ( a )  are proportional to the intensity 
of the external EMF we can then conclude that the coeffi- 
cient P(a) tends to saturation when the intensity of the co- 
herent EMF increases: 

It follows from what was said above that one of the 
conditions for the existence of a critical phase transition 
point, 8 = 1, in the case of two-photon interactions with 
strong coherent EMF takes the form P "/N = 1, whence it 
follows that since " is independent of the intensity of the 
applied EMF the correlators (R,) and (R + R - ) as func- 
tions of 8 = p "/N are, in fact, functions of the number of 
atoms in the system. Hence it follows, in turn, that there 
exists a critical value of the number of atoms N,, = 0 and 
a phase transition is possible only when the number of atoms 
in the system is less than N,, (Fig. 2b). In the opposite case, 
N >  N,, , there cannot occur a phase transition, since we have 
always 6' < 1 (Fig. 2a). 

Turning to Eq. (43) and taking into account the prop- 
erties of (R + R - ), shown in Fig. 2, we can conclude that 
the rate of photon absorption is a maximum in the vicinity of 
the point 6' = 1, i.e., when the number of atoms in the system 
is roughly equal to N,, . Outside the neighborhood of 8 = 1 
( N  = N,, ) the rate of photon absorption is larger in the re- 
gion where there is a two-photon Stark splitting, 8 >  1 
( N <  N,,)  (Fig. 2b) than in the region where there is no 
Stark splitting, 8 <  1 (N>  N,, ) (Fig. 2a). It has thus been 
shown that in the case of interactions with a high intensity 
coherent EMF, when the above considerations are valid, the 
rate of light absorptionpss and the occurrence of a two-quan- 
tum dynamic Stark effect depend to a larger extent on the 
number of atoms in the system than on small changes in the 
intensity of the applied EMF. 

In conclusion we note that although in the case of inter- 
actions with a high intensity EMF the main contribution 

FIG. 2. The stationary values of the (R + R - ) / (N/2)  and (R,)/N 
correlators as functions of the parameter 8 = B "/N. We have taken 
N,, = 2200 as the critical value of the number of atoms in the system, 
obtained using (44) for the two-photon transition 2'S,,, - 12S,,, in 
Ar + 17: a-N>3200, b-N> 1000. The curves were drawn for a value 
6 = 0 .  

comes from induced processes (Figs. 1,6; 1,9), it follows 
from Eq. (26c) that in the case where the 13) and the 12) 

w the contribu- levels are close to one another, 03, - w, < , , 
tion from scattering processes at the frequency 
w, = w,, + w, (Figs. 1,2; 1,3) becomes important. Since 
the collective scattering at the frequency w, = w,, + w, de- 
stroys the Stark splitting of the levels, in the case where the 
13) level lies close to the 12) level, no two-photon dynamic 
Stark effect will not occur even in the 8 >  1 region. 

5. CONCLUSION 

The main aim of the present paper consisted in a study 
of two-quantum absorption processes of squeezed light. The 
results obtained supplement substantially the results of Ref. 
9; the analysis of the two-quantum processes given in Ref. 9 
is based on the approach proposed by Mollow in Ref. 17, but 
such an approach does not take into account scattering pro- 
cesses of the external EMF or the dynamics of the occupa- 
tion of the levels of the atomic system, including collective 
effects in the system. 

For an experimental observation of two-photon absorp- 
tion of squeezed light one can use hydrogenlike or helium- 
like atoms reaching two-photon resonance with the external 
EMF. For instance, one could use a system of Ar + I' atoms 
with the dipole-forbidden 2'S,,, - l2SI,, transition. The 
two-quantum spontaneous decay process was studied in Ref. 
18 using such a system. We note that the linear dimensions of 
the atomic system must be smaller than the wavelength of 
the radiation of the applied EMF, since the space-time syn- 
chronism between reemitted photons plays a large role in 
extended systems. 
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